Seminar Algebra II SS Der Satz von Jordan-Hölder. Tanja Busch

Größe: px
Ab Seite anzeigen:

Download "Seminar Algebra II SS Der Satz von Jordan-Hölder. Tanja Busch"

Transkript

1 Seminar Algebra II SS 2005 Der Satz von Jordan-Hölder Tanja Busch

2 Definition 1: 1. G sei eine Gruppe. Eine Reihe G N 0 N 1 N 2... N r {e} von Untergruppen heißt Kompositionsreihe von G, wenn stets N i+1 Normalteiler in N i ist. 2. Man nennt N i /N i+1 Faktoren der Reihe bzw. Kompositionsfaktoren und r die Kompositionslänge. 3. Eine strikte Kompositionsreihe ist eine Kompositionsreihe, für die stets N i N i+1 gilt. Definition 2: Eine Gruppe G heißt einfach, falls sie nicht-trivial ist und keine normalen Untergruppen besitzt außer {e} und sich selbst: G N 0 N 1 {e}. Definition 3: Eine Jordan-Hölder-Reihe ist eine strikte nicht verfeinerbare Kompositionsreihe. Mit anderen Worten: Eine JH-Reihe ist eine Kompositionsreihe, bei der alle Faktoren einfach sind. Bemerkungen 4: Jede endliche Gruppe besitzt eine JH-Reihe. Die unendliche zyklische Gruppe Z mit der gewöhnlichen Addition besitzt keine JH-Reihe: Z 2Z 4Z... {0}. G S n A n {e} ist JH-Reihe in S n für n 5. Sei Z zyklisch von der Ordnung n und g ein erzeugendes Element. Da zyklische Gruppen abelsch sind, sind alle Untergruppen von Z Normalteiler. Ist d ein Teiler von n, etwa n de, so wird die Untergruppe U der Ordnung d von g e erzeugt. Der Untergruppenverband von Z entspricht gerade dem Verband der Teiler von n. Die endlichen einfachen Abelschen Gruppen sind die zyklischen Gruppen C p von Primzahlordnung p. Definition 5: 1. Eine Kompositionsreihe Σ heißt Verfeinerung von Σ, wenn Σ Teilfolge von Σ ist. 2. Zwei Kompositionsreihen Σ 1 (F i ) 0 i r und Σ 2 (H j ) 0 j s heißen äquivalent, wenn es eine Bijektion σ : {0,..., r} {0,..., s}, i σ(i), gibt mit Insbesondere soll gelten: r s. F i /F i+1 Hσ(i) /H σ(i)+1. 1

3 Bemerkungen 6: Σ entsteht aus Σ durch Hinzufügen von Termen. Eine Teilfolge einer Kompositionsreihe ist im Allgemeinen nicht wieder Kompositionsreihe, denn G i+1 normal in G i, aber nicht notwendig normal in G j für j < i. Satz 7 (Verfeinerungssatz von Schreier): Je zwei Kompositionsreihen einer Gruppe besitzen äquivalente Verfeinerungen. Satz 8 (Jordan-Hölder): Je zwei JH-Reihen einer Gruppe sind äquivalent. Beweis von Satz 8: Nach dem Satz von Schreier haben je zwei solche Reihen äquivalente Verfeinerungen, während sie andererseits (nach Definition) keine echten Verfeinerungen erlauben. Also sind zwei JH-Reihen äquivalent. Bemerkung 9: Ein Spezialfall des Jordan-Hölder-Satzes ist die Eindeutigkeit der Primfaktorzerlegung in Z. k Sei n p i eine Primfaktorzerlegung (eventuell mit Wiederholungen) und G zyklisch i1 von der Ordnung n. Dann entspricht jedes Partialprodukt n j p 1...p j einer Untergruppe U j der Ordnung n j. So erhält man eine JH-Reihe, deren Faktoren U j+1 /U j von der Ordnung p j+1 sind. Also sind die Primfaktoren bis auf die Reihenfolge eindeutig bestimmt. Folgendes Beispiel soll der Veranschaulichung dienen: Für n hat man zwei JH-Reihen: Z 6 Z 3 {e} und Z 6 Z 2 {e}: Z 2 Z 6 Z 3 {e} Die Faktoren sind hier Z 2 und Z 3 Z6 /Z 2 bzw. Z 3 und Z 2 Z6 /Z 3 und stimmen somit bis auf die Reihenfolge überein. Beweis von Satz 7: Sei G eine Gruppe und Σ 1 (F i ) 0 i r, Σ 2 (H j ) 0 j s zwei Kompositionsreihen von G. Diese Reihen werden wie folgt verfeinert: Σ 1 wird zu Σ 1 durch Einfügen von F ij F i+1 (H j F i ) i 0,..., r 1, j 0,..., s, wobei F i0 F i+1 (H 0 F i ) F i+1 F i F i und F is F i+1 (H s F i ) F i+1 {e} F i+1. 2

4 Analog verfährt man mit Σ 2, wobei H ji H j+1 (F i H j ) j 0,..., s 1, i 0,..., r und H j0 H j, H jr H j+1 gelten. Man fügt also zwischen F i und F i+1 bzw. H j und H j+1 jeweils folgende Reihe ein: F i F i+1 (H 0 F i ) F i+1 (H 1 F i )... F i+1 (H s F i ) F i+1 bzw. H j H j+1 (F 0 H j ) H j+1 (F 1 H j )... H j+1 (F r H j ) H j+1. Zu zeigen bleibt also: 1. durch Einfügen dieser Untergruppen entstehen wieder Kompositionsreihen, d.h. F i,j+1 F ij und H j,i+1 H ji, 2. die Faktorgruppen sind isomorph, d.h. F ij /F i,j+1 Hji /H j,i+1. Um das beweisen zu können, benutzt man das sogenannte Schmetterlingslemma, wobei dann u F i+1, U F i, v H j+1 und V H j (siehe Lemma 13). Gesetz 10 (Dedekindsches Modulargesetz): Für A, B, C Untergruppen von G mit B C gilt: (AB) C (A C)B. Bemerkung 11: Die Normalteiler einer Gruppe bilden, genau wie die Untergruppen, einen Verband. Für Normalteiler ist AB das Supremum von A und B, A B das Infimum. Satz 12 (Noetherscher Isomorphiesatz): Sei G eine Gruppe, H und N Untergruppen von G, wobei N Normalteiler in G ist. Dann gilt: 1. HN ist Untergruppe von G 2. H N ist Normalteiler in H 3. HN/N H/H N. Zur Veranschaulichung: G HN N H H N 3

5 Lemma 13 (Schmetterlingslemma von Zassenhaus): Sei G eine Gruppe, U, V Untergruppen von G und u U, v V (d.h. normal in U bzw. V ). Dann gilt: 1. u(u v) u(u V ) (u V )v (U V )v 2. u(u V )/u(u v) (U V )v/(u V )v, d.h. die Faktorgruppen sind isomorph. Beweis: Man betrachte im folgenden Diagramm zwei Parallelogramme, die die Flügel des Schmetterlings repräsentieren. Da u und v Normalteiler in U bzw. V sind, folgt, dass alle im Lemma auftretenden Produkte Untergruppen sind. U V u(u V ) (U V )v U V u u(u v) (u V )v (u V )(U v) v u V U v Der Schnittpunkt zweier Liniensegmente, die nach unten gehen, repräsentieren den Schnitt von Gruppen. Zwei Linien, die nach oben gehen, treffen sich in einem Punkt, der das Produkt zweier Gruppen repräsentiert (d.h. die kleinste Untergruppe, welche beide enthält). Es gilt: u(u v)(u V ) u(u V ), da (U v) (U V ) u(u V )(U v) u(u v), da (u V ) u u(u v) (U V ) (u U V )(U v) (u V )(U v) (nach Gesetz 9) Analog für die rechte Seite. Zu 1: Da u U und U v U V U, folgt u(u v) u(u V ) U. Elemente aus U V normalisieren u, v und U, also auch u(u v). Daher gilt: (U V ) N G (u(u v)). 4

6 Offensichtlich ist u u(u v) N G (u(u v)). Also ist auch das Produkt u(u V ) N G (u(u v)), d.h. u(u v) u(u V ). Analog verfährt man, um (u V )v (U V )v zu zeigen. Zu 2: Die vertikale Seite, die die beiden Parallelogramme verbindet, hat U V als Gipfelendpunkt und (u V )(U v) als Fußendpunkt. Da v V, folgt (U V )v V und v (U V )v. Der Isomorphiesatz Punkt 2 liefert, mit H U V und N v, (U V ) v (U v) (U V ). Analog zeigt man (u V ) (U V ). Damit folgt: (u V )(U v) (U V ). Nach Isomorphiesatz Punkt 3 folgt, mit H U V und N (u V )v: (U V )/(u V )(U v) (U V )v/(u V )v. Analog, mit H U V und N u(u v), folgt (durch Symmetrie): (U V )/(u V )(U v) u(u V )/u(u v). Zur Veranschaulichung: u(u V ) (U V )v U V u(u v) (u V )(U v) (u V )v D.h. also, dass die mittlere vertikale Seite des Parallelogramms äquivalent sowohl zur linken vertikalen Seite als auch zur vertikalen Seite von rechts ist. Damit folgt die Behauptung 2 des Lemmas: u(u V )/u(u v) (U V )v/(u V )v. 5

7 Literaturverzeichnis [1] J. Gamst: Vorlesungsunterlagen - Algebra I, 3.B, 1990 [2] S. Lang: Algebra, Kapitel IV 4, Addison-Wesley, 1965 [3] M. Aschbacher: Finite group theory, Cambridge University Press, 1986 [4] R. Kochendörffer: Einführung in die Algebra, VEB Deutscher Verlag der Wissenschaften, Berlin, 1974 [5] J. Cigler: Körper - Ringe - Gleichungen, Akademischer Verlag Heidelberg Berlin Oxford, 1995 [6] Helmut Kopka: L A TEX Eine Einführung, Addison-Wesley,

6.6 Normal- und Kompositionsreihen

6.6 Normal- und Kompositionsreihen 282 6.6 Normal- und Kompositionsreihen Es geht jetzt um die innere Struktur von Gruppen, soweit diese mit Ketten von ineinandergeschachtelten Normalteilern beschrieben werden kann. Erinnern wir uns deshalb

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

1 Gruppen. 1.1 Grundlagen. 1.2 Homomorphie- und Isomorphiesätze

1 Gruppen. 1.1 Grundlagen. 1.2 Homomorphie- und Isomorphiesätze 1 Gruppen 1.1 Grundlagen 1.2 Homomorphie- und Isomorphiesätze Sind G und G Gruppen und ϕ : G G ein Gruppenhomomorphismus. Dann gilt: G/Kern(ϕ) = Bild(ϕ) Beispiele 1.1 (a) G/Z(G) = Aut i (G) Satz 1 Sei

Mehr

Algebra I - Wintersemester 05/06 - Zusammenfassung

Algebra I - Wintersemester 05/06 - Zusammenfassung Algebra I - Wintersemester 05/06 - Zusammenfassung Die Autoren 28. September 2017 1 Gruppen 1.1 Grundlagen 1.2 Homomorphie- und Isomorphiesätze Sind G und G Gruppen und ϕ : G G ein Gruppenhomomorphismus.

Mehr

2.6 Ergänzungen und Beispiele: Semidirekte Produkte

2.6 Ergänzungen und Beispiele: Semidirekte Produkte Algebra I 15. Oktober 2007 c Rudolf Scharlau, 2002 2007 66 2.6 Ergänzungen und Beispiele: Semidirekte Produkte Wir befassen uns mit der Zerlegung von Gruppen in kleinere Gruppen, bzw. der Konstruktion

Mehr

Algebraische Körpererweiterungen I

Algebraische Körpererweiterungen I Algebraische Körpererweiterungen I Thomas Schmalfeldt, Florian Schuler Seminar über Galoistheorie, 18. Februar 2009 Inhaltsverzeichnis 1 Charakteristik und Primkörper 2 2 Grad einer Körpererweiterung 3

Mehr

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe

Seminar. Der Ring O K der ganzen Zahlen über einem Zahlenkörper K. Armin Hecht, Sabine Naewe Universität Paderborn SS 2007 Warburger Str. 100 33098 Paderborn Seminar Der Ring O K der ganzen Zahlen über einem Zahlenkörper K Armin Hecht, Sabine Naewe 04.Dezember 2007 Inhaltsverzeichnis 7 Der Ring

Mehr

Welche Abbildungen/Symmetrieoperationen bilden das Dreieck auf sich selber ab? ( ) A B C = 3 B C A. = m B A C C. = m A C B A.

Welche Abbildungen/Symmetrieoperationen bilden das Dreieck auf sich selber ab? ( ) A B C = 3 B C A. = m B A C C. = m A C B A. 3 Gruppen Wir betrachten ein reguläres Dreieck ABC und seine Symmetrien: C m C m A m B A B Welche Abbildungen/Symmetrieoperationen bilden das Dreieck auf sich selber ab? = 3 B C A = 3 C A B 1 = 1 A B C

Mehr

3.2 Operationen von Gruppen auf Mengen und Faktorgruppen

3.2 Operationen von Gruppen auf Mengen und Faktorgruppen Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 16 wohldefiniert, ein Gruppen-Homomorphismus, injektiv und surjektiv ist. ( Dies ist eine Anwendung vom Satz 2.4.1.) Siehe die Aufgaben (Blatt 6). 3.2 Operationen

Mehr

Kapitel I. Endliche Gruppen

Kapitel I. Endliche Gruppen Inhalt der Vorlesung ALGSTR Galoistheorie Prof. Dr. Arno Fehm TU Dresden, WS2017/18 Kapitel I. Endliche Gruppen 1 Grundlagen (Wiederholung) Sei G eine Gruppe. 1.1 Bemerkung. Eine allgemeine Gruppe G schreiben

Mehr

Algebra und Zahlentheorie I, Blatt 10, Aufgabe 4

Algebra und Zahlentheorie I, Blatt 10, Aufgabe 4 Algebra und Zahlentheorie I, Blatt 10, Aufgabe 4 Aufgabe 4. (Die Gruppen der Ordnung 12) Beweisen Sie, dass jede Gruppe der Ordnung 12 sich als semidirektes Produkt einer 2-Sylowuntergruppe mit einer 3-Sylowuntergruppe

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

Algebraische Zahlentheorie. Teil II. Die Diskriminante.

Algebraische Zahlentheorie. Teil II. Die Diskriminante. II-1 Algebraische Zahlentheorie Teil II Die Diskriminante Sei K ein Zahlkörper vom Grad n (also [K : Q] = n) Es gibt genau n Körper- Homomorphismen σ i : K C (siehe Merkzettel Separabilität) Stellen wir

Mehr

Multiple Choice Quiz: Lösungen

Multiple Choice Quiz: Lösungen D-MATH Algebra I HS 2015 Prof. Richard Pink Multiple Choice Quiz: Lösungen Jede Frage hat mindestens eine richtige Antwort, manchmal mehrere. 1. Eine nichtleere Teilmenge H G einer Gruppe G ist eine Untergruppe

Mehr

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß

ALGEBRA I Serie 7. z 2 z 1 mit z1, z 2 C. Zeigen Sie, daß Wintersemester 17/18 ALGEBRA I Serie 7 Prof. Dr. J.S. Wilson Aufgabe 7.1 [4 Punkte] (a) Seien R = {a + bi a, b Q}, S = {a + bi a, b Z}. Zeigen Sie, daß R, S Unterringe von C sind. Bestimmen Sie die Einheitengruppen

Mehr

Auflösbare Gruppen. Alexander Hölzle

Auflösbare Gruppen. Alexander Hölzle Auflösbare Gruppen Alexander Hölzle 16.05.2007 Inhaltsverzeichnis 1 Homomorphie, Isomorphie 2 2 Permutationsgruppen 3 3 Das direkte Produkt 4 4 Normal- & Kompositionsreihen 5 4.1 Normalreihen.................................

Mehr

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme,

Gruppen. Kapitel Operationen Definiton Gruppe, symmetrische Gruppen. Gruppen und Untergruppen, Lernziele 1. Erzeugendensysteme, Kapitel 1 Gruppen 1.1 Operationen Lernziele 1. Gruppen und Untergruppen, Erzeugendensysteme, Operationen und Bahnen 1.1.1 Definiton Gruppe, symmetrische Gruppen Definition 1.1. Sei G eine nicht leere Menge

Mehr

C: Algebraische Strukturen

C: Algebraische Strukturen C: Algebraische Strukturen Algebra: Rechnen. Menge mit Verknüpfungen: (N 0, +), (R, +, ), (P(X),, ), (R n n, +, ) Informatik: Boolsche Algebren Relationenalgebra (Datenbanken) Computeralgebra 29 Gruppen

Mehr

Vortragsskript Einführung in die Algebra

Vortragsskript Einführung in die Algebra Vortragsskript Einführung in die Algebra TeamTUM - Das Wettbewerbsteam Mathematik Technische Universität München Fakultät für Mathematik Vortragender: Vu Phan Thanh Datum: 26.11.12 iii Inhaltsverzeichnis

Mehr

Permutationen. ... identische Abbildung

Permutationen. ... identische Abbildung Permutationen n > 0 sei S n {σ : {1, 2,..., n} {1, 2,..., n} : σ ist bijektiv}. Dann ist S n eine Gruppe bzgl. der Verknüpfung von Abbildungen (vgl. früher) und heißt symmetrische Gruppe (vom Index n).

Mehr

Lösungshinweise Aufgabenblatt 5

Lösungshinweise Aufgabenblatt 5 Höhere Algebra Wintersemester 21/11 Prof. C. Schweigert Bereich Algebra und Zahlentheorie Fachbereich Mathematik, Universität Hamburg Lösungshinweise Aufgabenblatt 5 Aufgabe 1 1. Ja, denn sei Φ : M M surjektiv.

Mehr

Algebraische Strukturen und Verbände

Algebraische Strukturen und Verbände KAPITEL 4 Algebraische Strukturen und Verbände Definition 4.1. Sei M eine Menge. Eine Abbildung : M M M nennt man eine (zweistellige) Verknüpfung in M. Man schreibt dafür auch a b := (a, b) mit a, b M.

Mehr

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion)

Kapitel 2: Multiplikative Funktionen. 3 Multiplikative Funktionen. Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) Kapitel 2: Multiplikative Funktionen 3 Multiplikative Funktionen Definition 2.1 (arithmetische Funktion, (vollständig) multiplikative Funktion) (a) Eine Funktion α : Z >0 C heißt arithmetisch (oder zahlentheoretisch).

Mehr

Übungen zu Algebra, WS 2015/16

Übungen zu Algebra, WS 2015/16 Übungen zu Algebra, WS 2015/16 Christoph Baxa 1) Es seien G 1,..., G n Gruppen. Beweisen Sie: Ist σ S n, so ist G σ(1) G σ(n) = G1 G n. 2) Beweisen Sie: Sind G 1,..., G n und H 1,..., H n Gruppen mit der

Mehr

Leitfaden. a ist Vielfaches von d und schreiben verkürzt: d a. Ist d kein Teiler von a, so schreiben wir auch: d a. d teilt a oder

Leitfaden. a ist Vielfaches von d und schreiben verkürzt: d a. Ist d kein Teiler von a, so schreiben wir auch: d a. d teilt a oder Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 11. Januar 2018 1/32 Erinnerung: Eine Gruppe ist eine algebraische Struktur (G, )

Mehr

Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017

Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Inhalt der Vorlesung Algebraische Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel II. Moduln 1 Moduln Sei R ein Ring (stets kommutativ und mit 1). 1.1 Definition. 1. Ein R-(links-)Modul ist

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 9 Das Signum einer Permutation Definition 9.1. Sei M = {1,...,n} und sei σ eine Permutation auf M. Dann heißt die Zahl sgn(σ)

Mehr

15 Auflösbarkeit durch Radikale

15 Auflösbarkeit durch Radikale Chr.Nelius: Algebra (SS 2006) 1 15 Auflösbarkeit durch Radikale f [T] sei ein normiertes Polynom vom Grade 1. Wir wollen die Frage untersuchen, ob sich die Nullstellen von f formelmäßig berechnen lassen.

Mehr

Christian Karpfinger Kurt Meyberg. Algebra. Gruppen - Ringe - Korper. Spektrum 9*M. AKADEMISCHER VERLAG

Christian Karpfinger Kurt Meyberg. Algebra. Gruppen - Ringe - Korper. Spektrum 9*M. AKADEMISCHER VERLAG Christian Karpfinger Kurt Meyberg Algebra Gruppen - Ringe - Korper Spektrum 9*M. AKADEMISCHER VERLAG Vorwort 0 Vorbemerkungen 1 0.1 Womit befasst sich die Algebra? 1 0.2 Gruppen, Ringe, Korper 2 1 Halbgruppen

Mehr

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Erste Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 26 Formales Vorlesung:

Mehr

Klausur zur Einführung in die Algebra, Lösungsvorschlag

Klausur zur Einführung in die Algebra, Lösungsvorschlag Universität Konstanz Christoph Hanselka Fachbereich Mathematik und Statistik Markus Schweighofer 16. März 2015 Wintersemester 2014/2015 Klausur zur Einführung in die Algebra, Lösungsvorschlag Aufgabe 1

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 8 Homomorphie- und Isomorphiesatz Satz 8.1. Seien G,Q und H Gruppen, es sei ϕ :G H ein Gruppenhomomorphismus und ψ : G Q ein surjektiver

Mehr

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.

In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16

Mehr

Kapitel II. Vektorräume. Inhalt: 7. Vektorräume 8. Basis und Dimension 9. Direkte Summen und Faktorräume

Kapitel II. Vektorräume. Inhalt: 7. Vektorräume 8. Basis und Dimension 9. Direkte Summen und Faktorräume Kapitel II. Vektorräume Inhalt: 7. Vektorräume 8. Basis und Dimension 9. Direkte Summen und Faktorräume Die fundamentale Struktur in den meisten Untersuchungen der Linearen Algebra bildet der Vektorraum.

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 11 Das Gruppenaxiom (G3) ist nicht erfüllt Es gibt zwar zu jedem x M eine Linksinverse (dh ein Element x mit x x = 1 ) und eine Rechtsinverse (dh ein Element x mit xx = 1 ), die beiden stimmen jedcoh nicht

Mehr

3. Übungszettel zur Vorlesung. Geometrische Gruppentheorie Musterlösung. Cora Welsch

3. Übungszettel zur Vorlesung. Geometrische Gruppentheorie Musterlösung. Cora Welsch 3. Übungszettel zur Vorlesung Geometrische Gruppentheorie Musterlösung WiSe 2015/16 WWU Münster Prof. Dr. Linus Kramer Nils Leder Cora Welsch Aufgabe 3.1 Sei I eine Indexmenge und A α für jedes α I eine

Mehr

Kapitel I. Endliche Gruppen

Kapitel I. Endliche Gruppen Inhalt der Vorlesung Math-Ba-GEO Prof. Dr. Arno Fehm TU Dresden WS2018/19 Kapitel I. Endliche Gruppen 1 Erinnerung und Beispiele 1.1 Erinnerung. Eine Gruppe ist ein Paar (G, ), bestehend aus einer Menge

Mehr

Aufgaben zur Verbandstheorie

Aufgaben zur Verbandstheorie TU Bergakademie Freiberg WS 2005/06 Institut für Diskrete Mathematik & Algebra Prof. Dr. Udo Hebisch Aufgaben zur Verbandstheorie 1. Für ein beliebiges n IN sei X n die Menge aller Teiler von n. Definiert

Mehr

Darstellung von Gruppen

Darstellung von Gruppen Darstellung von Gruppen Definition Darstellung von Gruppen Sei G eine endlich erzeugte abelsche Gruppe mit Erzeugern S = (g 1,..., g k ) G k. Elemente des Kerns von ϕ S : Z k G, (m 1,..., m k ) k i=1 m

Mehr

Mathematik für Informatiker I,

Mathematik für Informatiker I, Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine

Mehr

Permutationsgruppen. 1 Zykelzerlegung und Signum. Jesko Hüttenhain. Winter 2013

Permutationsgruppen. 1 Zykelzerlegung und Signum. Jesko Hüttenhain. Winter 2013 Permutationsgruppen Jesko Hüttenhain Winter 2013 Sei N eine endliche Menge. Dann bezeichnen wir mit S N := {σ : N N σ bijektiv} die symmetrische Gruppe auf N. Für n N sei [n] := {1,..., n}. Wir schreiben

Mehr

Aufgabe 1. Stefan K. 3.Übungsblatt Algebra I

Aufgabe 1. Stefan K. 3.Übungsblatt Algebra I Stefan K. 3.Übungsblatt Algebra I Aufgabe 1 a) zu zeigen: Z(G) ist ein Normalteiler in G Nach Definition des Zentrums ist Z(G) = {h G hg = gh g G}, = {h G hgh 1 = g g G}. (1) Nachweis, daß Z(G) G eine

Mehr

Lösungsskizzen zu Übungsblatt 1

Lösungsskizzen zu Übungsblatt 1 Lösungsskizzen zu Übungsblatt 1 26. Oktober 2016 Algebra Wintersemester 2016-17 Prof. Andreas Rosenschon, PhD Anand Sawant, PhD Diese Lösungen erheben nicht den Anspruch darauf vollständig zu sein. Insbesondere

Mehr

Universität Zürich HS , Vorlesung #3

Universität Zürich HS , Vorlesung #3 Algebraic Number Theory P. Habegger Universität Zürich HS 2010 6.10.2010, Vorlesung #3 1.4 Diskriminante Die primitivste Invariante eines Zahlkörpers ist sein Grad. Die Diskriminante eines Zahlkörpers

Mehr

S n. C n. D n. A n. Automorphismengruppe. Definition: Gruppe. Eigenschaften: Äquivalenzrelation. Definition: Nebenklasse. Definition: Normalteiler

S n. C n. D n. A n. Automorphismengruppe. Definition: Gruppe. Eigenschaften: Äquivalenzrelation. Definition: Nebenklasse. Definition: Normalteiler S n C n D n A n Automorphismengruppe Definition: Gruppe Definition: Nebenklasse Eigenschaften: Äquivalenzrelation Satz: Lagrange Definition: Normalteiler Einheitswurzelgruppe C n = {ζ C; ζ n = 1} Permutationsgruppe

Mehr

DIE SÄTZE VON SCHUR-ZASSENHAUS UND P. HALL

DIE SÄTZE VON SCHUR-ZASSENHAUS UND P. HALL DIE SÄTZE VON SCHUR-ZASSENHAUS UND P. HALL LARS KINDLER Dies sind Notizen für ein Seminar an der Universität Duisburg-Essen im Sommersemster 2011. Als Quelle diente das Buch A Course in the Theory of Groups

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

15 Grundlagen der Idealtheorie

15 Grundlagen der Idealtheorie 15 Grundlagen der Idealtheorie Definition und Lemma 15.1. Sei R ein Ring, S R. x R nennt man eine R-Linearkombination von Elementen in) S falls n N 0, s 1,..., s n S, λ 1,..., λ n R mit x = n i=1 λ is

Mehr

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum

Klausur zur Linearen Algebra I HS 2012, Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Klausur zur Linearen Algebra I HS 01, 1.1.01 Universität Mannheim, Dr. Ralf Kurbel, Dr. Harald Baum Name: Sitzplatznummer: Die Bearbeitungszeit für diese Klausur beträgt 90 Minuten. Die Klausur umfaßt

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie

Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie Anwesenheitsübung zur Vorlesung Algebra und Zahlentheorie WS 2014/2015 A Muñoz, A Schmitt Aufgabe 1 (7+8 Punkte) a) Bestimmen Sie die Primfaktorzerlegungen der Zahlen 15015 und 12600 und geben Sie damit

Mehr

Geometrie Herbstsemester 2013

Geometrie Herbstsemester 2013 Geometrie Herbstsemester 203 D-MATH Prof. Felder Lösungen 3 ) (a) Wir verwenden die Zykelschreibweise für die Elemente von S n, so dass S 3 = {(), (2), (3), (23), (23), (32)} Die Gruppe besteht also aus

Mehr

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt.

a i x i, (1) Ein Teil der folgenden Betrachtungen gilt auch, wenn man den Körper durch einen Ring ersetzt. Polynome Definition 1. Ein Polynom f über einem Körper K mit der Unbestimmten x ist eine formale Summe f(x) = i 0 a i x i, (1) wobei nur endlich viele der Koeffizienten a i K von Null verschieden sind.

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)

Mehr

6.1 Präsentationen von Gruppen

6.1 Präsentationen von Gruppen 244 6.1 Präsentationen von Gruppen Es geht jetzt um die Beschreibung von Gruppen durch Erzeugende und Relationen, also z. B. um die genaue Beschreibung dessen, was Zeilen wie die folgende bedeuten: G :=

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 3. Der euklidische Algorithmus Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 3 Der euklidische Algorithmus Euklid (4. Jahrhundert v. C.) Definition 3.1. Seien zwei Elemente a, b (mit b 0) eines euklidischen Bereichs

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 23 Die Gradformel Satz 1. Seien K L und L M endliche Körperweiterungen. Dann ist auch K M eine endliche Körpererweiterung und

Mehr

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9

Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9 Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 9 Satz 3.1.15 Sei N eine Natürliche Zahl. Dann gilt S =! := 1 2. (D.h. -Fakultät Elemente.) Beweis : Um eine bijektive Abbildung σ : {1} {1} zu erhalten,

Mehr

3 Teilbarkeit in Integritätsringen

3 Teilbarkeit in Integritätsringen 3 Teilbarkeit in Integritätsringen 3.1 Division mit Rest in Z Zu a, b Z, b > 0 existieren eindeutig bestimmte Zahlen q, r Z a = qb + r, 0 r < b. 3.2 Satz Sei K ein Körper zu f, g K[T ], g 0 existieren

Mehr

Die Gruppe S 4 besitzt die folgenden Elemente: 1 id

Die Gruppe S 4 besitzt die folgenden Elemente: 1 id Die Gruppe S 4 besitzt die folgenden Elemente: Ordnung Elemente 1 id 2 (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) 3 (1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4,

Mehr

KLAUSUR ZUR ALGEBRA (B3) 18. Februar 2009 MUSTERLÖSUNG

KLAUSUR ZUR ALGEBRA (B3) 18. Februar 2009 MUSTERLÖSUNG KLAUSUR ZUR ALGEBRA (B3) 18. Februar 2009 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 7 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

3-1 Elementare Zahlentheorie

3-1 Elementare Zahlentheorie 3-1 Elementare Zahlentheorie 3. Der Restklassenring Z/n und seine Einheitengruppe 3.0. Erinnerung: Teilen mit Rest, euklidscher Algorithmus, Bézoutsche Gleichung. Sei n eine feste natürliche Zahl. Sei

Mehr

Klausur Grundlagen der Algebra und Computeralgebra

Klausur Grundlagen der Algebra und Computeralgebra Prof. Werner M. Seiler, Ph.D. FB 10 Mathematik und Naturwissenschaften Institut für Mathematik Klausur Grundlagen der Algebra und Computeralgebra 21.02.2012 Name: Vorname: Geburtsdatum: Matrikelnummer:

Mehr

1 Der Satz von Poincaré-Birkhoff-Witt. 2 Die freie Algebra. 3 Die universell einhüllende Algebra

1 Der Satz von Poincaré-Birkhoff-Witt. 2 Die freie Algebra. 3 Die universell einhüllende Algebra 1 Der Satz von Poincaré-Birkhoff-Witt Darstellungen von assoziativen Algebren sind oft einfacher zu handhaben als Darstellungen von Lie- Algebren. Die universell einhüllende Algebra einer Lie-Algebra hat

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 22 Algebraische Körpererweiterung Satz 1. Sei K L eine Körpererweiterung und sei f L ein Element. Dann sind folgende Aussagen

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Kapitel II. Vektorräume

Kapitel II. Vektorräume Inhalt der Vorlesung LAAG I Prof. Dr. Arno Fehm TU Dresden WS2017/18 Kapitel II. Vektorräume In diesem ganzen Kapitel sei K ein Körper. 1 Definition und Beispiele 1.1 Beispiel. Ist K = R, so haben wir

Mehr

Vektorräume. Kapitel Definition und Beispiele

Vektorräume. Kapitel Definition und Beispiele Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte

Mehr

2. Gruppen und Körper

2. Gruppen und Körper 2. Gruppen und Körper (2.1) Def. Eine Gruppe ist eine Menge, genannt G, und eine Abbildung ( innere Verknüpfung ) von G G nach G, hier bezeichnet als so daß folgende Eigenschaften erfüllt sind: : G G G,

Mehr

2.3 Endliche abelsche Gruppen

2.3 Endliche abelsche Gruppen Algebra und Zahlentheorie c Rudolf Scharlau, 2002 2013 131 2.3 Endliche abelsche Gruppen In diesem Abschnitt wollen wir die Struktur von endlichen abelschen Gruppen behandeln. Die Grundidee ist, die Gruppe

Mehr

Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper

Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper Kapitel 1 Lineare Algebra individuell M. Roczen und H. Wolter, W. Pohl, D.Popescu, R. Laza Erste algebraische Strukturen Hier werden die grundlegenden Begriffe eingeführt; sie abstrahieren vom historisch

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch):

Leseprobe. Rolf Socher. Algebra für Informatiker. Mit Anwendungen in der Kryptografie und Codierungstheorie. ISBN (Buch): Leseprobe Rolf Socher Algebra für Informatiker Mit Anwendungen in der Kryptografie und Codierungstheorie ISBN (Buch): 978-3-446-43257-4 ISBN (E-Book): 978-3-446-43312-0 Weitere Informationen oder Bestellungen

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

Bei Fragen oder Bemerkungen (speziell Hinweise auf Fehler aller Art sind willkommen) schicken Sie ein an

Bei Fragen oder Bemerkungen (speziell Hinweise auf Fehler aller Art sind willkommen) schicken Sie ein  an Algebra II LVA 405.096 C. Fuchs Inhaltsübersicht 27.06.2018 Inhaltsübersicht Es werden die folgenden Themen behandel: Lösungsformeln, Nachträge aus der Ringtheorie (insbesondere über Polynomringe, Resultante,

Mehr

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche

1 Angeordnete Körper. 1.1 Anordnungen und Positivbereiche 1 1 Angeordnete Körper 1.1 Anordnungen und Positivbereiche Definition 1.1. Eine zweistellige Relation auf einer Menge heißt partielle Ordnung, falls für alle Elemente a, b, c der Menge gilt: (i) a a (ii)

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

1.8 Endlich erzeugte kommutative Gruppen

1.8 Endlich erzeugte kommutative Gruppen 1.8 Endlich erzeugte kommutative Gruppen 23 1.8 Endlich erzeugte kommutative Gruppen Im folgenden sei (G, +) stets eine endlich erzeugte kommutative Gruppe. G ist direkte Summe der Untergruppen H 1,...,H

Mehr

Invariantentheorie. Vorlesung 2. Gruppenoperationen

Invariantentheorie. Vorlesung 2. Gruppenoperationen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invariantentheorie Vorlesung 2 Gruppenoperationen In den beiden Beispielen der ersten Vorlesung operiert eine Gruppe auf einer Menge: Die Kongruenzabbildungen

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

Stichworte zur Vorlesung Algebra I, Herbstsemester 2012

Stichworte zur Vorlesung Algebra I, Herbstsemester 2012 Stichworte zur Vorlesung Algebra I, Herbstsemester 2012 Teil A: Gruppen 1. Der Gruppenbegriff Axiome mit beidseitigem Einselement und beidseitigem Inversen Halbgruppe, Monoid, Gruppe äquivalente Formulierungen

Mehr

Matrikelnummer. Klausur 1

Matrikelnummer. Klausur 1 Klausur 1 Pro Aufgabe sind maximal vier Punkte zu erreichen. Auf jedem Klausurblatt sind mindestens der oder die anzugeben, auf dem obersten Blatt beides. Aufgabe 1. Richtig oder falsch? (1 Punkt pro richtige

Mehr

Sei G eine (multiplikative) endliche Gruppe mit neutralem Element 1. Das Element a heißt Generator oder auch primitives Element.

Sei G eine (multiplikative) endliche Gruppe mit neutralem Element 1. Das Element a heißt Generator oder auch primitives Element. Ordnung einer Gruppe Definition Ordnung einer Gruppe Sei G eine (multiplikative) endliche Gruppe mit neutralem Element 1. 1 Die Ordnung von G ist ord(g) := G. 2 Die Ordnung eines Elements a G ist ord G

Mehr

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau,

1.3 Gruppen. Algebra I 9. April 2008 c Rudolf Scharlau, Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 18 1.3 Gruppen Der Begriff der Gruppe ordnet sich in gewisser Weise dem allgemeineren Konzept der Verknüpfung (auf einer Menge) unter. So ist zum Beispiel

Mehr

n (als K 0 -Vektorraum) und insbesondere

n (als K 0 -Vektorraum) und insbesondere Algebra I c Rudolf Scharlau, 2002 2010 209 4.3 Endliche Körper. Wir beschäftigen uns in diesem Abschnitt mit endlichen Körpern. Zum einen kann hier die allgemeine Theorie (auch die der folgenden Abschnitte

Mehr

5 Noethersche Ringe und Moduln, Algebren und Ganzheit

5 Noethersche Ringe und Moduln, Algebren und Ganzheit 5 Noethersche Ringe und Moduln, Algebren und Ganzheit Sofern nichts anderes gesagt wird, sind im Folgenden alle Ringe kommutativ mit 1 0. Satz und Definition 5.1. Sei A ein Ring. Die folgenden Aussagen

Mehr

σ-algebren, Definition des Maßraums

σ-algebren, Definition des Maßraums σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven

Mehr

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K }

Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1. (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } Chr.Nelius: Grundzüge der Algebra (WS2005/06) 1 14 Körper (14.1) DEF: Ein kommutativer Ring (K, +, ) heißt ein Körper, wenn gilt: 1) 1 K 0 K 2) K = K \ {0 K } (14.2) BEM: a) Ist K ein Körper, so ist (K

Mehr

3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert.

3 Moduln. Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. 3 Moduln Analogon zu K-Vektorräumen, aber statt über einem Körper, über einem Ring definiert. Beispiele: (1) (Z n, +, (Z, )), wobei (Z, ) Skalarmultiplikation. k (a 1,...,a n )=(ka 1,...,ka n )inz. (2)

Mehr

1.4 Homomorphismen und Isomorphismen

1.4 Homomorphismen und Isomorphismen Algebra I 9. April 2008 c Rudolf Scharlau, 2002 2008 28 1.4 Homomorphismen und Isomorphismen Definition 1.4.1 Es seien (G, ) und (H, ) zwei Gruppen. Eine Abbildung ϕ : G H heißt (Gruppen-)Homomorphismus,

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 7 Nebenklassen Definition 7.1. Sei G eine Gruppe und H G eine Untergruppe. Wir setzen x H y (und sagen, dass x und y äquivalent

Mehr

Lösungen zu Kapitel 8

Lösungen zu Kapitel 8 Lösungen zu Kapitel 8 Lösung zu Aufgabe 1: M offenbar Wir setzen A = M\ A. Für A, B P (M) gilt wegen A, B A B = (A\B) (B\A) = A B + A B, wobei + die disjunkte Vereinigung der beteiligten Mengen bedeutet.

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 22 In dieser und der nächsten Vorlesung beweisen wir zwei Versionen zur eindeutigen Primfaktorzerlegung in Zahlbereichen, die beide Abschwächungen

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr