Übersicht über die Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Übersicht über die Vorlesung"

Transkript

1 Übersicht über die Vorlesung OE 5.1 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien IV. Halbleiterleuchtdioden IV.1 Dotierung IV.2 Der pn-übergang IV.3 Emissionseigenschaften von LEDs IV.4 Lichtausbeuten IV.5 Optische Verluste IV.6 Erhöhung der Auskoppeleffizienz IV.7 Weisse LEDs V. V. Optik in Halbleiterbauelementen VI. Laserdioden VII. Betrieb von Leucht- und Laserdioden VIII. Quantendetektoren IX. Thermische Detektoren X. Nachweisgrenzen und Rauschen XI. Bildsensoren

2 Die anorganische Leuchtdiode als Halbleiterbauelement OE 5.2 Elektrolumineszenz entsteht durch den Übergang von einem Elektron aus einem besetzten Zustand im Leitungsband in einen unbesetzten Zustand im Valenzband. Andere Sprechweise: EL entsteht durch Rekombination von Elektronen und Löchern. 1. Kontakt Kontakt 2

3 OE 5.3

4 OE 5.4

5 Übersicht über die Vorlesung OE 5.5 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien IV. Halbleiterleuchtdioden IV.1 Dotierung IV.2 Der pn-übergang IV.3 Emissionseigenschaften von LEDs IV.4 Lichtausbeuten IV.5 Optische Verluste IV.6 Erhöhung der Auskoppeleffizienz IV.7 Weisse LEDs V. V. Optik in Halbleiterbauelementen VI. Laserdioden VII. Betrieb von Leucht- und Laserdioden VIII. Quantendetektoren IX. Thermische Detektoren X. Nachweisgrenzen und Rauschen XI. Bildsensoren

6 IV.1 Dotierung OE 5.6 a) Abb.: a) Ausschnitt aus dem Periodensystem der Elemente. b) Schema zur p- Dotierung. c) Schema zur n-dotierung. b) c) p-dotierung durch Einbau eines Atoms mit 3 Valenzelektronen n-dotierung durch Einbau eines Atoms mit 5 Valenzelektronen

7 Energieniveaus bei Dotierung OE 5.7 Abb. Energieniveaus bei Dotierung

8 Übersicht über die Vorlesung OE 5.8 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien IV. Halbleiterleuchtdioden IV.1 Dotierung IV.2 Der pn-übergang IV.3 Emissionseigenschaften von LEDs IV.4 Lichtausbeuten IV.5 Optische Verluste IV.6 Erhöhung der Auskoppeleffizienz IV.7 Weisse LEDs V. V. Optik in Halbleiterbauelementen VI. Laserdioden VII. Betrieb von Leucht- und Laserdioden VIII. Quantendetektoren IX. Thermische Detektoren X. Nachweisgrenzen und Rauschen XI. Bildsensoren

9 IV.2 Der pn-übergang OE 5.9 Wenn p- und n- dotierte Bereiche zusammengeführt werden, kommt es zur Diffusion von Ladungsträgern und zur Ausbildung von Raumladungen. Abb. IV.12: Ausbildung von Raumladungszonen

10 Der pn-übergang OE 5.10 Fermi-Niveau muss in allen Bereichen gleich sein Ladungsneutralität weit weg vom Übergang Am Übergang: Raumladungszone durch ionisierte Dotierungsatome (Störstellen) gemäss: 2 ϕ( x) ρ( x) = 2 x εε 0 (Poisson-Glg.) Elektrisches Feld in der Raumladungszone

11 Schottky-Modell der Raumladungszone OE 5.11 ρ( x) Räumlich abrupter Übergang von neutralen zu vollständig ionisierten Störstellen 0 : x wp en : wp < x 0 A = end : 0 < x wn 0 : x > wn konstante Ladungsdichte linearer Feldverlauf quadratischer Potentialverlauf N A(D) : Dichte der Akzeptor- (Donator-) Atome Insgesamt Ladungsneutralität: NA wp = NDwn Ausdehnung der Raumladungszone: W = W + W = D N P D 2 U εε ( N + N ) D 0 A D en N mit U : Diffusionsspannung eu E Typischer Wert: N = N = 10 A D W 200nm D A B D G cm 17 3

12 Ströme am pn-übergang OE 5.12 Zwei Arten von Strömen Diffusionsströme Driftströme Diffusionströme werden getrieben von Dichtegradienten: e h jdiff = ede n bzw. jdiff = edh p (D: Diffusionskonstante) Driftströme werden getrieben vom E-Feld: = µ bzw. = µ e h j ne E j pe E (µ e,h : Elektron- bzw. Lochbeweglichkeit) drift e drift h µ und D sind über die Einstein-Relation miteinander verknüpft: D = kt b e µ

13 Ströme am pn-übergang OE 5.13 Ohne Vorspannung herrscht am pn-übergang ein dynamisches Gleichgewicht von Drift- (Feld-) und Diffusionsströmen. Mit Vorspannung: Überschussladungsträger (e s im p-bereich, h s im n-bereich) an den Grenzen der Raumladungszone: Drastischer Anstieg des Nettostroms bei Vorwärtsspannung Schnelle Sättigung in Rückwärtsrichtung

14 Der pn-übergang OE 5.14 Visualisierung mit pn.exe ( Programm der Universität Siegen

15 Diodenkennlinie OE 5.15 Quantitativ: eu kt b j = j 1 s e ( js: Sättigungsstromdichte) Abb.: Schaltkreissymbole Abb.: Kennlinie einer pn-diode

16 LED ohne/mit Vorspannung OE 5.16 Optische Übergänge sind im thermodynamischen Gleichgewicht mit der Umgebung: Anzahl der Absorptionsübergänge = Anzahl der Emissionsvorgänge Vorspannung sorgt für einen thermodynamischen Nichtgleichgewichtszustand: Quasi-Ferminiveau Elektronen e E F Aufspaltung des Fermi-Niveaus Quasi-Ferminiveau Löcher h E F zusätzliche Rekombinationsvorgänge

17 pn-übergang bei Vorspannung OE 5.17 Abb.: Schema der Lichterzeugung in einer pn-diode - Rekombination von Elektronen und Löchern

18 OE 5.18

19 OE 5.19

20 Übersicht über die Vorlesung OE 5.20 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien IV. Halbleiterleuchtdioden IV.1 Dotierung IV.2 Der pn-übergang IV.3 Emissionseigenschaften von LEDs IV.4 Lichtausbeuten IV.5 Optische Verluste IV.6 Erhöhung der Auskoppeleffizienz IV.7 Weisse LEDs V. V. Optik in Halbleiterbauelementen VI. Laserdioden VII. Betrieb von Leucht- und Laserdioden VIII. Quantendetektoren IX. Thermische Detektoren X. Nachweisgrenzen und Rauschen XI. Bildsensoren

21 IV.3: Emissionseigenschaften von Leuchtdioden OE 5.21 Abb. : Emissionsspektren verschiedener LEDs

22 OE 5.22

23 OE 5.23 Exkurs: Verbreiterung eines optischen Übergang: Homogene Verbreiterung Lorentz-Linie: f L ( ν ) = ν 2 L 2 2 L 4( ν ν ) + ν L homogene Verbreiterung: Gleich verbreiterte Linie für alle Atome (Moleküle etc.) - Stossverbreiterung - Verbreiterung aber auch einfach durch die Lebensdauer des angeregten Zustandes

24 OE 5.24 Verbreiterung eines optischen Übergang: Inhomogene Verbreiterung Inhomogene Verbreiterung: Unterschiedliche Lage der Resonanzenergie für unterschiedliche Atome (Moleküle etc.), Unterschiedliche k-vektoren im Halbleiter -anderes Beispiel: Dopplerverbreiterung beim Gas...wird meistens beschrieben durch Gausskurve

25 Quantenausbeuten bei LEDs OE 5.25

26 Übersicht über die Vorlesung OE 5.26 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien IV. Halbleiterleuchtdioden IV.1 Dotierung IV.2 Der pn-übergang IV.3 Emissionseigenschaften von LEDs IV.4 Lichtausbeuten IV.5 Optische Verluste IV.6 Erhöhung der Auskoppeleffizienz IV.7 Weisse LEDs V. V. Optik in Halbleiterbauelementen VI. Laserdioden VII. Betrieb von Leucht- und Laserdioden VIII. Quantendetektoren IX. Thermische Detektoren X. Nachweisgrenzen und Rauschen XI. Bildsensoren

27 IV.4 Lichtausbeuten OE 5.27 (ballast: Vorschaltgerät)

28 LEDs in der Lichttechnik: Hellempfindlichkeit OE Maximum der Hellempfindlichkeit bei λ 0 =555 nm (Hellsehen) bzw. 507 nm (Nachtsehen)

29 Hellempfindlichkeit OE bei gleicher physikalischer Strahldichte erscheinen andersfarbige Bereiche unterschiedlich hell - aus Messungen mit vielen farbnormalsichtigen Beobachtern enstand 1924 die spektrale Hellempfindlichkeitskurve

30 Strahlungsfluss und Lichtstrom OE 5.30 Strahlungsfluss (Energiefluss von einer Fläche durch eine andere)

31 Strahlungsfluß OE 5.31 Bewertung des Strahlungsflusses durch Leistungsmessgerät: Strahlungsfluß φ e [φ e ]=W Index e wie energetisch Bewertung des Strahlungsflusses durch das Auge: Übergang zum Lichtstrom φ v 780nm lm dφe Φ v = 683 v( λ) dλ W dλ Index v wie visuell 380nm [ Φ v ] = lm Lichtausbeute: (das Lumen) η = Φv lm P W el

32 LED-Fortschritte OE 5.32

33 Übersicht über die Vorlesung OE 5.33 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien IV. Halbleiterleuchtdioden IV.1 Dotierung IV.2 Der pn-übergang IV.3 Emissionseigenschaften von LEDs IV.4 Lichtausbeuten IV.5 Optische Verluste IV.6 Erhöhung der Auskoppeleffizienz IV.7 Weisse LEDs V. V. Optik in Halbleiterbauelementen VI. Laserdioden VII. Betrieb von Leucht- und Laserdioden VIII. Quantendetektoren IX. Thermische Detektoren X. Nachweisgrenzen und Rauschen XI. Bildsensoren

34 OE 5.34 IV.5: Optische Verluste in LEDs: 1. Absorption a) - Licht muss genügend nahe an der Oberfläche des HL-Materials erzeugt werden b)

35 Optische Verluste in LEDs: 2.: Fresnel-Verluste OE Fresnel-Reflexion an der Oberfläche (senkrecht) n n R = n + n R III V % ca. 1/3 des Lichtes wird zurückreflektiert Abb.: Optische Verluste in LEDs Aufbringen von Antireflexschichten

36 Optische Verluste in LEDs: 3.: Totalreflexion OE Totalreflexion tritt auf für Winkel größer als der kritische Winkel θ C sin( θ ) = C 1 n θ C (n=3.6)= 16 das meiste Licht bleibt im Halbleiter cleveres optisches Design der LED erforderlich

37 Totalreflexion führt zu geringer Extraktion OE 5.37 sin( φ C ) = 1 n Source: E.F. Schubert Für eine quantitative Berechnung muss der Raumwinkel des Austrittskegels ins Verhältnis zum gesamten Raumwinkel gesetzt werden.

38 OE 5.38 Source: E.F. Schubert Die Oberfläche der Austrittskalotte ist: φ C 0 ( ) 2 A da 2π r sinφrdφ 2πr 1 cosφ = = = C Bei isotroper Emission ergibt sich damit für das Verhältnis: P P esc total ( φ ) 2 2πr 1 cos C cos = = 4π r 2 ( φ ) Bei einem Brechungsindex n=3.6 (GaAs) ergibt sich damit ein Wert von nur 2 %!! C

39 Auskoppeleffizienzen in LEDs OE 5.39 Für Hochindexmaterialien und damit kleine kritische Winkel kann der Kosinus entwickelt werden: P P esc total φ 1 C 1 1 = ( 1 cosφc ) = 1 ( = 1 1+ arcsin n 1 1 1n 4 n 4 2 ext bzw. 2 2 nint Die Verbesserung der Auskoppelung war/ist ein Schlüssel zum Erfolg für den Einsatz von LEDs in der Allgemeinbeleuchtung.

40 High Brightness LEDs OE 5.40 AlGaInP: nm GaInN: blau,grün, weiss -alle effizienten LEDs sind Doppelheterostruktur- Bauelemente Für eine hohe externe Quantenausbeute muss die interne Quantenausbeute und die Auskoppeleffizienz hochgetrieben werden.

41 Übersicht über die Vorlesung OE 5.41 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien IV. Halbleiterleuchtdioden IV.1 Dotierung IV.2 Der pn-übergang IV.3 Emissionseigenschaften von LEDs IV.4 Lichtausbeuten IV.5 Optische Verluste IV.6 Erhöhung der Auskoppeleffizienz IV.7 Weisse LEDs V. V. Optik in Halbleiterbauelementen VI. Laserdioden VII. Betrieb von Leucht- und Laserdioden VIII. Quantendetektoren IX. Thermische Detektoren X. Nachweisgrenzen und Rauschen XI. Bildsensoren

42 IV.6 Erhöhung der Auskoppeleffizienz OE 5.42 Backside mirror Epoxy dome Improved surface geometry Current spreading layer Photon recycling Textured surfaces Microstructured surfaces

43 Backside mirror: Photonen über Bande OE 5.43 Abb.: LED mit absorbierendem Substrat Abb.: LED mit reflektierendem Substrat

44 Erhöhung der Auskoppeleffizienz OE 5.44 Backside Mirrors Epoxy dome Improved surface geometry Current spreading layer Photon recycling Textured surfaces Microstructured surfaces

45 The role of an epoxy dome OE 5.45

46 Erhöhung der Auskoppeleffizienz OE 5.46 Backside Mirrors Epoxy dome Improved surface geometry/microstructured surfaces Current spreading layer Photon recycling Textured surfaces

47 Spezielle Oberflächengeometrien OE Kugelförmige LEDs wären eigentlich ideal - leider sehr aufwändig/nicht machbar in der Herstellung - kegelförmige LEDs sind ebenfalls aufwändig aber im Prinzip kompatipel mit Lithographie- und Ätzprozessen

48 Microstructured Surfaces OE 5.48 Microstructuring surface area increases the external quantum efficiency, since most of the light escapes at the edges. H. W. Choi et al., Appl. Phys. Lett. 83/22, pp (2003)

49 OE 5.49 Hocheffiziente Geometrien: Die TIP(Truncated inverted pyramid) - erstmaliger Nachweis einer 100 lm/w-led im Jahre Numerische Optimierung der Struktur durch Ray-Tracing (Strahlverfolgung) - Verwendung von transparenten GaP-Schichten

50 Optimierte blaue LEDs OE TIP-ähnliche Strukturen wurden von OSRAM-OS realisiert -Verwendung von SiC als transparentes Substrat

51 Erhöhung der Auskoppeleffizienz OE 5.51 Backside Mirrors Epoxy dome Improved surface geometry/microstructured surfaces Current spreading layer Photon recycling Textured surfaces

52 Current spreading OE gezielte Verbreiterung der aktiven Zone durch dicke Kontaktschicht

53 Erhöhung der Auskoppeleffizienz OE 5.53 Backside Mirrors Epoxy dome Improved surface geometry/microstructured surfaces Current spreading layer Photon recycling Textured surfaces

54 Photon Recycling OE 5.54 Absorption and re-emission of photons results in several chances for emission in the escape cone and thus increased h ext. Other losses in the structure have to be minimal, since many reincarnations are necessary before the escape cone is found. I. Schnitzer et al., Appl. Phys. Lett. 62/02, pp (1993)

55 Erhöhung der Auskoppeleffizienz OE 5.55 Backside Mirrors Epoxy dome Improved surface geometry/microstructured surfaces Current spreading layer Photon recycling Textured surfaces

56 Texturierte Oberflächen OE 5.56 Textured surfaces randomize the propagation direction of photons and thus increase the escape probability. External quantum efficiency increased from 9 % to 30 %. Natural lithography: Polystyrene spheres, 0.2~µm diam, coat the surface of the LED in a randomly close-packed array. The spheres then act as an etch mask for Cl, assisted Xe + ion beam etching, about 0.17µm deep. I. Schnitzer et al., Appl. Phys. Lett. 62/02, pp (1993)

57 Texturierte Oberflächen bei OSRAM OS OE 5.57

58 OE 5.58

59 OE 5.59

60 OE 5.60

61 OE 5.61

62 OE 5.62

63 Optimized p-type backside mirror OE 5.63

64 OE 5.64

65 OE 5.65

66 OE 5.66

67 OE 5.67 Mikrostrukturierte Oberflächen bei OSRAM OS

68 OE 5.68

69 OE 5.69

IV.: Die anorganische Leuchtdiode als Halbleiterbauelement

IV.: Die anorganische Leuchtdiode als Halbleiterbauelement IV.: Die anorganische Leuchtdiode als Halbleiterbauelement Elektrolumineszenz entsteht durch den Übergang von einem Elektron aus einem besetzten Zustand im Leitungsband in einen unbesetzten Zustand im

Mehr

IV.4 Die anorganische Leuchtdiode als Halbleiterbauelement

IV.4 Die anorganische Leuchtdiode als Halbleiterbauelement IV.4 Die anorganische Leuchtdiode als Halbleiterbauelement Elektrolumineszenz entsteht durch den Übergang von einem Elektron aus einem besetzten Zustand im Leitungsband in einen unbesetzten Zustand im

Mehr

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1 1 3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode 3.1 Allgemeines F 3.1 N isolierte Atome werden zum Festkörper (FK) zusammengeführt Wechselwirkung der beteiligten Elektronen Aufspaltung der Energieniveaus

Mehr

Übersicht über die Vorlesung Solarenergie

Übersicht über die Vorlesung Solarenergie Übersicht über die Vorlesung Solarenergie Termin Thema ozent i. 2.4. Wirtschaftliche Lemmer/Heering spekte/energiequelle Sonne o. 22.4. Halbleiterphysikalische Grundlagen Lemmer photovoltaischer Materialien

Mehr

Das elektrochemische Potential

Das elektrochemische Potential 11.1 Das elektrochemische Potential Die Trennung von Drift und Diffusionsströmen ist nur ein Hilfsmittel zur quantitativen Modellierung (ähnlich wie bei der Überlagerung von verschiedenen Kräften)! Woher

Mehr

Übersicht über die Vorlesung

Übersicht über die Vorlesung Übersicht über die Vorlesung OE 3.1 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien III.1 Epitaxie III.2 Halbleiterquantenstrukturen IV. Halbleiterleuchtdioden

Mehr

Halbleiter. pn-übergang Solarzelle Leuchtdiode

Halbleiter. pn-übergang Solarzelle Leuchtdiode Halbleiter pn-übergang Solarzelle Leuchtdiode Energie der Elektronenzustände von Natrium als Funktion des Abstandes a der Natriumatome a 0 ist der Abstand im festen Natrium 3.1a Spezifischer elektrischer

Mehr

Terminübersicht der Vorlesung Optoelektronik I

Terminübersicht der Vorlesung Optoelektronik I Terminübersicht der Vorlesung Optoelektronik I Termin Thema Dozent Mi. 21.4. Einführung Lemmer Di. 27.4. Halbleiterphysikalische Grundlagen Lemmer der Optoelektronik Mi. 28.4. Lumineszenz, Epitaxie Lemmer

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,

Mehr

4. Dioden Der pn-übergang

4. Dioden Der pn-übergang 4.1. Der pn-übergang Die Diode ist ein Halbleiterbauelement mit zwei Anschlüssen: Eine Diode besteht aus einem Halbleiterkristall, der auf der einen Seite p- und auf der anderen Seite n-dotiert ist. Die

Mehr

Leistungsbauelemente

Leistungsbauelemente I (Kurs-Nr. 21645), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen

Mehr

Festkörperelektronik 2008 Übungsblatt 6

Festkörperelektronik 2008 Übungsblatt 6 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 10. Juli 2008 Die

Mehr

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 5. Vorlesung Dr.-Ing. Wolfgang Heenes 18. Mai 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Aufbau der Materie 2. Energiebändermodell

Mehr

Bandabstand als f(temperatur) Wiederholung

Bandabstand als f(temperatur) Wiederholung Bandabstand als f(temperatur) Wiederholung Bandabstand verringert sich mit steigender Temperatur Quelle: F.X. Kärtner Temperaturabhängigkeit der Beweglichkeit Wiederholung Beweglichkeit wird bestimmt durch

Mehr

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Wechselwirkung geladener Teilchen in Materie Physik VI Sommersemester 2008 Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Szintillationsdetektoren

Mehr

Der pn-übergang. Bardeen - Shockley - Brattain (Bell Labs.)

Der pn-übergang. Bardeen - Shockley - Brattain (Bell Labs.) Der Bardeen - Shockley - Brattain (Bell Labs.) Übersicht Generation und Rekombination Direkte Rekombination Kontinuitätsgleichung Haynes Shockley Experiment Elektrisches Feld im Halbleiter Aufbau Ladungsträgertransport

Mehr

Lage des Ferminiveaus beim intrinsischen HL

Lage des Ferminiveaus beim intrinsischen HL 9.1 Lage des Ferminiveaus beim intrinsischen HL n W L W F = NL exp exp kt B kt B W V W F = p = NV exp exp kt B kt B Auflösen nach der exp-funktion: Mit Auflösen nach W F : 3 * N 2 V m h = * NL me 2W F

Mehr

Übersicht über die Vorlesung Solarenergie

Übersicht über die Vorlesung Solarenergie Übersicht über die Vorlesung Solarenergie Vorläufige Terminplanung Vorlesung Solarenergie WS 5/6 Stand: 1.11.5 Termin Thema ozent i. 5.1. Wirtschaftliche Lemmer/Heering spekte/energiequelle Sonne Fr. 4.11.

Mehr

Übersicht über die Vorlesung

Übersicht über die Vorlesung Übersicht über die Vorlesung OE 10.1 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien IV. Halbleiterleuchtdioden V. Optik in Halbleiterbauelementen VI. Laserdioden

Mehr

Inhaltsverzeichnis Ladungsträger im Halbleiter Halbleiterdiode ohne äußere Beschaltung Halbleiterdiode mit äußerer Beschaltung MIS-Kondenstor

Inhaltsverzeichnis Ladungsträger im Halbleiter Halbleiterdiode ohne äußere Beschaltung Halbleiterdiode mit äußerer Beschaltung MIS-Kondenstor Inhaltsverzeichnis 1 Ladungsträger im Halbleiter 3 1.1 Debye-Länge.................................. 3 1. Diffusionskonstante............................... 3 1.3 Diffusionslänge.................................

Mehr

Die Potentialbarriere. Bardeen - Shockley - Brattain (Bell Labs.)

Die Potentialbarriere. Bardeen - Shockley - Brattain (Bell Labs.) Die Bardeen - Shockley - Brattain (Bell Labs.) Wiederholung Bsp.: Si: E F =560meV-12meV Übersicht Generation und Rekombination Direkte Rekombination Kontinuitätsgleichung Haynes Shockley Experiment Der

Mehr

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann Abb. 1 Solarzellen PHOTOVOLTAIK Stefan Hartmann 1 Gliederung Einführung Grundlegendes zu Halbleitern Generation und Rekombination pn-übergang Zusammenfassung: Was läuft ab? Technisches 2 Einführung Abb.

Mehr

Übersicht über die Vorlesung Solarenergie Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand:

Übersicht über die Vorlesung Solarenergie Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: Übersicht über die Vorlesung Solarenergie Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005 Termin Thema Dozent Di. 25.10. Wirtschaftliche Lemmer/Heering Aspekte/Energiequelle

Mehr

Heterodiode vs Homodiode

Heterodiode vs Homodiode Heterodiode vs Homodiode Mit modernen Epitaxieverfahren lassen sich Heterodioden herstellen Dies kann die Rekombinationseffizienz erhöhen. Ist vor allem für LD wichtig (Nobelpreis für Störmer und Alferov)

Mehr

Dennis P. Büch. os/led_throwies.jpg

Dennis P. Büch.  os/led_throwies.jpg Dennis P. Büch http://blog.karotte.org/uploads/fot os/led_throwies.jpg Kurzer historischer Hintergrund Funktionsweise Aufbau Bauformen Dennis- P. Büch 1 Kurzer historischer Hintergrund Funktionsweise Aufbau

Mehr

Physik und Technologie der Halbleiterbauelemente

Physik und Technologie der Halbleiterbauelemente Name, Vorname: Punkte(20): Matr.Nr.: Note: Physik und Technologie der Halbleiterbauelemente 1. Technologie (6 Punkte) 1.1 Zeichnen Sie einen planaren n-kanal-mos-transistor im Querschnitt. a) Bezeichnen

Mehr

V38: Elektrische und optische Eigenschaften mikrostrukturierter Halbleiter

V38: Elektrische und optische Eigenschaften mikrostrukturierter Halbleiter V38: Elektrische und optische Eigenschaften mikrostrukturierter Halbleiter Stefan Malzer, Sascha Preu malzer@physik.uni-erlangen.de spreu@optik.uni-erlangen.de LTP MZG 105 Raum Nr.: 0.156 www.tp1.physik.uni-erlangen.de

Mehr

Dieser Zusammenhang reicht noch nicht aus, deswegen wird noch. n 1 = 1, n 2. n 1 = 1, 5 n 2 = 1, 485

Dieser Zusammenhang reicht noch nicht aus, deswegen wird noch. n 1 = 1, n 2. n 1 = 1, 5 n 2 = 1, 485 Musterlösung OIT 2006-1 1 Aufgabe 1 (a) Gesucht: n 1 und n 2 n = n 1 n 2 n 1 = 0, 015 + n 2 Dieser Zusammenhang reicht noch nicht aus, deswegen wird noch B L = L = n 2 c t AB n 1 n n 1 = 1, 01010101 n

Mehr

Übersicht über die Vorlesung Solarenergie

Übersicht über die Vorlesung Solarenergie Übersicht über die Vorlesung Solarenergie 6.1 1. Einleitung 2. Die Sonne als Energiequelle 3. Halbleiterphysikalische Grundlagen 4. Kristalline pn-solarzellen 5. Elektrische Eigenschaften 6. Optimierung

Mehr

Übersicht über die Vorlesung

Übersicht über die Vorlesung Übersicht über die Vorlesung 2.1 I. Einleitung II. Physikalische Grundlagen der Optoelektronik II.1 Erinnerung an die Quantenmechanik II.2 Erinnerung an die Halbleiterphysik II.3 Optische Übergänge II.4

Mehr

Festkörper. Festkörper

Festkörper. Festkörper Festkörper Einteilung der Materie in drei Aggregatszustände: fest, flüssig, gasförmig Unterscheidung Festkörper behält seine Form Nachteil: Ungenaue Abgrenzung Beispiel: Ist Butter Festkörper oder Flüssigkeit

Mehr

Magnetooptische Modulatoren

Magnetooptische Modulatoren Bulk-Ausführung Magnetooptische Modulatoren Faraday-Effekt (Drehung von lin.pol. Licht) Abb. : Schema eines magnetooptischen Modulators Vgl. optischer Isolator (Diode) (wichtig zur Vermeidung von Rückkopplung)

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter WS 2013/14

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern 11.2 Freies Elektronengas im Sommerfeld- Modell 11.3 Bändermodell des Festkörpers 11.4 Metalle, Isolatoren und Halbleiter 1 11.4 Metalle,

Mehr

Das große. Halbleiterlaser. Clicker-Quiz

Das große. Halbleiterlaser. Clicker-Quiz Das große Halbleiterlaser Clicker-Quiz Aufbau eines Lasers Was wird bei der Separate Confinement Heterostructure separat eingeschlossen? a) Elektronen und Löcher b) Ladungsträger und Photonen c) Dotieratome

Mehr

Silizium- Planartechnologie

Silizium- Planartechnologie Hans Günther Wagemann, Tim Schönauer Silizium- Planartechnologie Grundprozesse, Physik und Bauelemente Teubner B. G.Teubner Stuttgart Leipzig Wiesbaden Vorwort V Übersicht über den Stoff des Buches V Inhaltsverzeichnis

Mehr

Stromdichten in Halbleitermaterialien

Stromdichten in Halbleitermaterialien Stromdichten in Halbleitermaterialien Berechnung der Leitfähigkeit: j = qnµ E ρ(w), ρ(w), Mögliche Sprachverwirrungen und Fallstricke: Energien: E bzw. W Bandindizies: C bzw. L Zustandsdichten: N(W), ρ(w),

Mehr

Optische Methoden in der Messtechnik. welcome back!

Optische Methoden in der Messtechnik. welcome back! Optische Methoden in der Messtechnik Gert Holler (OM_2 OM_7), Axel Pinz (OM_1) welcome back! 1 Übersicht Allgemeine Übersicht, Wellen- vs. Teilchenmodell, thermische Strahler, strahlungsoptische (radiometrische)

Mehr

Physik und Sensorik. Photodetektoren. Chemnitz 8. Oktober 2017 Prof. Dr. Uli Schwarz

Physik und Sensorik. Photodetektoren.   Chemnitz 8. Oktober 2017 Prof. Dr. Uli Schwarz Photodetektoren Optische Sensoren Z.B. Transmission durch Gewebe Lichtquelle Gewebe Photodetektor Verstärker Bildquelle: http://www2.hs-esslingen.de/~johiller/pulsoximetrie/pics/po06.jpg 2 Photodetektoren

Mehr

PeP Physik erfahren im Forschungs-Praktikum. Das Spektrum Spektrometrie Kontinuumstrahler Das Bohrsche Atommodell Linienstrahler Halbleiterelemente

PeP Physik erfahren im Forschungs-Praktikum. Das Spektrum Spektrometrie Kontinuumstrahler Das Bohrsche Atommodell Linienstrahler Halbleiterelemente Die Entstehung des Lichts Das Spektrum Spektrometrie Kontinuumstrahler Das Bohrsche Atommodell Linienstrahler Halbleiterelemente Das elektromagnetische Spektrum Zur Veranschaulichung Untersuchung von Spektren

Mehr

Elemente optischer Netze

Elemente optischer Netze Vieweg+TeubnerPLUS Zusatzinformationen zu Medien des Vieweg+Teubner Verlags Elemente optischer Netze Grundlagen und Praxis der optischen Datenübertragung Erscheinungsjahr 2011 2. Auflage Kapitel 5 Bilder

Mehr

Halbleiterheterostrukturen. Vortrag von Alexej Klushyn

Halbleiterheterostrukturen. Vortrag von Alexej Klushyn Halbleiterheterostrukturen Vortrag von Alexej Klushyn Übersicht Einführung in die Halbleiterphysik Physikalische Grundlagen der Halbleiterheterostrukturen Anwendungsmöglichkeiten der Halbleiterheterostrukturen

Mehr

Physik der Halbleiterbauelemente

Physik der Halbleiterbauelemente Frank Thuselt Physik der Halbleiterbauelemente Einführendes Lehrbuch für Ingenieure und Physiker Mit 181 Abbildungen 4y Springer Inhaltsverzeichnis Kursiv gekennzeichnete Abschnitte können beim ersten

Mehr

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt Versuch 27: Solarzellen Seite 1 Aufgaben: Vorkenntnisse: Lehrinhalt: Literatur: Messung von Kurzschlussstrom und Leerlaufspannung von Solarzellen, Messung der I-U-Kennlinien von Solarzellen, Bestimmung

Mehr

Lichtemittierende Dioden (LED)

Lichtemittierende Dioden (LED) @ Einführung in die optische Nachrichtentechnik LED/1 Lichtemittierende Dioden (LED) Lumineszenzdioden und Halbleiterlaser werden in der optischen Nachrichtentechnik überwiegend als Doppel-Heterostrukturdioden

Mehr

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...

Mehr

Physik und Sensorik. Photodetektoren. Chemnitz 8. Oktober 2017 Prof. Dr. Uli Schwarz

Physik und Sensorik. Photodetektoren.  Chemnitz 8. Oktober 2017 Prof. Dr. Uli Schwarz Photodetektoren Optische Sensoren Z.B. Transmission durch Gewebe Lichtquelle Gewebe Photodetektor Verstärker Bildquelle: http://www2.hs-esslingen.de/~johiller/pulsoximetrie/pics/po06.jpg 2 Photodetektoren

Mehr

Übersicht über die Vorlesung

Übersicht über die Vorlesung Übersicht über die Vorlesung I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien IV. Halbleiterleuchtdioden V. Optik in Halbleiterbauelementen VI. Laserdioden VII.

Mehr

Energieniveaus des Donors bzw. Akzeptors relativ zu Valenz und Leitungsband des Wirts mit zugehoerigen Ionisationsenergies Ed und Ea. Fig.

Energieniveaus des Donors bzw. Akzeptors relativ zu Valenz und Leitungsband des Wirts mit zugehoerigen Ionisationsenergies Ed und Ea. Fig. Schematische Darstellung des Effekts eines Donor oder Akzeptoratoms im Siliziumgitter das 5. Elektron ist fuer Bindung im Kristall nicht noetig und ist daher sehr schwach gebunden (grosser Radius) Fig.

Mehr

Norbert Koch. Polymer gegen Silizium: Wer wird in der Elektronik gewinnen?

Norbert Koch. Polymer gegen Silizium: Wer wird in der Elektronik gewinnen? Polymer gegen Silizium: Wer wird in der Elektronik gewinnen? Norbert Koch Humboldt Universität zu Berlin, Institut für Physik & IRIS Adlershof Helmholtz Zentrum Berlin für Materialien und Energie GmbH

Mehr

LED. Licht- und Displaytechnik. Lichtquellen Teil 2. Karl Manz Karsten Klinger. Forschungs Universität Karlsruhe (TH)

LED. Licht- und Displaytechnik. Lichtquellen Teil 2. Karl Manz Karsten Klinger. Forschungs Universität Karlsruhe (TH) Licht- und Displaytechnik Lichtquellen Teil 2 LED Karl Manz Karsten Klinger Leuchtdioden Donator Acceptor - + Metallic Contact Electrons Depletion zone Substrate Holes Electrons recombine with holes Some

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Elektronen und Löcher 3 2 3 2L 2mkT Eg nn e p exp 2 2 kt n e 3 3/2 2L 2mkT Eg np exp 2 2 2kT Die FermiEnergie liegt in der

Mehr

Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik

Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik Die folgenden Aufgaben dienen der Vorbereitung auf das Praktikum Halbleiterbauelemente der Hochleistungselektronik. Bitte bearbeiten

Mehr

Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen

Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen III.1 Halbleiter: Einzelne Atome eines chemischen Elements besitzen nach dem Bohrschen Atommodell einen positiv geladenen

Mehr

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II

Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Versuch 33: Photovoltaik - Optische und elektrische Charakterisierung von Solarzellen Institut für Technische Physik II Photovoltaik:Direkte Umwandlung von Strahlungsenergie in elektrische Energie Anregung

Mehr

Welche Zustände sind denn eigentlich besetzt?

Welche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? ( 0 ) 12 9 -im Prinzip sollte das Ganze ähnlich wie beim Atom erfolgen 6 - Besetzung von unten nach oben 3 -...wie

Mehr

1 Leitfähigkeit in Festkörpern

1 Leitfähigkeit in Festkörpern 1 Leitfähigkeit in Festkörpern Elektrische Leitfähigkeit ist eine physikalische Größe, die die Fähigkeit eines Stoffes angibt, elektrischen Strom zu leiten. Bändermodell Die Leitfähigkeit verschiedener

Mehr

2. Durch welche physikalischen Größen wird der Zustand eines Systems in der klassischen Mechanik definiert?

2. Durch welche physikalischen Größen wird der Zustand eines Systems in der klassischen Mechanik definiert? Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer / Dipl.-Ing. Felix Glöckler Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik 28. Juli 2006 100 Fragen zur Festkörperelektronik

Mehr

15. Vom Atom zum Festkörper

15. Vom Atom zum Festkörper 15. Vom Atom zum Festkörper 15.1 Das Bohr sche Atommodell 15.2 Quantenmechanische Atommodell 15.2.1 Die Hauptquantenzahl n 15.2.2 Die Nebenquantenzahl l 15.2.3 Die Magnetquantenzahl m l 15.2.4 Die Spinquantenzahl

Mehr

Vorbereitung. e ikr u n,k (r) (1)

Vorbereitung. e ikr u n,k (r) (1) Physikalisches Fortgeschrittenenpraktikum Lumineszenz Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen 1.1 Bändermodell Zur Beschreibung der Leitungseigenschaften von Festkörpern

Mehr

Aufgabensammlung Halbleiterbauelemente I

Aufgabensammlung Halbleiterbauelemente I Aufgabensammlung Halbleiterbauelemente I 1. Berechnen Sie die Elektronen- und Löcherkonzentrationen und ihr Verhältnis bei einer Temperatur von T = 300K für: (a) eine p-leitende Si-Probe mit dem spezifischen

Mehr

FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK

FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Elektronik 1 - Bauelemente Vorlesung 5, 09.11.2017 Nils Pohl FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIONSTECHNIK Lehrstuhl für Integrierte Systeme Organisatorisches Terminübersicht 02.11. 12:15 Vorlesung

Mehr

n-typ negative Spannung positive Spannung p-typ Halbleiter in Sperrrichtung Festk0203_ /26/2003

n-typ negative Spannung positive Spannung p-typ Halbleiter in Sperrrichtung Festk0203_ /26/2003 Festk003_3 195 5/6/003 AlGaAs: grün GaN: blau, ultraviolett GaP(N): gelb Kombiniert man effiziente Leuchtdioden mit einem Resonator, kann man Halbleiterlaser herstellen. Die ffizienz kann durch die Verwendung

Mehr

Übersicht über die Vorlesung Solarenergie

Übersicht über die Vorlesung Solarenergie Übersicht über die Vorlesung Solarenergie 2.1 Vorläufige Terminplanung Vorlesung Solarenergie WS 2007/2008 Stand: 21.10.2007 Vorlesung Termin Thema Dozent Nr. 1 Di. 23.10.07 Wirtschaftliche Aspekte/Energiequelle

Mehr

Physikalisches Grundpraktikum E7 Diodenkennlinie und PLANCK-Konstante

Physikalisches Grundpraktikum E7 Diodenkennlinie und PLANCK-Konstante E7 Diodenkennlinie und PLANCK-Konstante Aufgabenstellung: Bestimmen e die Schleusenspannungen verschiedenfarbiger Leuchtdioden aus den Strom- Spannungs-Kennlinien. Bestimmen e anhand der Emissionswellenlängen

Mehr

Funktionswerkstoffe. supraleitend. Halbleiter. Elektronische Eigenschaften - Einleitung

Funktionswerkstoffe. supraleitend. Halbleiter. Elektronische Eigenschaften - Einleitung Funktionswerkstoffe Elektronische Eigenschaften - Einleitung Bandstruktur Elektronenverteilung (Fermi-Dirac) Elektronenbeweglichkeit und Leitfähigkeit Metalle Elektronenanregung Leitfähigkeitsänderungen

Mehr

Bauelemente der Optoelektronik Lichterzeugung und Photovoltaik

Bauelemente der Optoelektronik Lichterzeugung und Photovoltaik Bauelemente der Optoelektronik Lichterzeugung und Photovoltaik Lösungen zur Übungseinheit Photometrische Größen c Frank Demaria, DVI erzeugt am 11. November 21 1. Fahrradbeleuchtung (a) LUX, lx (korrekte

Mehr

Übersicht über die Vorlesung

Übersicht über die Vorlesung Übersicht über die Vorlesung 4.1 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien III.1 Epitaxie III.2 Halbleiterquantenstrukturen III.3 Prozessierung IV. Halbleiterleuchtdioden

Mehr

Übersicht über die Vorlesung Solarenergie

Übersicht über die Vorlesung Solarenergie Übersicht über die Vorlesung Solarenergie 5.1 1. Einleitung 2. Die Sonne als Energiequelle 3. Halbleiterhysikalische Grundlagen 4. Kristalline n-solarzellen 5. Elektrische Eigenschaften 5.1 Kennlinie n-übergang

Mehr

h-bestimmung mit LEDs

h-bestimmung mit LEDs Aufbau und Funktion der 13. März 2006 Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Inhalt Aufbau und Funktion der 1 Aufbau und Funktion der 2 sbeschreibung Aufbau und Funktion

Mehr

1 Metallisierung. 1.1 Der Metall-Halbleiter-Kontakt Kontaktierung von dotierten Halbleitern. 1.1 Der Metall-Halbleiter-Kontakt

1 Metallisierung. 1.1 Der Metall-Halbleiter-Kontakt Kontaktierung von dotierten Halbleitern. 1.1 Der Metall-Halbleiter-Kontakt 1 isierung 1.1 Der -Halbleiter-Kontakt 1.1.1 Kontaktierung von dotierten Halbleitern Nach der Herstellung der Transistoren im Siliciumsubstrat müssen diese mittels elektrischer Kontakte miteinander verbunden

Mehr

Vom Molekül zum Material. Thema heute: Halbleiter: Licht Lampen Leuchtdioden

Vom Molekül zum Material. Thema heute: Halbleiter: Licht Lampen Leuchtdioden Vorlesung Anorganische Chemie V-A Vom Molekül zum Material Thema heute: Halbleiter: Licht Lampen Leuchtdioden 1 A 2 A Absolute Dunkelheit 3 Absolute Dunkelheit 4 Allgemeine Definition: Licht Licht ist

Mehr

Übungen zur Vorlesung Photoelektronenspektroskopie

Übungen zur Vorlesung Photoelektronenspektroskopie Übungen zur Vorlesung Photoelektronenspektroskopie PES an Metall-Halbleiter-Kontakten Grundlagen: Dotierung von Halbleitern Der Metall-Halbleiter-Kontakt (Schottky-Kontakt) PES an Schottky-Kontakten Kurvenzerlegung

Mehr

Solarzellen, Kristallstrukturen, Defekte und Ihre Stromrechnung

Solarzellen, Kristallstrukturen, Defekte und Ihre Stromrechnung Solarzellen, Kristallstrukturen, Defekte und Ihre Stromrechnung Susanne Siebentritt Université du Luxembourg Was sind Dünnfilmsolarzellen? Wie machen wir Solarzellen? Wie funktioniert eine Solarzelle?

Mehr

Fototransistor. Der Fototransistor. von Philip Jastrzebski. Betreuer: Christian Brose Philip Jastrzebski 1

Fototransistor. Der Fototransistor. von Philip Jastrzebski. Betreuer: Christian Brose Philip Jastrzebski 1 Der Fototransistor von Philip Jastrzebski Betreuer: Christian Brose 17.11.2008 Philip Jastrzebski 1 Gliederung: I. Aufbau & Funktionsweise Fotodiode Fototransistor V. Vor- und Nachteile VII. Bsp: Reflexkoppler

Mehr

Licht als elektromagnetische Welle

Licht als elektromagnetische Welle Licht als elektromagnetische Welle Wichtigster Bereich des elektromagnetischen Spektrums für die Messtechnik: sichtbar + infrarot Lichtgeschwindigkeit : c 3 10 8 m/s Monochromatisches Licht, z. B. Farbe

Mehr

I.2: Vorlesung Solarenergie: Terminplanung Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand:

I.2: Vorlesung Solarenergie: Terminplanung Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: I.2: Vorlesung Solarenergie: Terminplanung Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005 Termin Thema Dozent Di. 25.10. Wirtschaftliche Lemmer/Heering Aspekte/Energiequelle

Mehr

GaN-basierte LEDs: Physikalische Grundlagen und Bauelemente

GaN-basierte LEDs: Physikalische Grundlagen und Bauelemente Ausgewählte Kapitel der Festkörperphysik GaN-basierte LEDs: Physikalische Grundlagen und Bauelemente Toni Sembdner Abstract: In dieser Ausarbeitung geht es um die grundlegende Funktionsweise von LEDs.

Mehr

Festkörperelektronik 2008 Übungsblatt 5

Festkörperelektronik 2008 Übungsblatt 5 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 5. Übungsblatt 26. Juni 2008 Die

Mehr

Mikroprozessor - und Chiptechnologie

Mikroprozessor - und Chiptechnologie Mikroprozessor - und Chiptechnologie I 1 1 Halbleiterfunktionen 2 8 Halbleiterbauelemente 8 Halbleiterbauelemente 8.1 Grundlagen 8.2 Dioden 8.3 Transistoren 8.4 Einfache Grundschaltungen Als halbleitend

Mehr

Photonik Technische Nutzung von Licht

Photonik Technische Nutzung von Licht Photonik Technische Nutzung von Licht Lichtdetektion Wiederholung Optik Grundlagen I Lichtstrahlen Fermat sches Prinzip Reflexion und Brechung (Snellius sches Gesetz) Eigenschaften optische Medien Dispersion

Mehr

32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen.

32. n oder p? (Ü) Sie müssen die Dotierung in einem unbekannten Halbleiterplättchen bestimmen. Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer / Dipl.-Ing. Felix Glöckler Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 13. Juli 2006 Möglicher Abgabetermin:

Mehr

PN Übergang. Sebastian Schwerdhöfer. Hauptseminar zu Grundlagen der Experimentellen Physik im SS Einstieg. Ladungsträgerdichte.

PN Übergang. Sebastian Schwerdhöfer. Hauptseminar zu Grundlagen der Experimentellen Physik im SS Einstieg. Ladungsträgerdichte. PN Übergang Sebastian Schwerdhöfer der Shockley Hauptseminar zu Grundlagen der Experimentellen Physik im SS. 2012 Gliederung Ziel: Shockley der Diodenkennlinie ) ) U I U) = I S exp 1 n U T Weg: Dichte

Mehr

Übersicht über die Vorlesung

Übersicht über die Vorlesung Übersicht über die Vorlesung OE 7.1 I. Einleitung II. Physikalische Grundlagen der Optoelektronik III. Herstellungstechnologien IV. Halbleiterleuchtdioden V. Optik in Halbleiterbauelementen VI. Laserdioden

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

Physikalisches Grundpraktikum V13 PLANCKsches Wirkungsquantum & LED

Physikalisches Grundpraktikum V13 PLANCKsches Wirkungsquantum & LED Aufgabenstellung: Bestimmen e die Schleusenspannungen verschiedenfarbiger Leuchtdioden aus den Strom- Spannungs-Kennlinien. Bestimmen e anhand der Emissionswellenlängen das PLANCKsche Wirkungsquantum h.

Mehr

In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter.

In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter. II.2: Erinnerung an die Halbleiterphysik II.2.1: Kristalline Festkörper In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches

Mehr

Halbleiter und Transistoren - Prinzip und Funktionsweise

Halbleiter und Transistoren - Prinzip und Funktionsweise Halbleiter und Transistoren - Prinzip und Funktionsweise Reine Halbleitermaterialien, wie Silizium (Si) oder Germanium (Ge) sind bei Zimmertemperatur fast Isolatoren: bzw. bei sinkender Temperatur HL Isolator

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Grundlagen der Technischen Informatik Dr. Wolfgang Koch Friedrich Schiller Universität Jena Fakultät für Mathematik und Informatik Rechnerarchitektur wolfgang.koch@uni-jena.de Inhalt Grundlagen der Techn.

Mehr

Sonnenenergie: Photovoltaik

Sonnenenergie: Photovoltaik Sonnenenergie: Photovoltaik Physik und Technologie der Solarzelle Von Prof. Dr. rer. nat. Adolf Goetzberger Dipl.-Phys. Bernhard Voß und Dr. rer. nat. Joachim Knobloch Fraunhofer-Institut für Solare Energiesysteme

Mehr

Elektronische Eigenschaften von Halbleitern

Elektronische Eigenschaften von Halbleitern Elektronische Eigenschaften von Halbleitern In der Vorlesung Elektronische Schaltungen lernen Sie das Verhalten verschiedener Halbleiterbauelemente kennen: Dioden, Bipolare Transistoren, Feldeffekttransistoren

Mehr

Die Diode. Roland Küng, 2009

Die Diode. Roland Küng, 2009 Die Diode Roland Küng, 2009 Halbleiter Siliziumgitter Halbleiter Eine aufgebrochene kovalente Bindung (Elektronenpaar) produziert ein Elektron und ein Loch Halbleiter Typ n z.b. Phosphor Siliziumgitter

Mehr

1. Bestimmen Sie die Energie eines Photons bei einer Wellenlänge λ 500nm in ev! (h Js, c m s, e As) (Φ e 60W)

1. Bestimmen Sie die Energie eines Photons bei einer Wellenlänge λ 500nm in ev! (h Js, c m s, e As) (Φ e 60W) Seminar Lichttechnik I Übungsaufgaben 27. Februar 2015 1. Bestimmen Sie die nergie eines Photons bei einer Wellenlänge λ 500nm in ev! (h 6 626 10 34 Js, c 3 10 8 m s, e 1 602 10 19 As) 2. Das Auge ist

Mehr

LEDs und Laserdioden: die Lichtrevolution. Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR

LEDs und Laserdioden: die Lichtrevolution. Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR LEDs und Laserdioden: die Lichtrevolution Stephan Winnerl Abteilung Halbleiterspektroskopie, FZR Wie erhält man verschiedenfarbige LEDs? Warum ist die Farbe blau so wichtig? Wo werden HL-Laser Im Alltag

Mehr

32. Lektion. Laser. 40. Röntgenstrahlen und Laser

32. Lektion. Laser. 40. Röntgenstrahlen und Laser 32. Lektion Laser 40. Röntgenstrahlen und Laser Lernziel: Kohärentes und monochromatisches Licht kann durch stimulierte Emission erzeugt werden Begriffe Begriffe: Kohärente und inkohärente Strahlung Thermische

Mehr