IV.4 Die anorganische Leuchtdiode als Halbleiterbauelement

Größe: px
Ab Seite anzeigen:

Download "IV.4 Die anorganische Leuchtdiode als Halbleiterbauelement"

Transkript

1 IV.4 Die anorganische Leuchtdiode als Halbleiterbauelement Elektrolumineszenz entsteht durch den Übergang von einem Elektron aus einem besetzten Zustand im Leitungsband in einen unbesetzten Zustand im Valenzband. Andere Sprechweise: EL entsteht durch Rekombination von Elektronen und Löchern. 1. Kontakt Kontakt 2

2 Rekombination: Strahlend Strahlende Rekombination: Elektron geht unter Lichtaussendung vom LB auf unbesetzten Platz (Loch) im VB R = Apn p: Lochdichte, n: Elektronendichte, A: Rekombinationskoeffizient

3 Rekombination: Auger CB VB Augerrekombination: Elektron und Loch rekombinieren und Energie wird von drittem Teilchen aufgenommen z.b.: R Auger eeh = 2 Bn p

4 Störstellenrekombination (nichtstrahlend) CB Störstellenrekombination: Elektron und Loch werden in dieselbe Störstelle eingefangen VB - Shockley-Read-Hall-Rekombination (hängt ab von Dotierungskonzentration) z.b. Einfangprozeß 1: R = nnσ v Stör e t th N t : Dichte Trapniveaus σ: Einfangquerschnitt v th : therm. Geschw.

5 Störstellenrekombination (strahlend) Bd-Bd Störstellen (strahlend) Störstellen (n. strahlend) Auger

6 Band-Band und Störstellenrekombations-LEDs (Stand 1992) (Bedeutung der strahlenden Störstellenrekombination hat durch Wachstum von neuen Materialien abgenommen) aus M.G. Craford, IEEE Circuits and Device Magazines, 1992

7 Die anorganische Leuchtdiode als Halbleiterbauelement Bandstruktur bestimmt, wie Elektronen im Material beschleunigt werden. a 1 1 = m* = qe * m E ( k ) k 2 n 2 2 Beschleunigung mit effektiver Masse m* inverse Krümmung der Bandstruktur Abb. : Bandstruktur von GaAs nicht ausreichend für Beschreibung des Bauelementes

8 Transport in Halbleitern: Driftströme Strom im Festkörper: Abfolge von Phasen der Beschleunigung und abrupten Stößen Abb.: Schematisches Geschwindigkeits-Diagramm für einen Ladungsträger im elektrischen Feld Elektronen werden im Mittel nach der Zeit τ durch Stoß mit Atomrumpf abrupt abgebremst. Damit ergibt sich als mittlere Geschwindigkeit: qfτ v = µ F * m qτ/m*: Beweglichkeit µ Für die Stromdichte gilt dann j = qnv = qnµ F

9 Diffusionsströme Diffusionsströme werden getrieben von Dichtegradienten: e h jdiff = ede n bzw. jdiff = edh p (D: Diffusionskonstante) µ und D sind über die Einstein-Relation miteinanderverknüpft D = kt b e µ

10 IV.4.1: Ladungsträgerstatistik Funktion der LED wird bestimmt durch die Besetzung der Bänder mit Elektronen: Jeder Quantenzustand wird einmal besetzt Jeder Zustand im k-raum wegen Spin des Elektrons zweimal im thermodynamischen (Quasi-)Gleichgewicht Besetzung nach Fermi-Dirac-Statistik: Besetzungswahrscheinlichkeit für einen Zustand mit Energie E: f( E) = 1 E µ exp + 1 kt B

11 IV.4.1: Ladungsträgerstatistik Hierbei wird das chemische Potential µ meistens als Fermi- Energie E F bezeichnet. Abb. IV.8: Fermi-Dirac- Besetzungsfunktionen für verschiedene Temperaturen Die Dichte von Elektronen im Leitungsband ergibt sich dann als n = g( E) f ( E) de E c,0 e

12 Defektelektronen (Löcher) im Valenzband Abb. : Elektronen und Löcher in GaAs

13 IV.4.1: Ladungsträgerstatistik Vollkommen analog zum Fall der Elektronen im Leitungsband können die Löcher im Valenzband betrachtet werden. Für die Lochverteilungsfunktion gilt: 1 1 f ( E) = 1 f ( E) = 1 = h e E EF EF E kt kt e B B + 1 e + 1 Die Löcher haben die gleiche Verteilungsfunktion wie die Elektronen, allerdings mit umgekehrter Energieachse Für die Lochkonzentration ergibt sich dann dementsprechend E v,0 p = gef ( ) h( EdE )

14 IV.4.1: Ladungsträgerstatistik In beiden Fällen kann die Fermi-Dirac-Funktion für E-E F >>k B T durch eine Maxwell-Boltzmann-Verteilung genähert werden. f ( E) e E E F 1 kt B = e E EF und exp( ) + 1 fh ( E) e kt B EF E kt B

15 IV.4.2 Ladungsträgertransport in Halbleitern Beispiel: An einen kleinen GaAs-Kristallwürfel mit einer Kantenlänge von 1mm wird eine Spannung von 2 V angelegt. 2 3 cm µ GaAs 10 U = 2V Vs Mittlere Geschwindigkeit der Elektronen: v 2 U 3 cm 2V 4 cm = µ F = µ = 10 = d Vs 10 cm s Für diese Vorgaben erwartet man dann folgenden (Drift)Strom: cm I = ja = en v = = s ,6 10 As 1,7 10 cm cm 5,44 10 A Drastische Erhöung der Ladungsträgerdichte erforderlich

16 IV.4.3 Dotierung a) Abb.: a) Ausschnitt aus dem Periodensystem der Elemente. b) Schema zur p- Dotierung. c) Schema zur n-dotierung. b) c) p-dotierung durch Einbau eines Atoms mit 3 Valenzelektronen n-dotierung durch Einbau eines Atoms mit 5 Valenzelektronen

17 Abb. Energieniveaus bei Dotierung Energieniveaus bei Dotierung

18 IV.4.4 Der pn-übergang Wenn p- und n- dotierte Bereiche zusammengeführt werden, kommt es zur Diffusion von Ladungsträgern und zur Ausbildung von Raumladungen. Abb. IV.12: Ausbildung von Raumladungszonen

19 IV.4.4 Der pn-übergang Fermi-Niveau muss in allen Bereichen gleich sein Ladungsneutralität weit weg vom Übergang Am Übergang: Raumladungszone durch ionisierte Dotierungsatome (Störstellen) gemäss: 2 ϕ( x) ρ( x) = 2 x εε 0 (Poisson-Glg.) Elektrisches Feld in der Raumladungszone (Visualisierung der Effekte mittels Programm pn.exe)

20 Schottky-Modell der Raumladungszone Räumlich abrupter Übergang von neutralen zu vollständig ionisierten Störstellen ρ( x) 0 : x wp en : wp < x 0 A = end : 0 < x wn 0 : x > wn konstante Ladungsdichte linearer Feldverlauf N A(D) : Dichte der Akzeptor- (Donator-) Atome Insgesamt Ladungsneutralität: NA wp = NDwn Ausdehnung der Raumladungszone: W = W + W = D N P D 2 U εε ( N + N ) D 0 A D en N mit U : Diffusionsspannung eu E A D D G quadratischer Potentialverlauf Typischer Wert: N = N = 10 A B W 200nm D cm 17 3

21 Ströme am pn-übergang Zwei Arten von Strömen Diffusionsströme Driftströme Diffusionströme werden getrieben von Dichtegradienten: e h jdiff = ede n bzw. jdiff = edh p (D: Diffusionskonstante) Driftströme werden getrieben vom E-Feld: = µ bzw. = µ e h jdrift ne ee jdrift pe he (µ e,h : Elektron- bzw. Lochbeweglichkeit) µ und D sind über die Einstein-Relation miteinander verknüpft: kt b D = e µ

22 Ströme am pn-übergang Ohne Vorspannung herrscht am pn-übergang ein dynamisches Gleichgewicht von Drift- (Feld-) und Diffusionsströmen. Mit Vorspannung: Überschussladungsträger (e s im p-bereich, h s im n-bereich) an den Grenzen der Raumladungszone: Drastischer Anstieg des Nettostroms bei Vorwärtsspannung Schnelle Sättigung in Rückwärtsrichtung

23 Diodenkennlinie Quantitativ: eu kt b j = j 1 s e ( js: Sättigungsstromdichte) Abb. IV.14: Schaltkreissymbole Abb. IV.13: Kennlinie einer pn-diode

24 pn-übergang bei Vorspannung Abb. IV.15: Schema der Lichterzeugung in einer pn-diode - Rekombination von Elektronen und Löchern

25 LED ohne/mit Vorspannung Optische Übergänge sind im thermodynamischen Gleichgewicht mit der Umgebung: Anzahl der Absorptionsübergänge = Anzahl der Emissionsvorgänge Vorspannung sorgt für einen thermodynamischen Nichtgleichgewichtszustand: Quasi-Ferminiveau Elektronen e E F Aufspaltung des Fermi-Niveaus Quasi-Ferminiveau Löcher h E F zusätzliche Rekombinationsvorgänge

26 IV.4.5: Emissionseigenschaften von Leuchtdioden Abb. IV.16: Schema des Emissionsspektrum einer LED mit einem direkten HL- Material Abb. IV.16: Emissionsspektren verschiedener LEDs

27 Optische Verluste in LEDs: 1.: Absorption - Licht muss genügend nahe an der Oberfläche des HL-Materials erzeugt werden

28 Optische Verluste in LEDs: 2.: Fresnel-Verluste - Fresnel-Reflexion an der Oberfläche n n R = n + n R III V % ca. 1/3 des Lichtes wird zurückreflektiert Abb. IV.21: Optische Verluste in LEDs Aufbringen von Antireflexschichten

29 Optische Verluste in LEDs: 3.: Totalreflexion -Totalreflexion tritt auf für Winkel größer als der kritische Winkel θ C 1 sin( θ C ) = θ C (n=3.6)= 16 n das meiste Licht bleibt im Halbleiter cleverers optisches Design der LED

30 LED-Design Abb. IV.20: LED mit absorbierendem Substrat Abb. IV.19: LED mit reflektierendem Substrat Standard Abb. IV.22: Optisches Design von effizienten LEDs ATON-Technologie

31

32 Abstrahlung von LEDs Abb. IV.23: LEDs mit verschiedenen Linsen - Veränderung der Abstrahlcharakteristik durch integrierte Linse

33 Abb. IV.24: LEDs in verschiedenen Bauformen LED-Strukturen

34

35

36

37

38 Weisse LEDs LED erzeugt blaues Licht Absorption des Lichts von Phosphoren oder Farbstoffen in der Epoxy-Kappe Abb. IV.16: Aufbau einer LED Aussendung von grünem, und rotem Licht insgesamt weisses Licht

39 Weisse LEDs Farbstoff Abb. IV.17: Schema zur weissen LED Abb. IV.18: Emissionsspektrum einer weissen LED

40

41 Märkte - Weltjahresproduktion: 30 Milliarden Stück - Markt: 2.5 Milliarden $ - z.b. > 200 LEDs im modernen Kfz - riesige Potentiale in der Lichttechnik Abb. IV.25: Umsatz mit LEDs

Übersicht über die Vorlesung Solarenergie Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand:

Übersicht über die Vorlesung Solarenergie Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: Übersicht über die Vorlesung Solarenergie Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005 Termin Thema Dozent Di. 25.10. Wirtschaftliche Lemmer/Heering Aspekte/Energiequelle

Mehr

Übersicht über die Vorlesung Solarenergie

Übersicht über die Vorlesung Solarenergie Übersicht über die Vorlesung Solarenergie 2.1 Vorläufige Terminplanung Vorlesung Solarenergie WS 2007/2008 Stand: 21.10.2007 Vorlesung Termin Thema Dozent Nr. 1 Di. 23.10.07 Wirtschaftliche Aspekte/Energiequelle

Mehr

IV.: Die anorganische Leuchtdiode als Halbleiterbauelement

IV.: Die anorganische Leuchtdiode als Halbleiterbauelement IV.: Die anorganische Leuchtdiode als Halbleiterbauelement Elektrolumineszenz entsteht durch den Übergang von einem Elektron aus einem besetzten Zustand im Leitungsband in einen unbesetzten Zustand im

Mehr

Bandabstand als f(temperatur) Wiederholung

Bandabstand als f(temperatur) Wiederholung Bandabstand als f(temperatur) Wiederholung Bandabstand verringert sich mit steigender Temperatur Quelle: F.X. Kärtner Temperaturabhängigkeit der Beweglichkeit Wiederholung Beweglichkeit wird bestimmt durch

Mehr

Das elektrochemische Potential

Das elektrochemische Potential 11.1 Das elektrochemische Potential Die Trennung von Drift und Diffusionsströmen ist nur ein Hilfsmittel zur quantitativen Modellierung (ähnlich wie bei der Überlagerung von verschiedenen Kräften)! Woher

Mehr

Übersicht Halbleiterphysikalische Grundlagen

Übersicht Halbleiterphysikalische Grundlagen Übersicht 3.1 1. Einleitung 2. Die Sonne als Energiequelle 3. Halbleiterphysikalische Grundlagen 3.1 Materialien für die Photovoltaik 3.2 Elektronen in Halbleitern 3.3 Absorption, Relaxation, Rekombination

Mehr

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1

3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode. 3.1 Allgemeines F 3.1 1 3 Halbleiter : pn-übergang, Solarzelle, Leuchtdiode 3.1 Allgemeines F 3.1 N isolierte Atome werden zum Festkörper (FK) zusammengeführt Wechselwirkung der beteiligten Elektronen Aufspaltung der Energieniveaus

Mehr

Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik

Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik Hausaufgaben zum Praktikum Halbleiterbauelemente der Hochleistungselektronik Die folgenden Aufgaben dienen der Vorbereitung auf das Praktikum Halbleiterbauelemente der Hochleistungselektronik. Bitte bearbeiten

Mehr

Elektronische Eigenschaften von Halbleitern

Elektronische Eigenschaften von Halbleitern Elektronische Eigenschaften von Halbleitern In der Vorlesung Elektronische Schaltungen lernen Sie das Verhalten verschiedener Halbleiterbauelemente kennen: Dioden, Bipolare Transistoren, Feldeffekttransistoren

Mehr

Lage des Ferminiveaus beim intrinsischen HL

Lage des Ferminiveaus beim intrinsischen HL 9.1 Lage des Ferminiveaus beim intrinsischen HL n W L W F = NL exp exp kt B kt B W V W F = p = NV exp exp kt B kt B Auflösen nach der exp-funktion: Mit Auflösen nach W F : 3 * N 2 V m h = * NL me 2W F

Mehr

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann

Abb. 1 Solarzellen PHOTOVOLTAIK. Stefan Hartmann Abb. 1 Solarzellen PHOTOVOLTAIK Stefan Hartmann 1 Gliederung Einführung Grundlegendes zu Halbleitern Generation und Rekombination pn-übergang Zusammenfassung: Was läuft ab? Technisches 2 Einführung Abb.

Mehr

Festkörperelektronik 2008 Übungsblatt 6

Festkörperelektronik 2008 Übungsblatt 6 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 10. Juli 2008 Die

Mehr

Berechnung der Dichte der Ladungsträger

Berechnung der Dichte der Ladungsträger Wiederholung Berechnung der Dichte der Ladungsträger Genauso kann für die Besetzung des Valenzbandes mit Löchern abgeleitet werden: WF W p = NV exp kt mit NV 2 V 3 2π mkt 2 h = 2 h N V ist die effektive

Mehr

Stromdichten in Halbleitermaterialien

Stromdichten in Halbleitermaterialien Stromdichten in Halbleitermaterialien Berechnung der Leitfähigkeit: j = qnµ E ρ(w), ρ(w), Mögliche Sprachverwirrungen und Fallstricke: Energien: E bzw. W Bandindizies: C bzw. L Zustandsdichten: N(W), ρ(w),

Mehr

Welche Zustände sind denn eigentlich besetzt?

Welche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? elche Zustände sind denn eigentlich besetzt? ( 0 ) 12 9 -im Prinzip sollte das Ganze ähnlich wie beim Atom erfolgen 6 - Besetzung von unten nach oben 3 -...wie

Mehr

Warum Halbleiter verstehen?

Warum Halbleiter verstehen? 7.1 Warum Halbleiter verstehen? In der Vorlesung Elektronische Schaltungen haben Sie die Kennlinien verschiedener Halbleiterbauelemente kennen gelernt: Dioden, Bipolare Transistoren, Feldeffekttransistoren

Mehr

Leistungsbauelemente

Leistungsbauelemente I (Kurs-Nr. 21645), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen

Mehr

Halbleiter. pn-übergang Solarzelle Leuchtdiode

Halbleiter. pn-übergang Solarzelle Leuchtdiode Halbleiter pn-übergang Solarzelle Leuchtdiode Energie der Elektronenzustände von Natrium als Funktion des Abstandes a der Natriumatome a 0 ist der Abstand im festen Natrium 3.1a Spezifischer elektrischer

Mehr

Berechnung der Leitfähigkeit ( ) Anzahl der Ladungsträger im Leitungsband

Berechnung der Leitfähigkeit ( ) Anzahl der Ladungsträger im Leitungsband 8.1 Berechnung der eitfähigkeit Quantitativ wird die eitfähigkeit σ berechnet durch: adung des Elektrons Beweglichkeit der adungsträger im eitungsband ( ) σ = e µ n + µ p n Anzahl der adungsträger im eitungsband

Mehr

Funktionswerkstoffe. supraleitend. Halbleiter. Elektronische Eigenschaften - Einleitung

Funktionswerkstoffe. supraleitend. Halbleiter. Elektronische Eigenschaften - Einleitung Funktionswerkstoffe Elektronische Eigenschaften - Einleitung Bandstruktur Elektronenverteilung (Fermi-Dirac) Elektronenbeweglichkeit und Leitfähigkeit Metalle Elektronenanregung Leitfähigkeitsänderungen

Mehr

Der pn-übergang. Bardeen - Shockley - Brattain (Bell Labs.)

Der pn-übergang. Bardeen - Shockley - Brattain (Bell Labs.) Der Bardeen - Shockley - Brattain (Bell Labs.) Übersicht Generation und Rekombination Direkte Rekombination Kontinuitätsgleichung Haynes Shockley Experiment Elektrisches Feld im Halbleiter Aufbau Ladungsträgertransport

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 10. Vorlesung, 27. 6. 2013 Halbleiter, Halbleiter-Bauelemente Diode, Solarzelle,

Mehr

...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters...

...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters... ...vorab eine Einladung... Noch ein paar Bemerkungen zur Temperaturabhängigkeit des Halbleiters... 1 Temperaturerhöhung Je größer die Gitterkonstante, desto kleiner die Bandlücke. Temperaturerhöhung führt

Mehr

Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen

Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen Grundlagen zum Versuch Aufbau einer Messkette für den Nachweis kleinster Ladungsmengen III.1 Halbleiter: Einzelne Atome eines chemischen Elements besitzen nach dem Bohrschen Atommodell einen positiv geladenen

Mehr

Aufgabensammlung Halbleiterbauelemente I

Aufgabensammlung Halbleiterbauelemente I Aufgabensammlung Halbleiterbauelemente I 1. Berechnen Sie die Elektronen- und Löcherkonzentrationen und ihr Verhältnis bei einer Temperatur von T = 300K für: (a) eine p-leitende Si-Probe mit dem spezifischen

Mehr

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden

= e kt. 2. Halbleiter-Bauelemente. 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden 2. Halbleiter-Bauelemente 2.1 Reine und dotierte Halbleiter 2.2 der pn-übergang 2.3 Die Diode 2.4 Schaltungen mit Dioden Zu 2.1: Fermi-Energie Fermi-Energie E F : das am absoluten Nullpunkt oberste besetzte

Mehr

1 Leitfähigkeit in Festkörpern

1 Leitfähigkeit in Festkörpern 1 Leitfähigkeit in Festkörpern Elektrische Leitfähigkeit ist eine physikalische Größe, die die Fähigkeit eines Stoffes angibt, elektrischen Strom zu leiten. Bändermodell Die Leitfähigkeit verschiedener

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

PN Übergang. Sebastian Schwerdhöfer. Hauptseminar zu Grundlagen der Experimentellen Physik im SS Einstieg. Ladungsträgerdichte.

PN Übergang. Sebastian Schwerdhöfer. Hauptseminar zu Grundlagen der Experimentellen Physik im SS Einstieg. Ladungsträgerdichte. PN Übergang Sebastian Schwerdhöfer der Shockley Hauptseminar zu Grundlagen der Experimentellen Physik im SS. 2012 Gliederung Ziel: Shockley der Diodenkennlinie ) ) U I U) = I S exp 1 n U T Weg: Dichte

Mehr

Repetitorium zur Vorlesung Festkörperelektronik SS 2004

Repetitorium zur Vorlesung Festkörperelektronik SS 2004 Repetitorium zur Vorlesung Festkörperelektronik SS 004 1. Grundlagen der Quantenmechanik 1.1. Einleitung 1.. Historisches Effekte, die mit klassischer Mechanik und Elektrodynamik nicht zu erklären sind:

Mehr

Halbleiterphysik. Von Reinhold Paul VEB VERLAG TECHNIK BERLIN

Halbleiterphysik. Von Reinhold Paul VEB VERLAG TECHNIK BERLIN Halbleiterphysik Von Reinhold Paul VEB VERLAG TECHNIK BERLIN INHALTSVERZEICHNIS Schreibweise und Formelzeichen der wichtigsten Größen 13 1. Halbleiter 19 1.1. Festkörper 19 1.2. Eigenschaften elektronischer

Mehr

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA

TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA TRANSISTORKENNLINIEN 1 (TRA 1) DANIEL DOLINSKY UND JOHANNES VRANA Inhaltsverzeichnis 1. Einleitung... 1 2. Messverfahren... 1 3. Bemerkung zur Fehlerrechnung... 1 4. Stromverstärkungsfaktor... 2 5. Eingangskennlinie...

Mehr

Silizium- Planartechnologie

Silizium- Planartechnologie Hans Günther Wagemann, Tim Schönauer Silizium- Planartechnologie Grundprozesse, Physik und Bauelemente Teubner B. G.Teubner Stuttgart Leipzig Wiesbaden Vorwort V Übersicht über den Stoff des Buches V Inhaltsverzeichnis

Mehr

4. Dioden Der pn-übergang

4. Dioden Der pn-übergang 4.1. Der pn-übergang Die Diode ist ein Halbleiterbauelement mit zwei Anschlüssen: Eine Diode besteht aus einem Halbleiterkristall, der auf der einen Seite p- und auf der anderen Seite n-dotiert ist. Die

Mehr

Ladungsträgerdichte im Halbleiter, thermisches Gleichgewicht

Ladungsträgerdichte im Halbleiter, thermisches Gleichgewicht Kapitel 5 Ladungsträgerdichte im Halbleiter, thermisches Gleichgewicht 5. Der intrinsische Halbleiter Abbildung 5.: Schematisch: a) Die Zustandsdichte und b) die Fermiverteilung für einen intrinsischen

Mehr

Übersicht über die Vorlesung Solarenergie

Übersicht über die Vorlesung Solarenergie Übersicht über die Vorlesung Solarenergie 5.1 1. Einleitung 2. Die Sonne als Energiequelle 3. Halbleiterhysikalische Grundlagen 4. Kristalline n-solarzellen 5. Elektrische Eigenschaften 5.1 Kennlinie n-übergang

Mehr

8. Halbleiter-Bauelemente

8. Halbleiter-Bauelemente 8. Halbleiter-Bauelemente 8.1 Reine und dotierte Halbleiter 8.2 der pn-übergang 8.3 Die Diode 8.4 Schaltungen mit Dioden 8.5 Der bipolare Transistor 8.6 Transistorschaltungen Zweidimensionale Veranschaulichung

Mehr

1 Metallisierung. 1.1 Der Metall-Halbleiter-Kontakt Kontaktierung von dotierten Halbleitern. 1.1 Der Metall-Halbleiter-Kontakt

1 Metallisierung. 1.1 Der Metall-Halbleiter-Kontakt Kontaktierung von dotierten Halbleitern. 1.1 Der Metall-Halbleiter-Kontakt 1 isierung 1.1 Der -Halbleiter-Kontakt 1.1.1 Kontaktierung von dotierten Halbleitern Nach der Herstellung der Transistoren im Siliciumsubstrat müssen diese mittels elektrischer Kontakte miteinander verbunden

Mehr

15. Vom Atom zum Festkörper

15. Vom Atom zum Festkörper 15. Vom Atom zum Festkörper 15.1 Das Bohr sche Atommodell 15.2 Quantenmechanische Atommodell 15.2.1 Die Hauptquantenzahl n 15.2.2 Die Nebenquantenzahl l 15.2.3 Die Magnetquantenzahl m l 15.2.4 Die Spinquantenzahl

Mehr

Festkörperelektronik 5. Übung

Festkörperelektronik 5. Übung estkörperelektronik 5. Übung elix Glöckler 7. Juli 2006 1 Übersicht Themen heute: Übungs-Umfrage Bandstruktur Gruppengeschwindigkeit effektive Masse Driftstrom Löcher Zustandsdichte ermi-verteilung Bloch-Oszillation

Mehr

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 )

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 ) Aufgabe: Schwingung An eine Stahlfeder wird eine Kugel mit der Masse 500g gehängt. Federkraft: F 1 -b (b 50 N/m) Gravitationskraft: F mg (g 9,8 m/s ) m 500g F ma W 1 F( ) d W kin 1 mv b ( t + ϕ ) Acos(

Mehr

Das große. Halbleiterlaser. Clicker-Quiz

Das große. Halbleiterlaser. Clicker-Quiz Das große Halbleiterlaser Clicker-Quiz Aufbau eines Lasers Was wird bei der Separate Confinement Heterostructure separat eingeschlossen? a) Elektronen und Löcher b) Ladungsträger und Photonen c) Dotieratome

Mehr

Physikalisches Grundpraktikum E7 Diodenkennlinie und PLANCK-Konstante

Physikalisches Grundpraktikum E7 Diodenkennlinie und PLANCK-Konstante E7 Diodenkennlinie und PLANCK-Konstante Aufgabenstellung: Bestimmen e die Schleusenspannungen verschiedenfarbiger Leuchtdioden aus den Strom- Spannungs-Kennlinien. Bestimmen e anhand der Emissionswellenlängen

Mehr

Halbleiterheterostrukturen. Vortrag von Alexej Klushyn

Halbleiterheterostrukturen. Vortrag von Alexej Klushyn Halbleiterheterostrukturen Vortrag von Alexej Klushyn Übersicht Einführung in die Halbleiterphysik Physikalische Grundlagen der Halbleiterheterostrukturen Anwendungsmöglichkeiten der Halbleiterheterostrukturen

Mehr

Elektrische Eigenschaften von Festkörpern

Elektrische Eigenschaften von Festkörpern Elektrische Eigenschaften von n Quellennachweis zu den Abbildungen R. Müller, Grundlagen der Halbleiter-Elektronik. C.R. Bolognesi, Vorlesungsunterlagen. W.C. Dash, R. Newman, Phys. Rev., 99, 1955, 1151.

Mehr

E 2 Temperaturabhängigkeit elektrischer Widerstände

E 2 Temperaturabhängigkeit elektrischer Widerstände E 2 Temperaturabhängigkeit elektrischer Widerstände 1. Aufgaben 1. Für die Stoffe - Metall (Kupfer) - Legierung (Konstantan) - Halbleiter (Silizium, Galliumarsenid) ist die Temperaturabhängigkeit des elektr.

Mehr

Halbleiter, Dioden. wyrs, Halbleiter, 1

Halbleiter, Dioden. wyrs, Halbleiter, 1 Halbleiter, Dioden Halbleiter, 1 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten

Mehr

Vorbereitung. e ikr u n,k (r) (1)

Vorbereitung. e ikr u n,k (r) (1) Physikalisches Fortgeschrittenenpraktikum Lumineszenz Vorbereitung Armin Burgmeier Robert Schittny 1 Theoretische Grundlagen 1.1 Bändermodell Zur Beschreibung der Leitungseigenschaften von Festkörpern

Mehr

PeP Physik erfahren im Forschungs-Praktikum. Das Spektrum Spektrometrie Kontinuumstrahler Das Bohrsche Atommodell Linienstrahler Halbleiterelemente

PeP Physik erfahren im Forschungs-Praktikum. Das Spektrum Spektrometrie Kontinuumstrahler Das Bohrsche Atommodell Linienstrahler Halbleiterelemente Die Entstehung des Lichts Das Spektrum Spektrometrie Kontinuumstrahler Das Bohrsche Atommodell Linienstrahler Halbleiterelemente Das elektromagnetische Spektrum Zur Veranschaulichung Untersuchung von Spektren

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Grundlagen der Technischen Informatik Dr. Wolfgang Koch Friedrich Schiller Universität Jena Fakultät für Mathematik und Informatik Rechnerarchitektur wolfgang.koch@uni-jena.de Inhalt Grundlagen der Techn.

Mehr

Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften

Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften Hall-Effekt und seine Anwendung zur Bestimmung elektrischer Eigenschaften Markus Gräfe Physikalisch-Astronomische Fakultät Jena 18. Juni 2009 Inhaltsverzeichnis 1 Motivation 2 Grundlagen Leitungsmechanismen

Mehr

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt

Strom und Spannungsmessung, Addition von Widerständen, Kirchhoffsche Regeln, Halbleiter, p-n-übergang, Dioden, fotovoltaischer Effekt Versuch 27: Solarzellen Seite 1 Aufgaben: Vorkenntnisse: Lehrinhalt: Literatur: Messung von Kurzschlussstrom und Leerlaufspannung von Solarzellen, Messung der I-U-Kennlinien von Solarzellen, Bestimmung

Mehr

Physik der Halbleiterbauelemente

Physik der Halbleiterbauelemente Frank Thuselt Physik der Halbleiterbauelemente Einführendes Lehrbuch für Ingenieure und Physiker Mit 181 Abbildungen 4y Springer Inhaltsverzeichnis Kursiv gekennzeichnete Abschnitte können beim ersten

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 9. Vorlesung, 20. 6. 2013 Transport, von 1D zu 2 & 3D, Bandstruktur Fermienergie,

Mehr

Charakteristikum: Leitfähigkeit nimmt in der Regel mit wachsender Temperatur zu (d. h. Widerstand nimmt ab) - im Gegensatz zu Metallen!

Charakteristikum: Leitfähigkeit nimmt in der Regel mit wachsender Temperatur zu (d. h. Widerstand nimmt ab) - im Gegensatz zu Metallen! Prof. Dr. R. Heilmann, Halbleiterphysik für Elektroingenieure, Seite 1 5. Halbleiterphysik 5.1. Einführung Halbleiter (HL) = Grundmaterialien der modernen Elektronik = Festkörper mit elektrischer Leitfähigkeit

Mehr

Formelsammlung Werkstoffkunde

Formelsammlung Werkstoffkunde Werkstoffkunde.nb Formelsammlung Werkstoffkunde Diese Formelsammlung wurde von Jan Peters (www.jan-peters.net) erstellt und hat vielen Studenten durch ihr Vordiplom geholfen. Den Autoren wuerde ein Link

Mehr

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren

Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Wechselwirkung geladener Teilchen in Materie Physik VI Sommersemester 2008 Detektoren in der Kern- und Teilchenphysik Szintillationsdetektoren Ionisationsdetektoren Halbleiterdetektoren Szintillationsdetektoren

Mehr

2. Durch welche physikalischen Größen wird der Zustand eines Systems in der klassischen Mechanik definiert?

2. Durch welche physikalischen Größen wird der Zustand eines Systems in der klassischen Mechanik definiert? Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer / Dipl.-Ing. Felix Glöckler Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik 28. Juli 2006 100 Fragen zur Festkörperelektronik

Mehr

Physikalisches Grundpraktikum V13 PLANCKsches Wirkungsquantum & LED

Physikalisches Grundpraktikum V13 PLANCKsches Wirkungsquantum & LED Aufgabenstellung: Bestimmen e die Schleusenspannungen verschiedenfarbiger Leuchtdioden aus den Strom- Spannungs-Kennlinien. Bestimmen e anhand der Emissionswellenlängen das PLANCKsche Wirkungsquantum h.

Mehr

1. Diode und Transistor

1. Diode und Transistor 1. Diode und Transistor Vergleichen Sie Diode und Transistor aus Bild 1. a) Wie groß sind jeweils die Elektronenströme? b) Wie groß sind jeweils die Löcherströme? E B C 18-3 N = A 17-3 10 cm 16-3 Basislänge

Mehr

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ

2. Der Temperaturkoeffizient des spezifischen Widerstands α. Die SI-Einheit K -1 ρ = ρ 7. Elektrische Leitfähigkeit von estkörpern 7.1 Die elektrischen Eigenschaften von Kristallen Die grundlegende Eigenschaften kennzeichnen das elektrische Verhalten von estkörpern: 1. Der spezifische Widerstand

Mehr

Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte

Beispielklausur 3 - Halbleiterbauelemente. Aufgabe 1: Halbleiterphysik I Punkte Aufgabe 1: Halbleiterphysik I Punkte 1.1) Skizzieren Sie das Bändermodell eines mit Bor (dritte Hauptgruppe) dotierten Halbleiters. Zeichnen Sie das Störstellenniveau (ca. 100meV oberhalb der Valenzbandenergie),

Mehr

Halbleiter und Transistoren - Prinzip und Funktionsweise

Halbleiter und Transistoren - Prinzip und Funktionsweise Halbleiter und Transistoren - Prinzip und Funktionsweise Reine Halbleitermaterialien, wie Silizium (Si) oder Germanium (Ge) sind bei Zimmertemperatur fast Isolatoren: bzw. bei sinkender Temperatur HL Isolator

Mehr

Leistungsbauelemente

Leistungsbauelemente I (Kurs-Nr. 21645), apl. Prof. Dr. rer. nat. Fakultät für Mathematik und Informatik Fachgebiet Elektrotechnik und Informationstechnik ( ) D-58084 Hagen 1 Gliederung Einleitung Physikalische Grundlagen

Mehr

Kurzwiederholung p-n-übergang

Kurzwiederholung p-n-übergang Kurzwiederholung p-n-übergang Bandverlauf nach Zusammenfügen? 03.11.2016 Optoelektronische Halbleiterbauelemente, 1 Kurzwiederholung p-n-übergang: Bandverlauf keine äußere Spannung => thermodynamisches

Mehr

1) [1] 2) [1] 3) [2] 4) [4] 5) [4] 6) [3] 7) [3] 8) [4] 9) [4] 10) [3] 11) [9] 12) [3]

1) [1] 2) [1] 3) [2] 4) [4] 5) [4] 6) [3] 7) [3] 8) [4] 9) [4] 10) [3] 11) [9] 12) [3] Klausur Elektronik I Sommersemester 2006 Name:................................................ Vorname:............................................. Matrikelnummer:.......................................

Mehr

Intrinsische Halbleiter

Intrinsische Halbleiter Intrinsische Halbleiter Ein völlig reines Halbleitermaterial (ohne Fremdatome, ohne Fehlstellen, ohne "Antisites") nennt man intrinsisch. Bei einem intrinsischen Halbleiter hängen die Ladungsträgerkonzentrationen

Mehr

In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter.

In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches Gitter. II.2: Erinnerung an die Halbleiterphysik II.2.1: Kristalline Festkörper In den meisten optoelektronischen Bauelementen werden kristalline Festkörper verwendet, d.h. die Atome bilden ein streng periodisches

Mehr

Dennis P. Büch. os/led_throwies.jpg

Dennis P. Büch.  os/led_throwies.jpg Dennis P. Büch http://blog.karotte.org/uploads/fot os/led_throwies.jpg Kurzer historischer Hintergrund Funktionsweise Aufbau Bauformen Dennis- P. Büch 1 Kurzer historischer Hintergrund Funktionsweise Aufbau

Mehr

0 Theorie Einleitung Mechanismen der Ladungsträgerleitung im Halbleiter... 1

0 Theorie Einleitung Mechanismen der Ladungsträgerleitung im Halbleiter... 1 Inhaltsverzeichnis 0 Theorie 1 0.1 Einleitung................................ 1 0. Mechanismen der Ladungsträgerleitung im Halbleiter........ 1 1 Praxis 5 1.1 Versuchsaufbau.............................

Mehr

Opto-elektronische. Materialeigenschaften VL # 4

Opto-elektronische. Materialeigenschaften VL # 4 Opto-elektronische Materialeigenschaften VL # 4 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Experimental Physics VI, Julius-Maximilians-University of Würzburg und Bayerisches Zentrum für Angewandte

Mehr

Elemente optischer Netze

Elemente optischer Netze Vieweg+TeubnerPLUS Zusatzinformationen zu Medien des Vieweg+Teubner Verlags Elemente optischer Netze Grundlagen und Praxis der optischen Datenübertragung Erscheinungsjahr 2011 2. Auflage Kapitel 5 Bilder

Mehr

5. Halbleiter und P-N-Übergang

5. Halbleiter und P-N-Übergang 5. Halbleiter und P-N-Übergang Thomas Zimmer, Universität Bordeaux, Frankreich Inhaltverzeichnis Lernziele... 2 Physikalischer Hintergrund von Halbleitern... 2 Der Siliziumkristall... 2 Die Energiebänder...

Mehr

Elektronische Bauelemente

Elektronische Bauelemente Elektronische Bauelemente Potenzial durch Elementarladungen 0 2-2 4-4 6-6 8-8 10-10 12-12 14-14 -4-4 } } U[eV] Potenzial in Volt 0 } -3-3 -2-2 -1-1 0 0 1 1 Abstand zum Rand in nm 2 2 33 frei Strom leitend

Mehr

Die Diode. Roland Küng, 2009

Die Diode. Roland Küng, 2009 Die Diode Roland Küng, 2009 Halbleiter Siliziumgitter Halbleiter Eine aufgebrochene kovalente Bindung (Elektronenpaar) produziert ein Elektron und ein Loch Halbleiter Typ n z.b. Phosphor Siliziumgitter

Mehr

Versuch hq : Bestimmung des Plank schen Wirkungsquantums

Versuch hq : Bestimmung des Plank schen Wirkungsquantums UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum B Versuch hq : Bestimmung des Plank schen Wirkungsquantums 2. Auflage 2009 Dr. Stephan Giglberger Inhaltsverzeichnis

Mehr

Norbert Koch. Polymer gegen Silizium: Wer wird in der Elektronik gewinnen?

Norbert Koch. Polymer gegen Silizium: Wer wird in der Elektronik gewinnen? Polymer gegen Silizium: Wer wird in der Elektronik gewinnen? Norbert Koch Humboldt Universität zu Berlin, Institut für Physik & IRIS Adlershof Helmholtz Zentrum Berlin für Materialien und Energie GmbH

Mehr

n-typ negative Spannung positive Spannung p-typ Halbleiter in Sperrrichtung Festk0203_ /26/2003

n-typ negative Spannung positive Spannung p-typ Halbleiter in Sperrrichtung Festk0203_ /26/2003 Festk003_3 195 5/6/003 AlGaAs: grün GaN: blau, ultraviolett GaP(N): gelb Kombiniert man effiziente Leuchtdioden mit einem Resonator, kann man Halbleiterlaser herstellen. Die ffizienz kann durch die Verwendung

Mehr

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen

Freie Elektronen bilden ein Elektronengas. Feste positive Aluminiumionen. Abb. 1.1: Metallbindung: Feste Atomrümpfe und freie Valenzelektronen 1 Grundlagen 1.1 Leiter Nichtleiter Halbleiter 1.1.1 Leiter Leiter sind generell Stoffe, die die Eigenschaft haben verschiedene arten weiterzuleiten. Im Folgenden steht dabei die Leitfähigkeit des elektrischen

Mehr

Auswertung. D07: Photoeffekt

Auswertung. D07: Photoeffekt Auswertung zum Versuch D07: Photoeffekt Alexander Fufaev Partner: Jule Heier Gruppe 434 1 Einleitung In diesem Versuch geht es darum, den Photoeffekt auf verschiedene Weisen zu untersuchen. In Versuchsteil

Mehr

Elektrizitätsleitung in Halbleitern

Elektrizitätsleitung in Halbleitern Elektrizitätsleitung in Halbleitern Halbleiter sind chemische Elemente, die elektrischen Strom schlecht leiten. Germanium, Silicium und Selen sind die technisch wichtigsten Halbleiterelemente; aber auch

Mehr

Mikroprozessor - und Chiptechnologie

Mikroprozessor - und Chiptechnologie Mikroprozessor - und Chiptechnologie I 1 1 Halbleiterfunktionen 2 8 Halbleiterbauelemente 8 Halbleiterbauelemente 8.1 Grundlagen 8.2 Dioden 8.3 Transistoren 8.4 Einfache Grundschaltungen Als halbleitend

Mehr

Halbleiterarten. Technische Universität Ilmenau Institut für Werkstofftechnik. Halbleiter. elektronische Halbleiter

Halbleiterarten. Technische Universität Ilmenau Institut für Werkstofftechnik. Halbleiter. elektronische Halbleiter Halbleiterarten Halbleiter kristalline Halbleiter amorphe Halbleiter elektronische Halbleiter Ionenhalbleiter elektronische Halbleiter Ionenhalbleiter Element Halbleiter Verbindungshalbleiter Eigen Halbleiter

Mehr

Aufgabe Σ Punkte Max

Aufgabe Σ Punkte Max Lichttechnisches Institut Universität Karlsruhe Prof. Dr. rer. nat. Uli Lemmer Kaiserstrasse 12 76131 Karlsruhe Festkörperelektronik Klausur 20. September 2005 Name:........................................

Mehr

Elektrischer Strom S.Alexandrova 1

Elektrischer Strom S.Alexandrova 1 Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches

Mehr

Protokoll zum Versuch Elektrische Leitfähigkeit und HALL-Effekt (HA) im Fortgeschrittenenpraktikum

Protokoll zum Versuch Elektrische Leitfähigkeit und HALL-Effekt (HA) im Fortgeschrittenenpraktikum Protokoll zum Versuch Elektrische Leitfähigkeit und HALL-Effekt (HA) im Fortgeschrittenenpraktikum 2. Januar 2009 Klaus Steiniger, Alexander Wagner, Gruppe 850 klaus.steiniger@physik.tu-dresden.de, alexander.wagner2@mailbox.tu-dresden.de

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den

Moderne Physik: Elemente der Festkörperphysik Wintersemester 2010/11 Übungsblatt 5 für den Moderne Physik: Elemente der Festkörperphysik Wintersemester 21/11 Übungsblatt 5 für den 14.1.211 14. Fermi-Energie von Elektronen in Metallen Bei T = K besitzt ein freies Elektronengas der Ladungsträgerdichte

Mehr

2 Diode. 2.1 Formelsammlung. Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone

2 Diode. 2.1 Formelsammlung. Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone 2 Diode 2.1 Formelsammlung Diffusionsspannung Φ i = kt q ln N AN D n 2 i (2.1) Überschussladungsträgerdichten an den Rändern der Raumladungszone ( q ) ] p n( n )=p n0 [ep kt U pn 1 bzw. (2.2) ( q ) ] n

Mehr

Lichtemittierende Dioden (LED)

Lichtemittierende Dioden (LED) @ Einführung in die optische Nachrichtentechnik LED/1 Lichtemittierende Dioden (LED) Lumineszenzdioden und Halbleiterlaser werden in der optischen Nachrichtentechnik überwiegend als Doppel-Heterostrukturdioden

Mehr

Halbleiter, Dioden. wyrs, Halbleiter, 1

Halbleiter, Dioden. wyrs, Halbleiter, 1 Halbleiter, Dioden Halbleiter, 1 Inhaltsverzeichnis Aufbau & physikalische Eigenschaften von Halbleitern Veränderung der Eigenschaften mittels Dotierung Vorgänge am Übergang von dotierten Materialen Verhalten

Mehr

Seminar für Fragen der Festkörpertheorie. P.N. Racec

Seminar für Fragen der Festkörpertheorie. P.N. Racec Seminar für Fragen der Festkörpertheorie P.N. Racec WS2003/2004 2 Contents Spezialthemen in Festkörperphysik 5. Fermi-Dirac Verteilungsfunktion........................ 6.2 Bose-Einstein Verteilungsfunktion.......................

Mehr

Übungen zur Vorlesung Photoelektronenspektroskopie

Übungen zur Vorlesung Photoelektronenspektroskopie Übungen zur Vorlesung Photoelektronenspektroskopie PES an Metall-Halbleiter-Kontakten Grundlagen: Dotierung von Halbleitern Der Metall-Halbleiter-Kontakt (Schottky-Kontakt) PES an Schottky-Kontakten Kurvenzerlegung

Mehr

Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien

Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien UniversitätQOsnabrück Fachbereich Physik Dr. W. Bodenberger Kontakte zwischen Metallen und verschiedenen Halbleitermaterialien Betrachtet man die Kontakstelle zweier Metallischer Leiter mit unterschiedlichen

Mehr

Halbleiterlaser. Seminar Laserphysik

Halbleiterlaser. Seminar Laserphysik Halbleiterlaser Seminar Laserphysik 17.06.15 Gliederung a) Halbleiter Eigenschaften Dotierung pn Übergang LED b) Diodenlaser Ladungsinversion Bauformen Strahlprofil Leistungsangaben c) Anwendungsgebiete

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert FK06 Halbleiterdioden (Pr_PhII_FK06_Dioden_7, 24.10.2015) 1. 2. Name Matr. Nr. Gruppe

Mehr

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle

Sonnenenergie: Photovoltaik. Physik und Technologie der Solarzelle Sonnenenergie: Photovoltaik Physik und Technologie der Solarzelle Von Prof. Dr. rer. nat. Adolf Goetzberger Dipl.-Phys. Bernhard Voß und Dr. rer. nat. Joachim Knobloch Fraunhofer-Institut für Solare Energiesysteme

Mehr

Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11. Solarzellen

Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11. Solarzellen INSTITUT FÜR NANOTRUKTUR UND FESTKÖRPERPHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Solarzellen 1 Warum geben Solarzellen Strom? Abb.

Mehr