Seminar Visual Analytics and Visual Data Mining

Größe: px
Ab Seite anzeigen:

Download "Seminar Visual Analytics and Visual Data Mining"

Transkript

1 Seminar Visual Analytics and Visual Data Mining Dozenten:, AG Visual Computing Steffen Oeltze, AG Visualisierung

2 Organisatorisches Seminar für Diplom und Bachelor-Studenten (max. 18) (leider nicht für Master-Studenten) Zeit und Ort: wöchentlich Uhr (c.t.) E037 Web: Scheinkriterien (B=ECTS-Credits 3; D=2SWS) 30 min. themenbezogener Vortrag + 15 min. Diskussion Beteiligung an Diskussion der anderen Vorträge Anwesenheit Schriftliche Zusammenfassung des Vortrags 3-5 Seiten (Abgabe bis Ende der Vorlesungszeit)

3 Ablauf: Diese Woche: Kurzeinführung VDM (Dirk) Anmeldung/Registrierung Nächste Woche: Vortrag VA (Steffen) Themenvergabe Eine Woche Pause Erste Vorträge t

4 Hausaufgabe: Je ein Thema aus VDM und VA von der Webpage auswählen (insgesamt 2 Themen wählen) Web:

5 Einführung in Visual Data Mining

6 Gliederung Analyseproblem Grundlagen Visual Data Mining Grundlagen Datenbeschreibung Ausgewählte Methoden

7 Zielstellung Vollständige Datensatz-Analyse (Cluster, Korelationen, Muster)

8 Analyseproblem Große Datensätze (z.t. > TB) Große Anzahl von Dimensionen (z.t. > 10³ ) Große Anzahl von Mustern (Pattern) die Eigenschaften charakterisieren (z.t > 200 * 10³ Muster) Kontextunabhängige Aussagen kaum möglich (z.b. bei Cluster)

9 Orginal Cluster 1 Cluster 2 Kontextunabhängige Aussagen kaum möglich (z.b. bei Cluster)

10 Klassische Lösung des Analyseproblems (1) Automatische Analyse mit Mitteln der Statistik, Numerik und Analysis Data Mining [z.b. Adriaans u Zantinge 1996] Multivariate Regression Maximum Likelihood Bayes und andere Schätzer Machine Learning [z.b. Alpaydin 2004] Support Vector Machinen Neuronale Netzwerke Hierachiches Clustering Hidden Markov Models

11 Klassische Lösung des Analyseproblems (2) Probleme gelöst: Große Datensätze (z.t. > TB) Große Anzahl von Dimensionen (z.t. > 10³ ) Probleme weiterhin: Große Muster-Anzahl weiterhin nicht behandelbar/ interpretierbar Kontextunabhängige Aussagen kaum möglich (z.b. bei Cluster)

12 Lösungsidee: Einbindung der Kognition des Nutzers um Probleme zu lösen. Visual Analytics & Visual Data Mining

13 Was ist Visual Data Mining (VDM)?

14 Was ist Visual Data Mining (VDM)? Datenbasiertes Erzeugen von interpretierbaren Visualisierungen zum kognitiven Zugang des Nutzer zu diesen Daten

15 Was ist Visual Data Mining (VDM)? VDM in der Praxis: Kombination Data Mining Technicken & Visualisierungstechniken [Keim et al. 2002] Informations Visualization Visualisierung abstrakter Daten (Web-Dokumenten, Datenbanken, Text, Softwaresystemen) Scientific Visualization Visualisierung physikalischer Daten (Geologische, Klimatische u.ä Messungen, Simulationsergebnisse, Strömungsdaten)

16 Welche Zielstellung hat VDM? Schaffung visueller Schnittstelle zwischen Daten und Nutzer Visualisierung aggregiert Daten Visualisierung soll expressiv, effektiv und angemessen sein [Schumann 2000]

17 Welche Zielstellung hat VDM? Schaffung visueller Schnittstelle zwischen Daten und Nutzer Visualisierung aggregiert Daten Visualisierung soll expressiv, effektiv und angemessen sein [Schumann 2000] Datenmenge unverfälscht wiedergeben [Jung 98] Benutzerfreundlichste Vis nehmen [Mackinlay 86] Kosten/ Nutzen Faktor bei Erzeugung berücksichtigen [Schumann 2000]

18 Welche Zielstellung hat VDM? Präsentation Visualisierung als fachübergreifendes Kommunikationsmedium Konfirmative visuelle Informationssuche Gerichtete Suche -> Ziel:Hyphothesentest Explorative visuelle Informationssuche Ungerichtete Suche nach Mustern ->Ziel: Suchraum einschränken

19 Mermalsklassen Nominal Quantitativ Ordinal Ordnung 'Belgien', 'Luxenburg', 'Niederlande' Zahl geordnet 0=Punkt, 1=Vektor, 2=Matrix, 3=Tensor, etc. Merkmale= Abhängige Dimension= Unabhängige Datensatz m n Abildung f von m unabhängige auf n abhängige Variabeln: f: R -> R

20 Fomalisierte Datenbeschreibung (1) L-Notation [Bergeron et al. 1989] L k m k...dimensionalität des Beobachtungsraumes (unabhängige Variabeln) m...dimensionalität der beobachteten Merkmale (abhängige Variabeln) L L k m>1 0 m>0 z.b. Multiparameter Daten z.b. Gitterfreie Daten

21 Fomalisierte Datenbeschreibung (2) E-Notation [Brodlie 1992] E* # *...Charackteristik der abhängigen Variabeln S=Skalarer Wert V3=Vektorieller Wert mit 3 Komponenten #...Charakteristik der abhängigen Variabeln Zahl=Dimension der Beobachteten Werte [] =abgegrenzter Bereich {} =diskreter Bereich E E V3 [3] 1S 4 z.b. Statischer 3D Strömungsdatensatz z.b. 3D MRT-Daten über die Zeit

22 Ausgewählte VDM-Methoden Allgemeine Technicken: Pixelorientiert Geometrische Transformationen Iconenbasiert

23 Ausgewählte VDM-Methoden ScatterPlots } quadratische Korrelation [Nocke2007]

24 Ausgewählte VDM-Methoden Parallele Koordinaten } Cluster

25 Ausgewählte VDM-Methoden Parallele Koordinaten+ ScatterPlots= 3D Parallele Koordinaten [ Stand: ]

26 Ausgewählte VDM-Methoden BarCharts und Histogramme Schneller allgemeiner Überblick Gute Vergleichsmöglichkeit zwischen verschiedenen Erhebungen

27 Ausgewählte VDM-Methoden Glyphen [Nocke2007] Intuitiv, aber nur begrenzte Anzahl von Merkmalen visualisierbar

28 Ausgewählte VDM-Methoden TreeMaps [ Stand: ] Zum visualisieren hierarchischer Daten

29 Ausgewählte VDM-Methoden Linear Integral Convolution (LIC) Rauschtextur wird gefaltet mit Vektorfeld Korrelation in Richtung Stromline keine Korrelation orthogonal zur Stromlinie Stand

30 Zusammenfassung VDM als visuelle Schnittstelle zwischen Nutzer und Daten Nutzen von Kognition um kontextabhängige Daten-Analyse zu ermöglichen VDM = Computergraphik + Daten + Interpretationsregeln Ausblick Nächste Woche: Vortrag Visual Analytics (Steffen)

31 Vielen Dank für Eure Aufmerksamkeit Literaturtips: Heidrun Schuman, Wolfgang Müller Visualisierung -> Grundlagen und Allgemeine Methoden Springer 2000 ISBN Tom Soukup, Ian Davidson Visual Data Mining Techniques and Tools for Data Visualization and Mining John Wiley & Sons, Inc. ISBN Ben Fry Visualizing Data O'Reilly ISBN-10: ISBN-13:

Visualisierung. Rückblick. Scientific Visualization vs. Informationsvisualisierung. Allgemeine Ziele und Anforderungen Prof. Dr.-Ing.

Visualisierung. Rückblick. Scientific Visualization vs. Informationsvisualisierung. Allgemeine Ziele und Anforderungen Prof. Dr.-Ing. Allgemeine Ziele und Prof. Dr.-Ing. Detlef Krömker Goethe-Universität, Frankfurt Graphische Datenverarbeitung Rückblick K als Anwendung der CG K Meilensteine der Entwicklung K Terminologie Scientific Visualization

Mehr

Exploration und Klassifikation von BigData

Exploration und Klassifikation von BigData Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)

Mehr

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28. PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

Visualisierung in Natur- und Technikwissenschaften. 0. Einführung. Vorlesung: Mi, 11:15 12:45 + Fr, 9:15 10:45, INF 368 532 Prof. Dr.

Visualisierung in Natur- und Technikwissenschaften. 0. Einführung. Vorlesung: Mi, 11:15 12:45 + Fr, 9:15 10:45, INF 368 532 Prof. Dr. Visualisierung in Natur- und Technikwissenschaften 0. Einführung Vorlesung: Mi, 11:15 12:45 + Fr, 9:15 10:45, INF 368 532 Prof. Dr. Heike Leitte Vertiefung Computergraphik und Visualisierung Jürgen Hesser

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Mining High-Speed Data Streams

Mining High-Speed Data Streams Mining High-Speed Data Streams Pedro Domingos & Geoff Hulten Departement of Computer Science & Engineering University of Washington Datum : 212006 Seminar: Maschinelles Lernen und symbolische Ansätze Vortragender:

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Prof. Dr.-Ing. Rainer Schmidt 1

Prof. Dr.-Ing. Rainer Schmidt 1 Prof. Dr.-Ing. Rainer Schmidt 1 Business Analytics und Big Data sind Thema vieler Veröffentlichungen. Big Data wird immer häufiger bei Google als Suchbegriff verwendet. Prof. Dr.-Ing. Rainer Schmidt 2

Mehr

Proseminar Sommersemester 2015

Proseminar Sommersemester 2015 1 Proseminar Sommersemester 2015 Fachgebiet Management Support und Wirtschaftsinformatik (MSWI) Prof. Dr.-Ing Bodo Rieger Universität Osnabrück Katharinenstrasse 3, Raum 47 / 201 49069 Osnabrück [email protected]

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Explorative Datenanalyse EDA Auffinden von Strukturen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Data Mining für die industrielle Praxis

Data Mining für die industrielle Praxis Data Mining für die industrielle Praxis von Ralf Otte, Viktor Otte, Volker Kaiser 1. Auflage Hanser München 2004 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22465 0 Zu Leseprobe schnell und

Mehr

Statistik und Datenanalyse. eine praktische Einführung

Statistik und Datenanalyse. eine praktische Einführung Statistik und Datenanalyse eine praktische Einführung Antony Unwin Lehrstuhl für Rechnerorientierte Statistik und Datenanalyse Institut für Mathematik Universität Augsburg [email protected] Augsburger

Mehr

Predictive Modeling Markup Language. Thomas Morandell

Predictive Modeling Markup Language. Thomas Morandell Predictive Modeling Markup Language Thomas Morandell Index Einführung PMML als Standard für den Austausch von Data Mining Ergebnissen/Prozessen Allgemeine Struktur eines PMML Dokuments Beispiel von PMML

Mehr

Visualisierung von Geodaten

Visualisierung von Geodaten Seminar: mobilegis Visualisierung von Geodaten Maria Selzer Agenda Einführung Datenformate Maps APIs Virtuelle Globen Zusammenfassung Einführung Visualisierung: graphische bzw. visuelle Darstellung von

Mehr

Virtual Roundtable: Business Intelligence - Trends

Virtual Roundtable: Business Intelligence - Trends Virtueller Roundtable Aktuelle Trends im Business Intelligence in Kooperation mit BARC und dem Institut für Business Intelligence (IBI) Teilnehmer: Prof. Dr. Rainer Bischoff Organisation: Fachbereich Wirtschaftsinformatik,

Mehr

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen 7. Clusteranalyse (= Häufungsanalyse; Clustering-Verfahren) wird der multivariaten Statistik zugeordnet Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut,

Mehr

WEKA A Machine Learning Interface for Data Mining

WEKA A Machine Learning Interface for Data Mining WEKA A Machine Learning Interface for Data Mining Frank Eibe, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H. Witten Reinhard Klaus Losse Künstliche Intelligenz II WS 2009/2010

Mehr

Was ist clevere Altersvorsorge?

Was ist clevere Altersvorsorge? Was ist clevere Altersvorsorge? Um eine gute Altersvorsorge zu erreichen, ist es clever einen unabhängigen Berater auszuwählen Angestellte bzw. Berater von Banken, Versicherungen, Fondsgesellschaften und

Mehr

Visualisierung der Imperfektion in multidimensionalen Daten

Visualisierung der Imperfektion in multidimensionalen Daten Visualisierung der Imperfektion in multidimensionalen Daten Horst Fortner Imperfektion und erweiterte Konzepte im Data Warehousing Betreuer: Heiko Schepperle 2 Begriffe (1) Visualisierung [Wikipedia] abstrakte

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein [email protected] Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013 Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien Berlin, Mai 2013 The unbelievable Machine Company? 06.05.13 The unbelievable Machine Company

Mehr

Allgemeines Lineares Modell Einführung

Allgemeines Lineares Modell Einführung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Allgemeines Lineares Modell Einführung Zu meiner Person [email protected] Rawema-Haus, Straße

Mehr

RapidMiner als Werkzeug für die textorientierten Geisteswissenschaften Katharina Morik

RapidMiner als Werkzeug für die textorientierten Geisteswissenschaften Katharina Morik technische universität RapidMiner als Werkzeug für die textorientierten Geisteswissenschaften Katharina Morik Name Autor Ort und Datum Informatik: Linguistik: Methoden + Verfahren Forschungsfragen, Anforderungen

Mehr

Wie Google Webseiten bewertet. François Bry

Wie Google Webseiten bewertet. François Bry Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Die Interferenz von flexiblen Arbeitszeiten mit der Nutzbarkeit arbeitsfreier Zeit Ein Prädiktor für soziale Beeinträchtigungen

Die Interferenz von flexiblen Arbeitszeiten mit der Nutzbarkeit arbeitsfreier Zeit Ein Prädiktor für soziale Beeinträchtigungen Die Interferenz von flexiblen Arbeitszeiten mit der Nutzbarkeit arbeitsfreier Zeit Ein Prädiktor für soziale Beeinträchtigungen Anna Wirtz*, Ole Giebel**, Carsten Schomann**, Friedhelm Nachreiner** *Bundesanstalt

Mehr

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe Risiken bei der Analyse sehr großer Datenmengen Dr. Thomas Hoppe Datenaufbereitung Datenanalyse Data Mining Data Science Big Data Risiken der Analyse Sammlung Integration Transformation Fehlerbereinigung

Mehr

Vorhersagemodell für die Verfügbarkeit von IT-Services

Vorhersagemodell für die Verfügbarkeit von IT-Services Vorhersagemodell für die Verfügbarkeit von IT-Services Magdeburg Research and Competence Cluster Very Large Business Applications Lab Fakultät für Informatik Institut für Technische und Betriebliche Informationssysteme

Mehr

Visuelle Suche in Digitalen Filmarchiven Visual Search in Digital Film Archives. Visuelle Exploration Digitaler Bibliothken

Visuelle Suche in Digitalen Filmarchiven Visual Search in Digital Film Archives. Visuelle Exploration Digitaler Bibliothken Visuelle Suche in Digitalen Filmarchiven Visual Search in Digital Film Archives Visuelle Exploration Digitaler Bibliothken Prof. Dr. am Beispiel des Projektes MedioVis [email protected] Kurzvorstellung

Mehr

WEBINAR@LUNCHTIME THEMA: "SAS STORED PROCESSES - SCHNELL GEZAUBERT" HELENE SCHMITZ

WEBINAR@LUNCHTIME THEMA: SAS STORED PROCESSES - SCHNELL GEZAUBERT HELENE SCHMITZ WEBINAR@LUNCHTIME THEMA: "SAS STORED PROCESSES - SCHNELL GEZAUBERT" HELENE SCHMITZ HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant Training

Mehr

Der Einsatz von Social Media im Stadtmarketing. Alexander Masser, Hans-Jürgen Seimetz, Peter Zeile

Der Einsatz von Social Media im Stadtmarketing. Alexander Masser, Hans-Jürgen Seimetz, Peter Zeile Der Einsatz von Social Media im Stadtmarketing Alexander Masser, Hans-Jürgen Seimetz, Peter Zeile Einführung Web 2.0, Facebook, Twitter, Google, Social Media... Was bedeuten diese Schlagwörter für das

Mehr

BI in der Cloud eine valide Alternative Überblick zum Leistungsspektrum und erste Erfahrungen 11.15 11.45

BI in der Cloud eine valide Alternative Überblick zum Leistungsspektrum und erste Erfahrungen 11.15 11.45 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Industrie 4.0 in Deutschland

Industrie 4.0 in Deutschland Foto: Kzenon /Fotolia.com Industrie 4.0 in Deutschland Dr. Tim Jeske innteract-conference Chemnitz, 07.05.2015 Entwicklung der Produktion Komplexität Quelle: Siemens in Anlehnung an DFKI 2011 07.05.2015

Mehr

Maximizing the Spread of Influence through a Social Network

Maximizing the Spread of Influence through a Social Network 1 / 26 Maximizing the Spread of Influence through a Social Network 19.06.2007 / Thomas Wener TU-Darmstadt Seminar aus Data und Web Mining bei Prof. Fürnkranz 2 / 26 Gliederung Einleitung 1 Einleitung 2

Mehr

Seminar: Moderne Web Technologien (MWT)

Seminar: Moderne Web Technologien (MWT) Seminar: Moderne Web Technologien (MWT) Malgorzata Mochol Freie Universität Berlin Institut für Informatik Netzbasierte Informationssysteme mochol[at]inf.fu-berlin.de http://page.mi.fu-berlin.de/~mochol/

Mehr

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen Bildungsurlaub-Seminare: Lerninhalte und Programm Seminartitel SPSS für Psychologen/innen (BH15113) Termin Mo, den 18.05.bis Fr, den 22.05.2015 (40 UStd.) Veranstaltungsort Bildungsherberge der Studierendenschaft

Mehr

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren: 4. AUSSAGENLOGIK: SYNTAX 4.1 Objektsprache und Metasprache 4.2 Gebrauch und Erwähnung 4.3 Metavariablen: Verallgemeinerndes Sprechen über Ausdrücke von AL 4.4 Die Sprache der Aussagenlogik 4.5 Terminologie

Mehr

Interactive exploration of neural networks in Python. 3-d simulation of the e-puck robot in virtual environments

Interactive exploration of neural networks in Python. 3-d simulation of the e-puck robot in virtual environments Studienprojekte Sommersemester 2014 Interactive exploration of neural networks in Python 3-d simulation of the e-puck robot in virtual environments, [email protected] Mercator Research Group Structure of Memory

Mehr

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Cohen s Kappa Felix-Nicolai Müller Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Felix-Nicolai Müller Cohen s Kappa 24.11.2009 1 / 21 Inhaltsverzeichnis 1 2 3 4

Mehr

3D Visualisierung von UML Umgebungsmodellen

3D Visualisierung von UML Umgebungsmodellen 3D Visualisierung von UML Umgebungsmodellen Vortragender: Helmer Krämer Betreuer: Dr. Holger Giese 3D Visualisierung von UML Umgebungsmodellen Krämer Seite 1 Motivation und Anforderungen Das Umgebungsmodell

Mehr

I. B Eine geeignete Organisation sicherstellen

I. B Eine geeignete Organisation sicherstellen I. B Eine geeignete Organisation sicherstellen I. B2 Ablauforganisation Zusammenfassung Belastungen aus der Arbeitsorganisation Aufbau- und Ablauforganisation Was ist zu tun? Praxishilfen Berlin, Stand

Mehr

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios Bernd Rosenow Rafael Weißhaupt Frank Altrock Universität zu Köln West LB AG, Düsseldorf Gliederung Beschreibung des Datensatzes

Mehr

W.WIINM32.11 (Datawarehousing) W.WIMAT03.13 (Statistik)

W.WIINM32.11 (Datawarehousing) W.WIMAT03.13 (Statistik) Modulbeschrieb Business Intelligence and Analytics 16.10.2013 Seite 1/5 Modulcode Leitidee Art der Ausbildung Studiengang Modultyp W.WIINM42.13 Information ist eine derart wichtige Komponente bei der Entscheidungsfindung,

Mehr

Übungsklausur vom 7. Dez. 2007

Übungsklausur vom 7. Dez. 2007 Übungsklausur vom 7. Dez. 2007 Ein Lösungsmuster Teilbereiche der Softwaretechnik Software Anforderungen Software Entwurf Software Konstruktion Software Test Software Wartung Software Konfigurationsmanagement

Mehr

Web Mining Übung. www.ke.tu-darmstadt.de/lehre/ss13/web-mining/uebungen. Aufgaben. Umfang

Web Mining Übung. www.ke.tu-darmstadt.de/lehre/ss13/web-mining/uebungen. Aufgaben. Umfang www.ke.tu-darmstadt.de/lehre/ss13/web-mining/uebungen zusätzliche Informationen, Registrierung, Upload, Übungsblätter Aufgaben aus dem Bereich Data-, Text- und Web-Mining Crawling, Textanalyse, Textklassifizierung,

Mehr

Betriebswirtschaftliches Beratungstool für Steuerberater Ziele, Inhalte und Struktur

Betriebswirtschaftliches Beratungstool für Steuerberater Ziele, Inhalte und Struktur Betriebswirtschaftliches Beratungstool für Steuerberater Ziele, Inhalte und Struktur Prof. Dr. Oliver Kruse Im Rahmen der Initiative: Projektträger: Überblick 1. Welche Ziele verfolgt das betriebswirtschaftliche

Mehr

Fassade. Objektbasiertes Strukturmuster. C. Restorff & M. Rohlfing

Fassade. Objektbasiertes Strukturmuster. C. Restorff & M. Rohlfing Fassade Objektbasiertes Strukturmuster C. Restorff & M. Rohlfing Übersicht Motivation Anwendbarkeit Struktur Teilnehmer Interaktion Konsequenz Implementierung Beispiel Bekannte Verwendung Verwandte Muster

Mehr

IMS - Learning Design

IMS - Learning Design IMS - Learning Design Ein Vortrag zum Thema Learning Design von Maayan Weiss Inhalt Was ist IMS Learning Design? Kurzer Einblick Welche Lücken gibt es im e-learning? Was hat IMS-LD zu bieten. Wie sieht

Mehr

Zufriedenheit mit der Fachtagung insgesamt

Zufriedenheit mit der Fachtagung insgesamt Zufriedenheit mit der Fachtagung insgesamt Ich bin mit der Fachtagung insgesamt sehr zufrieden (n=41). 73% 27% 0% 0% trifft voll zu trifft zu trifft eher nicht zu trifft gar nicht zu Insgesamt 77 Tagungsteilnehmer,

Mehr

Zahlenoptimierung Herr Clever spielt optimierte Zahlen

Zahlenoptimierung Herr Clever spielt optimierte Zahlen system oder Zahlenoptimierung unabhängig. Keines von beiden wird durch die Wahrscheinlichkeit bevorzugt. An ein gutes System der Zahlenoptimierung ist die Bedingung geknüpft, dass bei geringstmöglichem

Mehr

Supporting Consumers by Characterizing the Quality of Online Health Information: A Multidimensional Framework. Von Dominic Kipry

Supporting Consumers by Characterizing the Quality of Online Health Information: A Multidimensional Framework. Von Dominic Kipry Supporting Consumers by Characterizing the Quality of Online Health Information: Von Inhalt Einführung Methoden zur Bewertung der Qualität A Multidimensional Quality Framework Content Quality Dimension

Mehr

INDUSTRIE 4.0 - Ein Überblick zugehöriger Projekte

INDUSTRIE 4.0 - Ein Überblick zugehöriger Projekte INDUSTRIE 4.0 - Ein Überblick zugehöriger Projekte Vortrag bei der Fachgruppe IT-Projektmanagement 09. Oktober 2015, Steinbeis-Transferzentrum IT-Projektmanagement, Stuttgart [email protected] - www.stz-itpm.de

Mehr

How-to: Webserver NAT. Securepoint Security System Version 2007nx

How-to: Webserver NAT. Securepoint Security System Version 2007nx Securepoint Security System Inhaltsverzeichnis Webserver NAT... 3 1 Konfiguration einer Webserver NAT... 4 1.1 Einrichten von Netzwerkobjekten... 4 1.2 Erstellen von Firewall-Regeln... 6 Seite 2 Webserver

Mehr

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht

Mehr

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006 Seminar Informationsintegration und Informationsqualität TU Kaiserslautern 30. Juni 2006 Gliederung Autonomie Verteilung führt zu Autonomie... Intra-Organisation: historisch Inter-Organisation: Internet

Mehr

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374 DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN Nr. 374 Eignung von Verfahren der Mustererkennung im Process Mining Sabrina Kohne

Mehr

UserManual. Handbuch zur Konfiguration einer FRITZ!Box. Autor: Version: Hansruedi Steiner 2.0, November 2014

UserManual. Handbuch zur Konfiguration einer FRITZ!Box. Autor: Version: Hansruedi Steiner 2.0, November 2014 UserManual Handbuch zur Konfiguration einer FRITZ!Box Autor: Version: Hansruedi Steiner 2.0, November 2014 (CHF 2.50/Min) Administration Phone Fax Webseite +41 56 470 46 26 +41 56 470 46 27 www.winet.ch

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Auswertung zu "Projektmanagement B, SS08"

Auswertung zu Projektmanagement B, SS08 Auswertung zu "Projektmanagement B, SS08" Liebe Dozentin, lieber Dozent, anbei erhalten Sie die Ergebnisse der Evaluation Ihres Seminars. Zu dieser Veranstaltung wurden 30 Bewertungen (bei 30 TeilnehmerInnen)

Mehr

20.01.2015 Fabian Grimme und Tino Krüger 1 INDREX. Evaluierung von H2O. Enterprise Data Management Beuth Hochschule für Technik

20.01.2015 Fabian Grimme und Tino Krüger 1 INDREX. Evaluierung von H2O. Enterprise Data Management Beuth Hochschule für Technik 20.01.2015 Fabian Grimme und Tino Krüger 1 INDREX Evaluierung von H2O Enterprise Data Management Beuth Hochschule für Technik 20.01.2015 Fabian Grimme und Tino Krüger 2 INDREX im Überblick In-Database

Mehr

Business Analytics im E-Commerce

Business Analytics im E-Commerce Business Analytics im E-Commerce Kunde, Kontext und sein Verhalten verstehen für personalisierte Kundenansprache Janusz Michalewicz CEO Über die Firma Crehler Erstellung von Onlineshops Analyse von Transaktionsdaten

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Varianzanalyse (ANOVA: analysis of variance)

Varianzanalyse (ANOVA: analysis of variance) Varianzanalyse (AOVA: analysis of variance) Einfaktorielle VA Auf der Basis von zwei Stichproben wird bezüglich der Gleichheit der Mittelwerte getestet. Variablen müssen Variablen nur nominalskaliert sein.

Mehr

Zur Validität von 360 Feedbacks eine generalisierbarkeitstheoretische Reanalyse auf Faktorenebene

Zur Validität von 360 Feedbacks eine generalisierbarkeitstheoretische Reanalyse auf Faktorenebene Zur Validität von 360 Feedbacks eine generalisierbarkeitstheoretische Reanalyse auf Faktorenebene Jörg von Aschwege Friedhelm Nachreiner Martin Schütte Was sind 360 Feedbacks? Weder standardisiertes noch

Mehr

Statistische Datenanalyse mit SPSS

Statistische Datenanalyse mit SPSS Aus dem Kursangebot des Rechenzentrums: Statistische Datenanalyse mit SPSS Dozent: Termine: Raum: Johannes Hain, Lehrstuhl für Mathematik VIII Statistik 24. bis 27.08.2015 jeweils von 13:00 bis 16:00 Uhr

Mehr

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Kommunikation im Team verbessern mit Mindjet MindManager. Ein Vortrag von Steven Greenhill MindBusiness GmbH

Kommunikation im Team verbessern mit Mindjet MindManager. Ein Vortrag von Steven Greenhill MindBusiness GmbH Kommunikation im Team verbessern mit Mindjet MindManager Ein Vortrag von Steven Greenhill MindBusiness GmbH Verlauf dieser Präsentation 1 2 3 4 Kommunikation im Team fördern Der Einsatz von Mindjet Connect

Mehr

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik 2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala

Mehr

Seminar. NoSQL Datenbank Technologien. Michaela Rindt - Christopher Pietsch. Richtlinien Ausarbeitung (15. November 2015)

Seminar. NoSQL Datenbank Technologien. Michaela Rindt - Christopher Pietsch. Richtlinien Ausarbeitung (15. November 2015) Seminar Datenbank Technologien Richtlinien Ausarbeitung (15. November 2015) Michaela Rindt - Christopher Pietsch Agenda 1 2 3 1 / 12 Richtlinien Ausarbeitung (15. November 2015) Teil 1 2 / 12 Richtlinien

Mehr

Was sind Ontologie-Editoren?

Was sind Ontologie-Editoren? Was sind Ontologie-Editoren? Kurzeinführung Protégé Sonja von Mach und Jessica Otte Gliederung Ontologie Editoren- allgemein warum nutzen wofür nutzen Probleme Marktlage Einführung in die praktische Arbeit

Mehr

Step by Step Webserver unter Windows Server 2003. von Christian Bartl

Step by Step Webserver unter Windows Server 2003. von Christian Bartl Step by Step Webserver unter Windows Server 2003 von Webserver unter Windows Server 2003 Um den WWW-Server-Dienst IIS (Internet Information Service) zu nutzen muss dieser zunächst installiert werden (wird

Mehr

One-class Support Vector Machines

One-class Support Vector Machines One-class Support Vector Machines Seminar Wissensbasierte Systeme Dietrich Derksen 3. Januar 204 Motivation One-class Support Vector Machines: Detektion von Ausreißern (Systemfehlererkennung) Klassifikation

Mehr

Informationsblatt zu den Seminaren am Lehrstuhl. für Transportsysteme und -logistik

Informationsblatt zu den Seminaren am Lehrstuhl. für Transportsysteme und -logistik Informationsblatt zu den Seminaren am Lehrstuhl für Transportsysteme und -logistik Inhaltsverzeichnis ORGANISATORISCHES... 2 GROBER ABLAUF... 3 PRÄSENTATIONEN... 6 TEST... 7 1 Organisatorisches Jeder Student

Mehr

Eine Bürokratiekostenfolgenabschätzung zum zweiten Gesetz für moderne Dienstleistungen am Arbeitsmarkt im Hinblick auf die Einführung einer Gleitzone

Eine Bürokratiekostenfolgenabschätzung zum zweiten Gesetz für moderne Dienstleistungen am Arbeitsmarkt im Hinblick auf die Einführung einer Gleitzone Eine Bürokratiekostenfolgenabschätzung zum zweiten Gesetz für moderne Dienstleistungen am Arbeitsmarkt im Hinblick auf die Einführung einer Gleitzone Das IWP Institut für Wirtschafts- und Politikforschung

Mehr

Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer

Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer Klassendiagramme Ein Klassendiagramm dient in der objektorientierten Softwareentwicklung zur Darstellung von Klassen und den Beziehungen,

Mehr

A Domain Specific Language for Project Execution Models

A Domain Specific Language for Project Execution Models A Domain Specific Language for Project Execution Models Eugen Wachtel, Marco Kuhrmann, Georg Kalus Institut für Informatik Software & Systems Engineering Inhalt Einführung und Hintergrund Problembereiche

Mehr

THREAD ARCS: An Email Thread Visualization

THREAD ARCS: An Email Thread Visualization THREAD ARCS: An Email Thread Visualization Eine Technik zur Visualisierung der Email Threads Wladimir Emdin Seminar Visualisierung verteilter Systeme Gliederung 1. Einführung: Email Threads und Ziele deren

Mehr

26. GIL Jahrestagung

26. GIL Jahrestagung GeorgAugustUniversität Göttingen 26. GIL Jahrestagung Einsatz von künstlichen Neuronalen Netzen im Informationsmanagement der Land und Ernährungswirtschaft: Ein empirischer Methodenvergleich Holger Schulze,

Mehr

Sichere E-Mail Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere E-Mail. der

Sichere E-Mail Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere E-Mail. der Sichere E-Mail der Nutzung von Zertifikaten / Schlüsseln zur sicheren Kommunikation per E-Mail mit der Sparkasse Germersheim-Kandel Inhalt: 1. Voraussetzungen... 2 2. Registrierungsprozess... 2 3. Empfang

Mehr

Umstieg auf Microsoft Exchange in der Fakultät 02

Umstieg auf Microsoft Exchange in der Fakultät 02 Umstieg auf Microsoft Exchange in der Fakultät 02 Der IT-Steuerkreis der Hochschule München hat am am 26.07.12 einstimmig beschlossen an der Hochschule München ein neues Groupware-System auf der Basis

Mehr

Transparente Hausverwaltung Marketingschmäh oder doch: eine neue Dimension der Dienstleistung?

Transparente Hausverwaltung Marketingschmäh oder doch: eine neue Dimension der Dienstleistung? Transparente Hausverwaltung Marketingschmäh oder doch: eine neue Dimension der Dienstleistung? INTERNET Geschäftsführer Biletti Immobilien GmbH 24/7 WEB Server Frankgasse 2, 1090 Wien E-mail: [email protected]

Mehr

Big & Smart Data. [email protected]

Big & Smart Data. bernard.bekavac@htwchur.ch Big & Smart Data Prof. Dr. Bernard Bekavac Schweizerisches Institut für Informationswissenschaft SII Studienleiter Bachelor of Science in Information Science [email protected] Quiz An welchem

Mehr

Dr. Kraus & Partner Ihr Angebot zu Konfliktmanagement

Dr. Kraus & Partner Ihr Angebot zu Konfliktmanagement Dr. Kraus & Partner Ihr Angebot zu Konfliktmanagement Sämtliche Zeichnungen und Karikaturen dieser Präsentation sind urheberrechtlich geschützt und dürfen nur mit schriftlicher Genehmigung seitens Dr.

Mehr

Kundenzufriedenheit im IT-Outsourcing grundsätzliche Überlegungen und empirische Ergebnisse Prof. Dr. Eberhard Schott

Kundenzufriedenheit im IT-Outsourcing grundsätzliche Überlegungen und empirische Ergebnisse Prof. Dr. Eberhard Schott Kundenzufriedenheit im IT-Outsourcing grundsätzliche Überlegungen und empirische Ergebnisse Prof. Dr. Eberhard Schott 21. November 2007 Agenda 1. Einige grundsätzliche Überlegungen zur Kundenzufriedenheit

Mehr

Data Quality Management: Abgleich großer, redundanter Datenmengen

Data Quality Management: Abgleich großer, redundanter Datenmengen Data Quality Management: Abgleich großer, redundanter Datenmengen Westendstr. 14 809 München Tel 089-5100 907 Fax 089-5100 9087 E-Mail [email protected] Redundanz und relationales Datenbankmodell Redundanz:

Mehr

Installationsanleitung Maschinenkonfiguration und PP s. Release: VISI 21 Autor: Anja Gerlach Datum: 18. Dezember 2012 Update: 18.

Installationsanleitung Maschinenkonfiguration und PP s. Release: VISI 21 Autor: Anja Gerlach Datum: 18. Dezember 2012 Update: 18. Installationsanleitung Maschinenkonfiguration und PP s Release: VISI 21 Autor: Anja Gerlach Datum: 18. Dezember 2012 Update: 18.Februar 2015 Inhaltsverzeichnis 1 Einbinden der Postprozessoren... 3 1.1

Mehr