Übungen zur Theoretischen Festkörperphysik: Vertiefung (TV-2) P10 Quantentrog in zwei Dimensionen

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Theoretischen Festkörperphysik: Vertiefung (TV-2) P10 Quantentrog in zwei Dimensionen"

Transkript

1 Übungen zur Theoretischen Festörperphysi: Vertiefung (TV-) 6. Präsenzübung am 5. Juni 4 P Quantentrog in zwei Dimensionen Wir betrachten einen zylindersymmetrischen, zweidimensionalen Quantentrog, in dem sich ein Teilchen befindet. Das zugehörige Potential lautet U(r) = U Θ(a r), wobei a der Radius des Troges und U > die Tiefe des Troges ist. Wir suchen die gebundenen Zustände in diesem System und deren Energie, genauer die s-zustände, die nicht vom Polarwinel abhängen ψ(r,φ) ψ(r). Dazu muss also die Schrödinger-Gleichung für dieses Problem gelöst werden. Einige Hinweise: Der Laplace-Operator in Zylinderoordinaten lautet = ( r ) + r r r r ϕ Sie werden sowohl auf die Besselsche Differentialgleichung(+) als auch die modifizierte Besselsche Differentialgleichung(-) stoßen: x d f dx +xdf dx ±x f =. Die Besselsche Differentialgleichung wird als Differentialgleichung zweiter Ordnung durch die Bessel-Funtion J (x) und die Neumann-Funtion Y (x) bzw. deren Linearombinationen gelöst. Beides sind oszillierende Funtionen, aber J (x) ist für alle x > sowohl von oben als auch nach unten beschränt, wohingegen Y (x) eine Singularität im Ursprung besitzt. Die modifizierte Besselsche Differentialgleichung wird durch die modifizierten Bessel-Funtionen I (x) und K (x) gelöst. Das asymptotische Verhalten der Funtionen für x ist als J (x) = πx cos(x π 4 )+O(x3 ); Y (x) = I (x) = πx e x +O(x 3 ); K (x) = πx sin(x π 4 )+O(x3 ) π x ex +O(x 3 ) gegeben. Für leine Werte der Argumente x gelten folgende Entwiclungen: J (x) x 4 ( x K (x) ln γ ) Dabei ist γ =, die sogenannte Euler-Mascheroni-Konstante. Weiterhin dürfen Sie a priori annehmen, dass E U. Die Schrödinger Gleichung (da wir nur an s-zuständen interessiert sind, ist ψ = ψ(r) und der Winelanteil des Laplace-Operators fällt weg) r ψ + r ] [ +U (r) ψ = Eψ m r ψ + m [E U (r)]ψ = ist abschnittsweise für den Innenbereich des Quantentrogs und für den Außenbereich zu lösen. r < a, r > a, r ψ + r r ψ +α ψ = () r ψ + r r ψ β ψ = () Hierbei ist α = m (E +U ) und β = m E (für gebundene Zustände ist E < ). Multiplizieren mit r und Substitution x = rα liefert dann exat die Differentialgleichungen aus der Angabe. Die Lösung von () (also im Innenbereich) ist ψ(r) = AJ (αr), da eine Singularität bei r = wie sie bei der Neumann-Funtion auftaucht für eine physialische Wellenfuntion nicht in Frage ommt. Die Lösung von () (also im Außenbereich) ist ψ(r) = BK (βr), da eine exponentiell ansteigende Funtion, wie es bei I der Fall ist, wegen Nicht-Normierbareit nicht in Frage ommt. Beide Funtionen müssen bei r = a zusammengefügt werden, also muss gelten: Man erhält: AJ (αa) = BK (βa) A r J (αr) r=a = B r K (βr) r=a J (αa) r K (βr) r=a K (βa) r J (αr) r=a =. β ( α a )( ) ( +α ln 4 βa ( βa ) +γ ) ( αa ) = = β = a e α a + γ a e α a, da ja αa <<. Da aus E << U = α m U, ist also E 4 4 ma e Es existiert folglich immer ein gebundener Zustand. ma U.

2 P Radius eines Cooper-Paars Die Fourieromponenten der Wellenfuntion eines Cooper-Paars sind für < ξ < ω D als g = C ξ ǫ ; ǫ := E ǫ F; ξ := m ǫ F Somit gilt g = g = d 3 x d 3 x e i(xx ) xx ψ(x)ψ (x ) d 3 x d 3 x e i(xx ) ψ(x)ψ (x ) gegeben, wobei g = für ξ <, ǫ F die Fermi-Energie und C eine Konstante ist. Berechnen Sie den Radius eines Cooper-Paars, indem Sie wie folgt vorgehen: a) Machen Sie sich lar, weshalb nur Impulse nahe des Fermi Impulses beitragen. Nähern Sie unter dieser Annahme ξ. b) Überlegen Sie sich wie Sie den Radius im Ortsraum berechnen. c) Übertragen Sie die Rechenvorschrift in den Impulsraum. (Hinweis: δ(x x )) V ei(xx ) = d) Berechnen Sie den Radius. (Tipp: Nehmen Sie nahe der Fermi-Kante die Zustandsdichte als ρ(ǫ) = ρ F onstant an) a) Siehe Fermiugel, nur die Schale trägt bei. Damit erhält man ξ = m ǫ F = m F m = m ( F)( + F ) m ( F)( F + F ) = F ( F ) m =: v F b) Der Radius ist einfach der Erwartungswert des Abstandsoperators x = x, somit lässt sich ψ x x d 3 x = ψ d 3 x berechnen. c) Weil g die Impulsraumdarstellung von ψ ist, gilt ψ(x) = (π) 3 d 3 g e ix ; g = e ix ψ(x)d 3 x Man weiß außerdem über Fouriertransformationen von Ableitungen g = i e ix xψ(x)d 3 x Erinnert man sich an die Deltaidentität ei(xx ) = Vδ(xx ) und vertauscht Summe und Integration, so erhält man g = V d 3 xx ψ(x) Somit erennt man d) Es gilt Weiter gilt g = V d 3 x ψ(x) x = g g g = dg a) ξ = v dg F g(ξ) = C ξ ǫ ; dg = C (ξ ǫ) Summen über Vetoren lassen sich mit der Zustandsdichte in Integrale umschreiben. Man ann in unserem Fall annehmen, dass die Zustandsdichte onstant ρ F ist (siehe Vorlesung), weil die Integrale schnell onvergieren, ann man außerdem den Integrationsbereich bis ausdehnen. Man erhält somit x = g g = ( v F) ρ F ρ F ( ) dg = ( v F ) g was einem Cooper-Paar Radius von x = 3 v F ǫ entspricht. P Teilchenzahl für die BCS Wellenfuntion (ξǫ) 4 = (ξǫ) ( v F ) 3ǫ, Der Teilchenzahloperator sei als ˆN = σ c σ c σ gegeben und lässt sich umschreiben als ˆN = (c c +c c ) =:ˆn Die BCS-Wellenfuntion ist als ϕ = +v c =(u c ) =: Â gegeben. Berechnen Sie den Erwartungswert der Teilchenzahl mit der BCS-Wellenfuntion.

3 a) Berechnen Sie der Einfachheit halber zunächst den Erwartungswert von ˆn. b) Berechnen Sie nun die gesamte Teilchenzahl. Übungen zur Theoretischen Festörperphysi: Vertiefung (TV-) 7. Hausaufgabe, Abgabe:. Juni 4, c. t. (Kasten im Hörsaal) a) Man mert sofort, dass ˆn trivialerweise nur auf den Unterhilbertraum, der zu gehört, wirt. Somit ann man einfach folgendes rechnen. ϕ ˆn ϕ =  qˆn  q = A ˆn  = (u +v c c )ˆn (u +v c c ) q q = u ˆn + v c c ˆn c c = v = =c c b) Der Rest der Aufgabe ist trivial, man muss nun noch über summieren und erhält ˆN = ϕ ˆN ϕ = ϕ ˆn ϕ = v. H4 Quantentrog in D Betrachten Sie die Schrödinger Gleichung mit dem Potential d Ψ dx + m (E U(x))Ψ = V(x) = für x > a U für x < a a) Betrachten Sie zunächst eine gerade Lösung Ψ g d.h. Ψ g(x) = Ψ g(x). Dazu gehört ein Grundzustand. b) Zeigen Sie, dass der gebundene Zustand bei beliebig leiner Trogtiefe existiert und die Bindungsenergie eines Grundzustands quadratisch mit U wächst. c) Betrachten Sie dann eine ungerade Lösung Ψ u d.h. Ψ u(x) = Ψ u(x) und den ersten gebundenen Zustand E. d) Zeigen Sie, dass es für diese ungerade Lösung eine ritische Tiefe U = U c gibt, ab der sich erst gebundene Zustände ausbilden önnen. Gehen Sie dabei wie folgt vor: i) Leiten sie aus den Stetigeitsbedingungen der Lösung die Bedingung sin(αa) = ± α mit α := m V (E +U ) her und überlegen Sie sich welche αa überhaupt erlaubt sind. ii) Machen Sie sich anhand dieser Bedingung graphisch lar, weshalb es eine ritische Trogtiefe U c gibt, ab der sich gebundene Zustände ausbilden. iii) Zeigen Sie, dass U c = ma π 4. e) Bestimmen Sie das Verhalten der Energie E nahe U U c d.h. U = U c +δu und δu U c. Die Schrödinger Gleichung lässt sich umschreiben in x < a, x > a, d Ψ dx +α Ψ =, α := m (E +U ) d Ψ dx β Ψ =, β := m E

4 a) Man findet als gerade Lösung Ψ g(x) = Acos(αx) für x < a Be β x für x > a Zunächst sind A und B unbestimmt. Man ann allerdings fordern, dass sowohl die Funtion als auch ihre Ableitung eine Sprünge machen, womit man erhält. b) Man erhält hiermit diret Acos(αa) = Be βa ; Funtion eine Sprünge Aαsin(αa) = Bβe βa ; Ableitung eine Sprünge cot(αa) = α β + cos (αa) sin (αa) = α β + ; α = V β mit V := m U Außerdem sieht man sin (αa) = α +β β sin(αa) = ± β V Man sieht hiermit, dass für leine Trogtiefen V α, somit lässt sich der sin nähern. Zusätzlich muss damit die ursprüngliche Gleichung mit dem cot erfuellt sein ann cot(αa) > sein und somit für leine αa das + Vorzeichen gewählt werden. aα = β V Da die Energie langsamer als U wächst (siehe unten), ist für leine Energien U darüber hinaus α V. Man erhält somit β = V α a V a m E ( ) m au E g U ma Man erennt, dass in der Tat E g U. Somit existiert auch für beliebig leine Tiefen U ein gebundener Zuständ. c) Man findet Ψ u(x) = Asin(αx) für x < a sgn(x)be β x für x > a Zunächst sind A und B unbestimmt. Man ann allerdings fordern, dass sowohl die Funtion als auch ihre Ableitung eine Sprünge machen, womit man erhält. Asin(αa) = Be βa ; Funtion eine Sprünge Aαcos(αa) = Bβe βa ; Ableitung eine Sprünge d) i) Aus den Stetigeitsbedingungen folgt diret cot(αa) = β α sin (αa) = + cos (αa) sin ( αa) = β α + = V α sin(αa) = ± α V Beachtet man, dass cot(αa) < sein muss, so folgt daraus, dass nur Lösungen von sin(αa) = ± α, die im Bereich π + nπ < αa < π + nπ; n Z liegen V erlaubt sind. ii) Zeichnet man die beiden Funtionen, so erennt man, dass es erst ab bestimmten α einen Schnittpunt von sin(αa) und ± α V gibt für die cot(αa) >. Es gibt also eine ritische Tiefe. iii) Man erhält also als erste mögliche Lösung x c = π. V c = m sin(x c) = xc a = π/ V c a a V c = π Uc U c = π V c 8ma. e) Man macht sich zunächst lar, dass x = αa eine Funtion von U ist. Deshalb betrachtet man ( π ) π sin +δx = +δx a, V c +δv wobei sich die line Seite in δx entwiceln lässt, wodurch man δx π = +δx a (+ δv ), V c V c erhält. Entwicelt man die rechte Seite um δv, so erhält man (+ δx = π )( δx δv + 3 δv ) V c 8 Vc. Ausmultiplizieren ergibt δx = δv V c δv V c + π δx π δv V c δx. Leider hängt dies noch von δx ab. Wir erinnern uns deshalb daran, dass x = a V β. Entwicelt man dies um leine β und V, so erhält man δx = a δv δv δβ V c 8V 3 V c c Eingesetzt erhält man a δv 8V = δv + a δv c V c π V c a V c= π = δv V c a π δv 8V 3 c a π δβ V c

5 Sammelt man alle Terme vor δv, so sieht man Somit erhält man a π a + 3 8V c 8 Vc δβ V c = a 8V c δv a a 4πV 3 c πv 3 c = 4π 3 a 3 = 3 a V c 4π V = 4π 3 π V c Vc c = δβ = πa 8 δv V = π c 8 Schließlich, mit der Definition von β, ergibt sich δ E = π 6 Uc H5 Quantentrog in 3D Betrachten Sie die Schrödinger Gleichung mit dem Potential ( U U c U c Ψ+ m (E U(r))Ψ = V(r) = = a 8V c a V c δv V = π c 6 ) ( ) = π U 6 Uc U c für r > a U für r < a ( δv ) Vc V c. a) Schreiben Sie die Schrödinger Gleichung in Kugeloordinaten um und verwenden Sie einen geeigneten Ansatz, um den radialen Anteil der Schrödingergleichung separat betrachten zu önnen (Radialanteil der Wellenfuntion heiße R). b) Betrachten Sie das Problem für den s-zustand, d.h. l =. Wählen Sie einen Ansatz für R, der in diesem Fall die radiale Schrödinger Gleichung formal auf einen D Quantentrog reduziert. c) Welche Randbedingung stellt sich im Gegesatz zum tatsächlichen D Fall am Ort r =? Was bedeutet dies für die niedrigste Lösung? d) Was bedeutet dies für gebundene Zustände? Machen Sie sich lar, dass erst ab einer bestimmten ritischen Tiefe U c gebundene Zustände entstehen önnen. e) Wie verhält sich die Energie nahe U c? a) Wählt man den Ansatz Ψ = R(r)Y lm (θ,φ), so erhält man b) Wählt man R = χ r d r dr rdr dr l(l +) r R + m (E U(r))R = als Ansatz so erhält man für l = : d χ dr + m (E U(r))χ =. c) R(r) divergiert bei r = außer es ist gleichzeitig χ =. Bei der geraden Lösung im D Fall passiert gerade dies, weswegen man sie ausschließen muss. Bei der ungeraden Lösung sieht man mit dem Satz von L Hospital, dass der Wert von R(r) bei r = nicht divergiert, somit ist diese Lösung für das Problem zu wählen. d) Wie bereits aus dem D Fall beannt, gibt es für den ungeraden Zustand eine ritische Tiefe U = U c, ab der sich erst gebundene Zustände ausbilden önnen. Dies ist in 3D immer der Fall. e) Wie für den D Fall bei ungeraden Zuständen erhält man ( ) δ E = π U 6 Uc U c H6 Cooper-Paare und die Fermiugel In der Vorlesung wurde gezeigt, dass die Eigenwertgleichung = v ξ ǫ äquivalent zur Schrödingergleichung im Impulsraum ist, wobeiv die Wechselwirung beschreibt (v hat endliche Reichweite im Impulsraum). Zeigen Sie, dass in Anwesenheit der Fermiugel Cooper-Paare bei beliebig leiner Wechselwirung v gibt, aber dass dies ohne Fermiugel nicht gilt. Gehen Sie hierzu wie folgt vor: a) Zeigen Sie, dass max = bei onstanter Zustandsdichte und für ǫ logarithmisch divergiert (ǫ ist F ξ ǫ negativ). b) Am Rand der Fermiugel ist die Zustandsdichte etwa onstant, auch önnen Siev = v onstant annehmen. Betrachten Sie den Fall v. Warum ist die Gleichung auch in diesem Limit erfüllbar, warum also bilden sich für beliebig leine v also noch gebundene Zustände aus? Ohne Fermiugel ist die Zustandsdichte als ρ(ξ) = c ξ gegeben (freies Eletronengas ), wobei c eine für diese Aufgabe uninteressante Konstante ist. c) Zeigen Sie, dass nun max = nicht divergiert - auch für leine ǫ. ξ ǫ In diesem Fall ist ξ =, d.h., dass die Einteilchenenergie beginnend beim Nullwert, nicht beginnend m bei der Fermienergie gezählt wird

6 d) Nehmen Sie wieder v = v onstant an. Was bedeutet das Fehlen der Divergenz für die Erfüllbareit der Eigenwertgleichung und damit für die Existenz gebundener Zustände bei leinem v? a) Man ann die Summe als Integral umschreiben und erhält damit max LW ξ = ǫ = F ρ LW ξ ǫ = ρ ξ ǫ = ρ ln(ξ ǫ) ξ=l W ξ=, wobei L W die effetive Wechselwirungslänge im Impulsraum ist. Der Term divergiert also logarithmisch für leine ǫ. b) Man ann nun v ξ ǫ = v ξ ǫ schreiben. Hier ann die Summe beliebig groß gemacht werden, wenn ǫ lein ist. Man ann somit leine Werte von v ompensieren. Die Eigenwertgleichung aus der Angabe lässt sich also wegen der logarithmischen Divergenz der Summe auch für v noch erfüllen. Verwendet man die Lösung aus Teilaufgabe a) und die Näherung L W >> ǫ, folgt: = ρv ln ( LW + ǫ ǫ ) ρv ( ) ln LW ǫ bzw. ( ) LW ln = ǫ ρv ǫ = L W e ρv. c) Man hat für die Summe nun max = LW ξ ǫ = ρ LW ξ ǫ = c ξ ǫ c LW ξ ǫ = c ξ ξ ω D Für leine ǫ erhält man somit eine Konstante, die Summe divergiert also nicht. d) Man ann wieder v ξ ǫ = v ξ ǫ schreiben. Da die Summe gegen Konstanten läuft hat man für v effetiv statt der Eigenwertgleichung aus der Angabe C(v ) = dastehen, also eine nicht erfüllbare Gleichung. Somit muss ein ritisches v existieren unter dem eine gebundenen Zustände mehr möglich sind.

Theorie der Kondensierten Materie I WS 2017/2018

Theorie der Kondensierten Materie I WS 2017/2018 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theorie der Kondensierten Materie I WS 207/208 Prof. Dr. A. Mirlin, PD Dr. I. Gornyi Blatt 3 Dr. N. Kainaris, Dr. S. Rex,

Mehr

Theoretische Physik IV - Blatt 3

Theoretische Physik IV - Blatt 3 Theoretische Physi IV - Bltt 3 Christopher Bronner, Frn Essenberger FU Berlin 4.November 006 Aufgbe 5 Energieeigenfuntionen Uns ist folgendes Potentil gegeben, wobei V 0 > 0 sei: V (x) V 0 bei x [, ] V

Mehr

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie Kapitel 8 Störungstheorie 8.1 Motivation Die meisten quantenmechanischen Problemstellungen lassen sich (leider) nicht exakt lösen. So kommt zum Beispiel der harmonische Oszillator in der Natur in Reinform

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

8. Woche. 8.1 Operatoren für physikalische Größen in Ortsdarstellung. 8.2 Die Mittelwerte der Funktionen von Koordinaten und Impulsen

8. Woche. 8.1 Operatoren für physikalische Größen in Ortsdarstellung. 8.2 Die Mittelwerte der Funktionen von Koordinaten und Impulsen 8. Woche 8.1 Operatoren für physialische Größen in Ortsdarstellung Als wir die Schrödinger-Gl. betrachtet haben, haben wir die Operatoren für die Koordinaten und die Impulse definiert: Die Operatoren der

Mehr

6. Orbits und die Runge-Lenz Vektor

6. Orbits und die Runge-Lenz Vektor Übungen zur T: Theoretische Mechani, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physi.uni-muenchen.de 6. Orbits und die Runge-Lenz Vetor Übung 6.: Die Rücehr der Kanonenugel

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

Moderne Theoretische Physik IIIa WS 18/19

Moderne Theoretische Physik IIIa WS 18/19 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik IIIa WS 8/9 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 7 Dr. Stefan Rex Besprechung: 9..9.

Mehr

Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen. l=0

Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen. l=0 Vorlesung 11 Streuung bei nieigen Energien Wir haben gesehen, dass wir den Wirkungsquerschnitt als eine Summe über Partialwellen darstellen können σ = 4π k l + 1 sin δ l. 1 l= Allerdings hat diese Reihe

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n.

Aufgabe V1. Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2n n 3 b) lim. n n 7 c) lim 1 1 ) 3n. Blatt 1 V 1 Grenzwerte von Folgen Aufgabe V1 Ermitteln Sie, ob folgende Grenzwerte existieren und berechnen Sie diese gegebenenfalls. n 2 ( n! a) lim n 2n n 3 b) lim n n 7 c) lim 1 1 ) 3n n n Marco Boßle

Mehr

Klausur - Analysis 1

Klausur - Analysis 1 Prof. Dr. László Széelyhidi Analysis I, WS 22 Klausur - Analysis Lösungen Aufgabe. i Punt Definieren Sie, wann x n eine Cauchyfolge ist. Lösung : x n heisst Cauchyfolge wenn es zu jedem ε > ein N N gibt,

Mehr

FK03 Mathematik I: Übungsblatt 9 Lösungen

FK03 Mathematik I: Übungsblatt 9 Lösungen FK03 Mathematik I: Übungsblatt 9 Lösungen Verständnisfragen. Welche zwei Beispiele sind in der Vorlesung für die Anwendung von transzendenten Funktionen behandelt worden? Schnittpunktsbestimmung zwischen

Mehr

6. Die dreidimensionale Wellengleichung

6. Die dreidimensionale Wellengleichung H.J. Oberle Differentialgleichungen II SoSe 2013 6. Die dreidimensionale Wellengleichung Wir suchen Lösungen u(x, t) der folgenden AWA für die 3-D Wellengleichung u t t c 2 3 u = 0, x R 3, t 0, u(x, 0)

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz:

Analysis I Lösung von Serie 14. Um die Inhomogene DGl zu lösen, müssen wir partikuläre Lösungen finden. (a) Wir machen den Ansatz: d-infk Lösung von Serie 4 FS 07 4.. Inhomogene Lineare Differentialgleichungen Das charakteristische Polynom der homogenen DGl y (4) + y + y = 0 ist λ 4 + λ + = (λ + ). Seine Wurzeln sind ±i und jede hat

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 13.,15. und 29. Mai 2009 Transversalschwingungen

Mehr

Serie 5. Figure 1: 1.a)

Serie 5. Figure 1: 1.a) Analsis D-BAUG Dr. Cornelia Busch FS 16 Serie 5 1. Bei den folgenden Integralen ist die Reihenfolge der Integrationen umzukehren: Die innere Variable soll zur äusseren werden und umgekehrt. Wie lautet

Mehr

2m x + U(x) ψ(x) = Eψ(x),

2m x + U(x) ψ(x) = Eψ(x), 4. Woche 4.1 Beispiel der Lösung der Schrödinger-Gleichung: Das Rechteckpotential. Die stationäre Schrödinger-Gl. ist ) ( 2 2 2m x + U(x) ψ(x) = Eψ(x), 2 mit Parametern: Längenskala L, Energieskala U 0.

Mehr

Kapitel 10. Potentiale Elektronen im Potentialtopf

Kapitel 10. Potentiale Elektronen im Potentialtopf Kapitel 10 Potentiale 10.1 Elektronen im Potentialtopf Mit dem Aufstellen der Schrödinger-Gleichung ist man der realistischen Beschreibung von Quantenobjekten ein großes Stück nähergekommen. Unser Interesse

Mehr

15 Zeitabhängige Störungstheorie

15 Zeitabhängige Störungstheorie Sript zur. Vorlesung Quantenmechani Freitag den 8. Juli 11. 15 Zeitabhängige Störungstheorie 15.1 Übergangswahrscheinlicheit Betrachten wir nun den abstraten Fall eines Teilchens mit Hamilton Operator

Mehr

Kapitel 5. Aufspaltung der Energiebänder; Grenzfall fast freier Elektronen. 5.1 Allgemeines

Kapitel 5. Aufspaltung der Energiebänder; Grenzfall fast freier Elektronen. 5.1 Allgemeines Kapitel 5 Aufspaltung der Energiebänder; Grenzfall fast freier Eletronen 51 Allgemeines In diesem Abschnitt sollen fast freie Eletronen untersucht werden; es wird dabei angenommen, daß die Eletronen einem

Mehr

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund 15. Übungsblatt zur Höheren Mathematik III P/ET/AI/IT/IKT/MP WS 1/13 Aufgabe 1 Bestimmen Sie eine auf der Menge M := {x, y R x + y

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 1 Prof.. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physi 2 Lösungen zu Blatt 1 Aufgabe 1: Differentialoperatoren der Vetoranalysis (a) Aus der Definition des Nabla-Operators folgt

Mehr

Blatt 08: Reihenentwicklung

Blatt 08: Reihenentwicklung Fakultät für Physik Jan von Delft, Katharina Stadler, Frauke Schwarz T0: Rechenmethoden für Physiker, WiSe 203/4 http://homepagesphysikuni-muenchende/~vondelft/lehre/3t0/ Blatt 08: Reihenentwicklung Abgabe:

Mehr

1 Grundlagen und Definitionen

1 Grundlagen und Definitionen Die lassische Mechani beschreibt die Bewegung von Körpern und Bewegungsänderungen durch wirende Kräfte. Dies geschieht auf der Grundlage der Newtonschen Axiome (lassisch) und ist gültig im Bereich leiner

Mehr

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!.

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!. . Aufgabe (6 Punte) Zeigen Sie mit Hilfe der vollständigen Indution, dass folgende Gleichheit gilt für alle n N, n 2 n ( + )! n!. [6P] Ind. Anfang: n 2 oder l.s. ( + )! 2 r.s. 2! 2. ( + )! 2! 2! 2 2 2

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test

Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/2013 Übungen zur Theoretischen Physik 1 Lösungen zum Mathe-Test Aufgabe 1: Bruchrechnung Lösen Sie die folgenden Gleichungen nach x auf (a) x x 2 1

Mehr

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit Lösungsvorschlag Übung 8 Aufgabe : Wellenfunktion und Aufenthaltswahrscheinlichkeit a) Die Wahrscheinlichkeitsdichte ist eine Wahrscheinlichkeit pro Volumenelement. Die Wahrscheinlichkeit selbst ist eine

Mehr

Die Lösungen der S.-Glg. für das freie Teilchen

Die Lösungen der S.-Glg. für das freie Teilchen Die Lösungen der S.-Glg. für das freie Teilchen Zeitabhängige S- G l g., ħ ħ x (, (, m i = + Vrt rt Analogie zu den eletromagnetischen Wellen, Materiewellen, intuitives Raten etc. Ansatz f ü r W e l l

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Quantenmechanik II Übungsblatt 10 Solutions 7. Wenn die zeitabhängige Störung periodisch in der Zeit ist, V = αx cos(ωt), mit einer Zahl α und einem

Mehr

Harmonischer Oszillator und 3d-Schrödingergleichung

Harmonischer Oszillator und 3d-Schrödingergleichung Harmonischer Oszillator und d-schrödingergleichung Tutoren: Jinming Lu, Konrad Schönleber 7.02.09 D-Harmonischer Oszillator Für die Entwicklung der Quantenmechanik spielte der harmonische Oszillator eine

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

Ferienkurs Quantenmechanik - Probeklausur

Ferienkurs Quantenmechanik - Probeklausur Seite Ferienkurs Quantenmechanik - Sommersemester 5 Fabian Jerzembeck und Sebastian Steinbeiÿer Fakultät für Physik Technische Universität München Aufgabe FRAGEN ( BE): a) Wie lautet die zeitabhängige

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Vorlesung 18. Spontane Abstrahlung, Multipolentwicklung

Vorlesung 18. Spontane Abstrahlung, Multipolentwicklung Vorlesung 8 Spontane Abstrahlung, Multipolentwiclung Wir betrachten das Wasserstoffatom im P -Zustand. Falls wir ein Wasserstoffatom in Isolation betrachten, ist der P -Zustand stabil. Wie wir aber schon

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 10. Februar 2016 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. G. Scheithauer Klausur Mathematik I für Studierende der Fakultät Maschinenwesen Name: Matrikelnummer:

Mehr

Partielle Integration

Partielle Integration Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.

Mehr

Numerik I. Aufgaben und Lösungen

Numerik I. Aufgaben und Lösungen Universität zu Köln SS 009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, mselva@math.uni-oeln.de Numeri I Musterlösung 1. Übungsblatt, Python Aufgaben und Lösungen 1. (4 Punte Die Stichprobenvarianz

Mehr

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

ANALYSIS 2 VERSION 26. Juni 2018

ANALYSIS 2 VERSION 26. Juni 2018 ANALYSIS VERSION 6 Juni 018 LISIBACH ANDRÉ 6 Potenzreihenentwicklung 61 Einleitung Die Linearisierung einer Funktion f(x an der Stelle x ist die Funktion L(x f( + df dx ((x Die Linearisierung ist ein Polynom

Mehr

Eine Herleitung zur Dichtefunktion der Normalverteilung

Eine Herleitung zur Dichtefunktion der Normalverteilung Eine Herleitung zur Dichtefuntion der Normalverteilung Michael D. Pfeifer (michael.pfeifer@hotmail.com) 1. Februar 16 1 Einführung Die Normalverteilung ist für viele wissenschaftliche Anwendungen wesentlich.

Mehr

1 0, x C X (A). = 1 χ A(x).

1 0, x C X (A). = 1 χ A(x). Aufgabe 1 a) Wir müssen nur zeigen, dass χ A B (x) = χ A (x) χ B (x) für alle x X gilt. (Dass χ A χ B Abbildung von X in {0, 1} ist, ist klar.) Sei also x X beliebig. Fall 1: x A B. Dies bedeutet x A und

Mehr

Schein-Klausur HM II F 2003 HM II : S-1

Schein-Klausur HM II F 2003 HM II : S-1 Schein-Klausur HM II F 3 HM II : S- Aufgabe : Berechnen Sie die folgenden Grenzwerte: a) lim x ln ( + x) x b) lim (coshx) sin x Lösung: Wir verwenden in beiden Fällen die Regel von de l Hospital. a) Es

Mehr

Analysis I MATH, PHYS, CHAB. 2 k (2 k ) s = 2 k(1 s) = k=0. (2n 1) n=1. n=1. n n 2. n=1. n=1. = ζ(2) 1 4 ζ(2) = 3 4 ζ(2)

Analysis I MATH, PHYS, CHAB. 2 k (2 k ) s = 2 k(1 s) = k=0. (2n 1) n=1. n=1. n n 2. n=1. n=1. = ζ(2) 1 4 ζ(2) = 3 4 ζ(2) Prof. D. Salamon Analysis I MATH, PHYS, CHAB HS 204 Musterlösung Serie 7. Der Vollständigeit wegen, zeigen wir zunächst die Konvergenz der Reihendarstellung der ζ-funtion für s >. ζs : n n s 2 + n s 0

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I

Staatsexamen Herbst 2017 Differential- und Integralrechnung, Thema I Staatsexamen Herbst 17 Differential- und Integralrechnung, Thema I 1. a) Die Aussage ist wahr! Sei s R der Reihenwert der Reihe k=1 Da a n = s n s n 1 für n, ist also b) Die Aussage ist falsch! a k, also

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 008 Theoretische Mechanik 4. Übung Lösungen 4. Spezielle Kraftgesetze Lösen Sie die

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 4. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching June 6, 207 Erinnerung Die Reihe a k konvergiert falls, lim S n = lim n n n a k =: a k existiert. Satz (Majoranten/Minorantenkriterium)

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Modulprüfung HM III (kyb, mech, phys)

Modulprüfung HM III (kyb, mech, phys) Seite von 5 Modulprüfung HM III (kyb, mech, phys) Hinweise: Lösen Sie bitte jede Aufgabe auf einem separaten Blatt. Alle nicht in der Vorlesung behandelten Sachverhalte sind zu beweisen, Lösungsschritte

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 4 Höhere Mathematik II für die Fachrichtung Informatik Lösungsvorschläge zum. Übungsblatt Aufgabe 37

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

THEORETISCHE PHYSIK C NACHKLAUSUR Prof. Dr. J. Kühn Dienstag, 27.4.2 Dr. S. Uccirati 7:3-2:3 Uhr Bewertungsschema für Bachelor Punkte Note < 4 5. 4-5.5 4.7 6-7.5 4. 8-9.5 3.7 2-2.5 3.3 22-23.5 3. 24-25.5

Mehr

Übungen zu Analysis, SS 2015

Übungen zu Analysis, SS 2015 Übungen zu Analysis, SS 215 Ulisse Stefanelli 15. Juni 215 1 Wiederholung 1. Untersuchen Sie das Verhalten der folgenden Folgen a n = n 2 cosh(1/n), b n = ln(ln(n))/n, c n = (2 n n 2 )/n!, 2. Stellen Sie

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Musterlösung Serie 2

Musterlösung Serie 2 D-ITET Analysis III WS 13 Prof. Dr. H. Knörrer Musterlösung Serie 1. Wir wenden die Methode der Separation der Variablen an. Wir schreiben u(x, t = X(xT (t und erhalten Daraus ergeben sich die Gleichungen

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof.

Technische Universität München Lehrstuhl für Technische Elektrophysik. Tutorübungen zu Elektromagnetische Feldtheorie. (Prof. Technische Universität München Lehrstuhl für Technische Elektrophsik Tutorübungen zu Elektromagnetische Feldtheorie (Prof. Wachutka. Aufgabe: Lösung Wintersemester 208/209 Lösung Blatt 6 a Laut der Spiegelladungsmethode

Mehr

ANALYSIS FÜR INFORMATIKER ÜBUNGSBLATT WEIHNACHTSGESCHENK

ANALYSIS FÜR INFORMATIKER ÜBUNGSBLATT WEIHNACHTSGESCHENK ANALYSIS FÜR INFORMATIKER ÜBUNGSBLATT WEIHNACHTSGESCHENK Dr. J. Giannoulis, M.Sc. S. Metzler, Dipl. Math. K. Tichmann WS 00/ Trainingseinheit 0 Sript Kartieren Sie grob die Inhalte des Sripts. Welche Werzeuge,

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Basen. Inhaltsverzeichnis

Basen. Inhaltsverzeichnis Vortrag zum Seminar zur Funtionentheorie, 15.07.2009 Benjamin Laumen Diese Ausarbeitung beruht auf Kapitel III, Paragraph 4 Unterpunt 1 3 aus dem Buch: Elliptische Funtionen und Modulformen von M. Koecher

Mehr

Lösung 07 Klassische Theoretische Physik I WS 15/16

Lösung 07 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 7 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten Mathematik Rechenfertigkeiten Lösungen zu den Übungen Freitag Dominik Tasnady, Mathematik Institut, Universität Zürich Winterthurerstrasse 9, 857 Zürich Erstellt von Dr. Irmgard Bühler 9.August Integration,

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14

Übungen zur Modernen Theoretischen Physik I SS 14 Karlsruher Institut für Technologie Übungen zur Modernen Theoretischen Physik I SS 4 Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Blatt 8 Andreas Heimes, Dr. Andreas Poenicke Besprechung

Mehr

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve.

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve. PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 7 WS 007/008 0.. 007. Lenz scher Vektor. Für die Bahn eines Teilchens der Masse m im Potential U(r) = α/r definieren wir mit

Mehr

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x),

Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x), UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Elektrodynamik Übungsblatt 5 Musterlösungen 13 Aufgabe (a) Der Ausgangspunkt für diese Aufgabe sind die Maxwell-Gleichungen a ( a A b b A a ) = 4π c

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Lösungen der Übungen. zur Vorlesung HILBERTRAUM-METHODEN UND ANWENDUNGEN

Lösungen der Übungen. zur Vorlesung HILBERTRAUM-METHODEN UND ANWENDUNGEN Fachbereich Mathemati und Informati Philipps-Universität Marburg Lösungen der Übungen zur Vorlesung HILBERTRAUM-METHODEN UND ANWENDUNGEN Prof. Dr. C. Portenier Wintersemester 24/25 Fassung vom 6. Januar

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012

Analysis I Mathematik für InformatikerInnen II SoSe 12 Musterlösungen zur Prüfungsklausur vom 18. Juli 2012 Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Faultät II Institut für Mathemati Unter den Linden 6, D-0099 Berlin Prof. Andreas Griewan Ph.D. Dr. Thomas M. Surowiec Dr. Fares Maalouf

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (janvoncosel@gmx.de) Haleh

Mehr

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried

Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,

Mehr

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich)

Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 4 PD Dr. B. arozhny, P. Schad Lösungsvorschlag.

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen:

1. Aufgabe [2 Punkte] Seien X, Y zwei nicht-leere Mengen und A(x, y) eine Aussageform. Betrachten Sie die folgenden Aussagen: Klausur zur Analysis I svorschläge Universität Regensburg, Wintersemester 013/14 Prof. Dr. Bernd Ammann / Dr. Mihaela Pilca 0.0.014, Bearbeitungszeit: 3 Stunden 1. Aufgabe [ Punte] Seien X, Y zwei nicht-leere

Mehr

Blatt 11.4: Deltafunktion und Fourierreihen

Blatt 11.4: Deltafunktion und Fourierreihen Faultät für Physi R: Rechenmethoden für Physier, WiSe 215/16 Dozent: Jan von Delft Übungen: Benedit Bruognolo, Dennis Schimmel, Fraue Schwarz, uas Weidinger http://homepages.physi.uni-muenchen.de/~vondelft/ehre/15r/

Mehr

Vorlesung Stetige Verteilungen / Mathematische Behandlung

Vorlesung Stetige Verteilungen / Mathematische Behandlung B E A C D Z Faultät Verehrswissenschaften Friedrich List Professur für Verehrsströmungslehre Verehrssystemtheorie I+II (V.-Wirtschaft) Vorlesung..0 Stetige Verteilungen / Mathematische Behandlung Neufert,

Mehr

T2 Quantenmechanik Lösungen 3

T2 Quantenmechanik Lösungen 3 T2 Quantenmechanik Lösungen LMU München, WS 1/18.1. Wellenfunktion und Wahrscheinlichkeit Prof. D. Lüst / Dr. A. Schmidt-May version: 2. 11. Es seien x 1, x 2, N drei reelle Konstanten und x 2 > x 1 >.

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

14 Ljapunov-Funktionen

14 Ljapunov-Funktionen 14 Ljapunov-Funktionen 67 14 Ljapunov-Funktionen 14.1 Gradientenfelder. a Ein Vektorfeld v C 1 D, R n besitze ein Potential U C 2 D, R, d.h. es sei v = gradu. Dann ist Dvx = HUx symmetrisch, und man hat

Mehr

5. Übung zur Analysis II

5. Übung zur Analysis II Julius-Maximilians-Universität Würzburg Institut für Mathemati Prof. Dr. H. Pabel Christian Lageman, Martin Lamprecht, Ralf Winler Würzburg, den. Juni 006 5. Übung zur Analysis II Sommersemester 006 Lösungshinweise.)

Mehr