TC1 Grundlagen der Theoretischen Chemie

Größe: px
Ab Seite anzeigen:

Download "TC1 Grundlagen der Theoretischen Chemie"

Transkript

1 TC1 Grundlagen der Theoretischen Chemie Irene Burghardt Praktikumsbetreuung: Robert Binder Jan von Cosel Haleh Hashemi Haeri Claudia Grytz Vorlesung: Di 10h-12h, Fr 9h-10h Übungen: Fr 10h-11h / 13h-14h Web site: 1

2 Eigenwerte/Eigenfunktionen Eine Funktion ψ ist Eigenfunktion eines Operators Ô, wenn sie folgender Eigenwertgleichung genügt: Ôψ = ωψ wobei ω eine Zahl ist, die als Eigenwert bezeichnet wird. (Im Falle hermitischer Operatoren sind die Eigenwerte reell.) 2

3 Energie-Eigenwerte/Eigenfunktionen Lösungen der Schrödingergleichung: Ĥψ n = E n ψ n E n = {E 1,... E N } sind die erlaubten (i. Allg. diskreten) Energien des betrachteten Systems ψ n = {ψ 1,..., ψ N } sind die Energie-Eigenfunktionen 3

4 Erwartungswerte wenn sich das System nicht in einem Eigenzustand befindet, können wir nur Erwartungswerte = Mittelwerte bestimmen: Ô = dx ψ Ôψ dx ψ ψ wenn ψ = ψ n Eigenfunktion des Operators Ô mit Eigenwert ω n ist, erhalten wir: Ô = ω n wenn ψ keine Eigenfunktion des Operators Ô ist, ergibt eine Entwicklung in Eigenfunktionen {ψ n (x)}: ψ(x) = n c n ψ n (x) Ô = n c n c nω n n P n ω n 4

5 Erwartungswerte/Forts. ˆL = n W n Λ n n c n 2 Λ n = c n c n dx ψ ˆLψ n n n = dx Ψ ˆLΨ wobei Ψ = n c n ψ n 5

6 1. 1D-Potentialkasten mit unendlich hohen Wänden 2. 2D-Potentialkasten mit unendlich hohen Wänden 3. Potentialkasten mit endlich hohen Wänden 4. Harmonischer Oszillator 6

7 Explizite Lösung: Quantenwellen im Kastenpotential Schrödingergleichung: ( h 2 /2m)d 2 ψ(x)/dx 2 Eψ(x) = 0 diskrete Lösungen wg. Randbedingungen: k n = 2πn/λ, E n = h 2 k 2 n /2m 7

8 Eigenwerte & Eigenfunktionen Eigenwerte: E n = h2 k 2 n 2m = n2 π 2 h 2 2ma 2 Eigenfunktionen: ψ n (x) = ( 2 a) 1/2 sin kn x wobei k n = nπ/a Beispiel: Elektron in 0.39 nm Potentialkasten Quantisierung ist Resultat der Randbedingungen direkte Analogie zum klassischen Fall der schwingenden Saite! 8

9 Analogon: Schwingende Saite Wellengleichung (stationär): d 2 u(x)/dx 2 + k 2 u(x) = 0 diskrete Lösungen wg. Randbedingungen: k n = 2πn/λ Energie ist quantisiert 9

10 Anwendung: Polyene z.b. β-carotin Kastenlänge als Funktion der Anzahl der Doppelbindungen? 2 Elektronen pro Energieniveau (Pauliprinzip) Wie groß ist der HOMO-LUMO-Abstand? Welcher Wellenlänge entspricht dies? 10

11 Teilchen im Kasten: Ort und Impuls Ort: ψ n (x) 2 gibt die Wahrscheinlichkeit an, dass sich das Teilchen in der nten Eigenfunktion am Ort x befindet (i.e., das Teilchen ist inhärent delokalisiert) Impuls: p n = h/λ n = hk n (de Broglie). Wir könnten daher erwarten, dass das Teilchen im nten Eigenzustand einen Impuls hat, der proportional zur Wellenzahl k n ist. Allerdings stellen die Eigenfunktionen eine Kombination zweier ebener Wellen dar: ψ(x) = N sinkx = (N/2i)(e ikx e ikx ) die ihrerseits keine EF des Impulsoperators ist: ˆpψ(x) = ( h i ) d dx ψ(x) = (N/2i)( hkeikx + hke ikx ) = (N/i) hk coskx 11

12 Eigenwerte (Forts.) zum Vergleich: ψ(x) = N sinkx = (N/2i)(e ikx e ikx ) ist keine EF des Impulsoperators: ˆpψ(x) = ( h i ) d dx ψ(x) = (N/2i)( hkeikx + hke ikx ) = (N/i) hk coskx dagegen ist ψ(x) = N sinkx EF des Operators der kinetischen Energie: ˆp 2 2m ψ(x) = N d 2 e ikx ) = N 4midx 2(eikx 4m h2 k 2 (e ikx e ikx ) = h2 k 2 2m Nsinkx 12

13 Impulserwartungswert: Teilchen im Kasten Beispiel: Wie bereits gezeigt, ist ψ(x) = N sinkx = N/2i(e ikx e ikx ) keine EF des Impulsoperators. Was ist der Impuls-Erwartungswert? Wir benutzen, dass ψ(x) bereits als Überlagerung der Impuls- Eigenfunktionen ψ ± k (x) = e±ikx vorliegt: ψ(x) = N/2i(ψ + k ψ k ) die Wahrscheinlichkeiten ergeben sich daher als P + = P = N 2 /4 die Impulseigenwerte, die zu den Funktionen ψ ± k (x) gehören, sind ± hk daher lautet der Erwartungswert: ˆp = N 2 4 ( hk hk) = 0 im Mittel verschwindet der Impuls! 13

14 1. 1D-Potentialkasten mit unendlich hohen Wänden 2. 2D-Potentialkasten mit unendlich hohen Wänden 3. Potentialkasten mit endlich hohen Wänden 4. Harmonischer Oszillator 14

15 Teilchen im zweidimensionalen Kasten Wie lautet die Wellenfunktion ψ(x, y)? Wie lauten die Eigenwerte? 15

16 Teilchen im zweidimensionalen Kasten Wellenfunktionen Ψ n1,n 2 (x, y) = s 2 L 1 s 2 L 2 sin = ψ n1 (x)ψ n2 (y) ««π π n 1 x sin n 2 y L 1 L 2 E n1 n 2 = n 2 π 2 h 2 1 2mL n 2 π 2 h 2 2 2mL 2 2 zwei Quantenzahlen separable Wellenfunktion 16

17 Entartung Ĥψ n = E n ψ Gehören zu einem Eigenwert mehrere, etwa k, verschiedene Eigenfunktionen, so spricht man von k- facher Entartung E n1 n 2 = n 2 π 2 h 2 1 2mL + π 2 h 2 2 n2 2 2mL 2 17

18 1. 1D-Potentialkasten mit unendlich hohen Wänden 2. 2D-Potentialkasten mit unendlich hohen Wänden 3. Potentialkasten mit endlich hohen Wänden 4. Harmonischer Oszillator 18

19 allg. Lösung: ψ(x) = Ce αx + De αx ; α = (2m(U 0 E)/ h 2 ) 1/2 19 Potentialkasten mit endlich hohen Wänden Die Wellenfunktion befindet sich nun auch im klassisch verbotenen Bereich (Tunneleffekt) Lösungen in diesem Bereich: ( h 2 /2m)d 2 ψ(x)/dx 2 = (E U 0 )ψ(x)

20 1. 1D-Potentialkasten mit unendlich hohen Wänden 2. 2D-Potentialkasten mit unendlich hohen Wänden 3. Potentialkasten mit endlich hohen Wänden 4. Harmonischer Oszillator 20

21 Harmonischer Oszillator Klassische Mechanik potentielle Energie (V ) vs. kinetische Energie (K) werden ausgetauscht, während die Gesamtenergie (E) konstant bleibt Energie nimmt kontinuierliche Werte an 21

22 Harmonischer Oszillator Quantenmechanik 2 Ĥ = h2 2m x kx2 k = mω 2 Eigenfunktionen & Eigenwerte: ϕ n (x) = N n H n (y)exp( y 2 /2) ; y = (mω/ h) 1/2 x ; N n = (1/2 n n!π 1/2 ) 1/2 E n = hω(n ) 22

23 Harmonischer Oszillator / Forts. d 2 Ĥ = h2 2m dx kx2 k = mω 2 Definiere: ξ = r mω h x ; ɛ = 2E hω so dass: d 2 ψ(ξ) dξ 2 + (ɛ ξ 2 )ψ(ξ) = 0 Mit dem Ansatz: ψ(ξ) = e ξ2 /2 ϕ(ξ) erhält man die Hermitesche DGL: ϕ (ξ) 2ξϕ (ξ) + (ɛ 1)ϕ(ξ) = 0 23

24 Hermite-Polynome Eigenfunktionen des harmonischen Oszillators: ψ n (x) = N n H n (y)exp( y 2 /2) ; y = (mω/ h) 1/2 x ; N n = (1/2 n n!π 1/2 ) 1/2 24

25 Eigenfunktionen/Eigenwerte Eigenwerte sind äquidistant: E n = hω(n ) Nullpunktsenergie (zero point energy): E 0 = 1 2 hω 25

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Sarah Römer (roemer@em.uni-frankfurt.de) Simona Scheit (simona.scheit@googlemail.com) Juanma

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Sarah Römer (roemer@em.uni-frankfurt.de) Matthias Ruckenbauer (matruc@theochem.uni-frankfurt.de)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Sarah Römer (roemer@em.uni-frankfurt.de) Simona Scheit (simona.scheit@googlemail.com) Juanma

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Die Schrödingergleichung Wir werden in dieser Woche die grundlegende Gleichung der Quantenmechanik kennenlernen, die Schrödingergleichung. Sie beschreibt das dynamische Verhalten von Systemen in der Natur.

Mehr

6 Der Harmonische Oszillator

6 Der Harmonische Oszillator 6 Der Harmonische Oszillator Ein Teilchen der Masse m bewege sich auf der x-achse unter dem Einfluß der Rückstellkraft Fx = mω x. 186 Die Kreisfrequenz ω bzw. die Federkonstante k := mω ist neben der Masse

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (janvoncosel@gmx.de) Haleh

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Madhava Niraghatam (niraghatam@chemie.uni-frankfurt.de)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Konstantin Falahati (k.falahati@yahoo.com) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

Musterlösung 01/09/2014

Musterlösung 01/09/2014 Musterlösung 1/9/14 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 1km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

Exakte Lösungen der stationären Schrödingergleichung

Exakte Lösungen der stationären Schrödingergleichung Teil III Exakte Lösungen der stationären Schrödingergleichung Inhaltsangabe 6 Eindimensionale Probleme 43 6.1 Das Teilchen im unendlich tiefen Kasten.......... 44 6.1.1 Modell und Lösung der Schrödingergleichung...

Mehr

Ferienkurs Quantenmechanik - Probeklausur

Ferienkurs Quantenmechanik - Probeklausur Seite Ferienkurs Quantenmechanik - Sommersemester 5 Fabian Jerzembeck und Sebastian Steinbeiÿer Fakultät für Physik Technische Universität München Aufgabe FRAGEN ( BE): a) Wie lautet die zeitabhängige

Mehr

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle?

(a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? FK Ex 4-07/09/2015 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 100km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Konstantin Falahati (k.falahati@yahoo.com) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Pierre Eisenbrandt (peisenbr@theochem.uni-frankfurt.de)

Mehr

5 Der quantenmechanische Hilbertraum

5 Der quantenmechanische Hilbertraum 5 Der quantenmechanische Hilbertraum 5.1 Die Wellenfunktion eines Teilchens Der Bewegungs- Zustand eines Teilchens Elektrons zu einem Zeitpunkt t, in der klassischen Mechanik das Wertepaar r,p von Ort

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

Ferienkurs Quantenmechanik

Ferienkurs Quantenmechanik PHYSIKDEPARTMENT TECHNISCHE UNIVERSITÄT MÜNCHEN Felix Rucker, Matthias Herzog Übungsklausur 9.9. Kurze Fragen (6 Punkte) Ferienkurs Quantenmechanik Übungsklausur a) Wie ist ein quantenmechanischer Drehimpuls

Mehr

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit Lösungsvorschlag Übung 8 Aufgabe : Wellenfunktion und Aufenthaltswahrscheinlichkeit a) Die Wahrscheinlichkeitsdichte ist eine Wahrscheinlichkeit pro Volumenelement. Die Wahrscheinlichkeit selbst ist eine

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Übungen Quantenphysik

Übungen Quantenphysik Ue QP 1 Übungen Quantenphysik Kernphysik Historische Entwicklung der Atommodelle Klassische Wellengleichung 5 Schrödinger Gleichung 6 Kastenpotential (Teilchen in einer Box) 8 Teilchen im Potentialtopf

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

Die Schrödinger Gleichung

Die Schrödinger Gleichung Die Schrödinger Gleichung Eine Einführung Christian Hirsch Die Schrödinger Gleichung p. 1/16 Begriffserklärung Was ist die Schrödingergleichung? Die Schrödinger Gleichung p. 2/16 Begriffserklärung Was

Mehr

8 Das Bohrsche Atommodell

8 Das Bohrsche Atommodell 8 Das Bohrsche Atommodell 1. Einführung 1.1. Quantenmechanik versus klassische Theorien 1.2. Historischer Rückblick 2. Kann man Atome sehen? Größe des Atoms 3. Weitere Eigenschaften von Atomen: Masse,

Mehr

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten

7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7 Zwei- und Dreidimensionale Probleme in kartesischen Koordinaten 7.1 Das Teilchen im -Dimensionalen Kasten Slide 119 Das Teilchen im Kasten Das Teilchen soll sich zwischen = 0 und = L und = 0 und = L

Mehr

2m x + U(x) ψ(x) = Eψ(x),

2m x + U(x) ψ(x) = Eψ(x), 4. Woche 4.1 Beispiel der Lösung der Schrödinger-Gleichung: Das Rechteckpotential. Die stationäre Schrödinger-Gl. ist ) ( 2 2 2m x + U(x) ψ(x) = Eψ(x), 2 mit Parametern: Längenskala L, Energieskala U 0.

Mehr

Ferienkurs Theoretische Quantenmechanik 2010

Ferienkurs Theoretische Quantenmechanik 2010 Fakultät für Physik Michael Schrapp Technische Universität München Vorlesung Ferienkurs Theoretische Quantenmechanik 010 1 dimensionale Probleme Inhaltsverzeichnis 1 Die Schrödingergleichung 1.1 Wiederholung

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

8.2. Der harmonische Oszillator, quantenmechanisch

8.2. Der harmonische Oszillator, quantenmechanisch 8.. Der harmonische Oszillator, quantenmechanisch Quantenmechanische Behandlung Klassisch: Rückstellkraft für ein Teilchen der Masse m sei zur Auslenkung : 0.5 0.0 0.5 D m Bewegungsgleichung: m D F -D

Mehr

Theoretische Chemie (TC II) Computational Chemistry

Theoretische Chemie (TC II) Computational Chemistry Theoretische Chemie (TC II) Computational Chemistry Lecture 2 28/10/2011 Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Vorlesung: Mi 11h30-13h, Fr 8h-9h30 Praktikum (gemäß Ankündigung, statt Vorlesung):

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14

Übungen zur Modernen Theoretischen Physik I SS 14 Karlsruher Institut für Technologie Übungen zur Modernen Theoretischen Physik I SS 4 Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Blatt 8 Andreas Heimes, Dr. Andreas Poenicke Besprechung

Mehr

Eindimensionale Potentialprobleme

Eindimensionale Potentialprobleme Kapitel 4 Eindimensionale Potentialprobleme Wir werden nun die Schrödingergleichung in der Ortsdarstellung für einige einfache Potentialprobleme lösen. Wir betrachten ein spinloses Teilchen der Masse m,

Mehr

2 Einführung in die Prinzipien der Quantenmechanik

2 Einführung in die Prinzipien der Quantenmechanik Einführung in die Prinzipien der Quantenmechanik.1 Bedeutung von Axiomen (Postulaten) Axiome (Axiom griechisch für Grundsatz) sind Postulate, die nicht beweisbar sind, mit denen aber durch logische Folgerungen

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

Beispiele: Harmonischer Oszillator und Kastenpotential

Beispiele: Harmonischer Oszillator und Kastenpotential Beispiele: Harmonischer Oszillator und Kastenpotential Ramona Wohlleb Mathematische Strukturen der Quantenmechanik Sommersemester 011 1 Der harmonische Oszillator In Analogie zum klassischen harmonischen

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Sarah Römer (roemer@em.uni-frankfurt.de) Simona Scheit (simona.scheit@googlemail.com) Juanma

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Helium-Atom Vorlesung: Mo 10h-12h, Do9h-10h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Wintersemester 2013/2014

Vorlesung Molekülphysik/Festkörperphysik Wintersemester 2013/2014 Vorlesung "Molekülhysik/Festkörerhysik" Wintersemester 13/14 Prof. Dr. F. Kremer Übersicht der Vorlesung am 8.1.13 Die Schrödingergleichung für einen harmonischen Oszillator Die Nullunktsenergie des harmonischen

Mehr

Ferienkurs Quantenmechanik. Schrödingergleichung und Potentialprobleme

Ferienkurs Quantenmechanik. Schrödingergleichung und Potentialprobleme Seite 1 Ferienkurs Quantenmechanik Sommersemester 014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme Die Quantenmechanik

Mehr

7 Diracs Bracket-Notation

7 Diracs Bracket-Notation 7 Diracs Bracket-Notation 71 Entwicklungen nach Eigenfunktionen 711 Oszillator-Eigenfunktionen Die Oszillator-Eigenfunktionen Φ n (x), Φ n (x) = N n H ( x) n e x 2 /2a 2, N n = a 1 2 n n! πa (n = 0, 1,

Mehr

ψ(x,t) = Ae i(kx ωt) (4.5) (analog zu (2.2)) k = 2π λ e

ψ(x,t) = Ae i(kx ωt) (4.5) (analog zu (2.2)) k = 2π λ e 20 4 Einteilchen-Wellenfunktionen 4.4 Freie Teilchen Auf ein freies Elektron wirkt keine äußere Kraft. Damit ist gemäß Gleichung (1.8) das Potential V null. Die Einelektronenfunktionen sind sogenannte

Mehr

MUSTERLÖSUNG ZUR KLAUSUR PHYSIKALISCHE CHEMIE II (3.Sem)

MUSTERLÖSUNG ZUR KLAUSUR PHYSIKALISCHE CHEMIE II (3.Sem) Universität Regensburg Institut für Physikalische und Theoretische Chemie IPTC Prof. Dr. B. Dick Dr. S. A. Baeurle R. J. Kutta WS/ 006/007 MUSTERLÖSUNG ZUR KLAUSUR PHYSIKALISCHE CHEMIE II 3.Sem Aufgabe

Mehr

Vertiefende Theoretische Chemie Übungen

Vertiefende Theoretische Chemie Übungen Universität eipzig Studiengang Chemie (Bachelor) Sommersemester 5 Vertiefende Theoretische Chemie Übungen Inhaltsverzeichnis Teilchen im Kasten. Translation: Teilchen im Kasten............................................

Mehr

Erklärungen zur Vorlesung TC I

Erklärungen zur Vorlesung TC I Erklärungen zur Vorlesung TC I Sebastian Lenz Institut für Physikalische und Theoretische Chemie Goethe Universität 19. Mai 2011 Inhalt 1 Grundlagen 2 Operatoren in kartesischen Koordinaten 3 Operatoren

Mehr

Im Folgenden finden Sie den Text der am geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind

Im Folgenden finden Sie den Text der am geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind Im Folgenden finden Sie den Text der am 28.7.2010 geschriebenen Theorie D-Klausur, sowie Lösungen zu den einzelnen Aufgaben. Diese Lösungen sind unter Umständen nicht vollständig oder perfekt, und sie

Mehr

2.1 Die Heisenbergschen Vertauschungsrelationen

2.1 Die Heisenbergschen Vertauschungsrelationen Kapitel 2 Die Schrödinger-Gleichung Einführung Im Formalismus der Quantenmechanik werden Observablen z. B. Ort, Impuls oder Energie eines Teilchens im Allgemeinen nicht durch Zahlen x, p x, E, etc. oder

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen

Mehr

Quantentheorie für Nanoingenieure Klausur Lösung

Quantentheorie für Nanoingenieure Klausur Lösung 07. April 011 PD Dr. H. Kohler Quantentheorie für Nanoingenieure Klausur Lösung K1. Ja Nein Fragen (8P) Jede richtige Antwort liefert einen Punkt, jede falsche Antwort liefert einen Minuspunkt. Eine nicht

Mehr

Potentialtöpfe und Potentialbarrieren

Potentialtöpfe und Potentialbarrieren Potentialtöpfe und Potentialbarrieren Potentialtopf Potentialbarriere V V -V < V > für x < V ( x = ± V für x a für x > a Der endliche Potentialtopf: Gebundene Lösungen V(x : x > L / V ( x = V : x > L /

Mehr

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft)

k m = 2 f (Frequenz) k = 2 m gilt näherungsweise für alle Schwingungen, falls die Auslenkungen klein genug sind (ähnliches Potential ähnliche Kraft) 8. Der lineare harmonische Oszillator (1D) klass.: E = k m = f (Frequenz) x k = m U = k x = m x m größer -> ω kleiner (deuterierte Moleküle) gilt näherungsweise für alle Schwingungen, falls die Auslenkungen

Mehr

Festkörperelektronik 2008 Übungsblatt 2

Festkörperelektronik 2008 Übungsblatt 2 Lichttechnisches Institut Universität Karlsruhe TH Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik. Übungsblatt 30. April 008 10. Beugung

Mehr

4.6.1 Übergangswahrscheinlichkeit für ein Teilchen in einem Potentialtopf

4.6.1 Übergangswahrscheinlichkeit für ein Teilchen in einem Potentialtopf 4-1 4 Anwendungen 4.6 Übungen 4.6.1 Übergangswahrscheinlichkeit für ein Teilchen in einem Potentialtopf Wir werden jetzt die Übergangswahrscheinlichkeit für ein Teilchen der Masse m und der Ladung e in

Mehr

Lösungsvorschlag zum Übungsblatt Nr.4

Lösungsvorschlag zum Übungsblatt Nr.4 Lösungsvorschlag zum Übungsblatt Nr.4 Aufgabe 6 a. Die stationäre Schrödingergleichung für einen Hamiltonoperator Ĥx, y, z in drei Dimensionen lautet Ĥx, y, zψx, y, z = W ψx, y, z, 1 mit dem Energieeigenwert

Mehr

Übungen zur Physik der Materie 1 Musterlösung Blatt 4 - Quantenmechanik

Übungen zur Physik der Materie 1 Musterlösung Blatt 4 - Quantenmechanik Übungen zur Physik der Materie 1 Musterlösung Blatt 4 - Quantenmechanik Sommersemester 2018 Vorlesung: Boris Bergues ausgegeben am 03.05.2018 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen am 09.05.2018

Mehr

Harmonischer Oszillator und 3d-Schrödingergleichung

Harmonischer Oszillator und 3d-Schrödingergleichung Harmonischer Oszillator und d-schrödingergleichung Tutoren: Jinming Lu, Konrad Schönleber 7.02.09 D-Harmonischer Oszillator Für die Entwicklung der Quantenmechanik spielte der harmonische Oszillator eine

Mehr

Kapitel 10. Potentiale Elektronen im Potentialtopf

Kapitel 10. Potentiale Elektronen im Potentialtopf Kapitel 10 Potentiale 10.1 Elektronen im Potentialtopf Mit dem Aufstellen der Schrödinger-Gleichung ist man der realistischen Beschreibung von Quantenobjekten ein großes Stück nähergekommen. Unser Interesse

Mehr

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator

Ferienkurs Quantenmechanik. Zeitabhängige Schrödingergleichung und der harmonische Oszillator Seite 1 Ferienkurs Quantenmechanik Sommersemester 015 Fabian Jerzembeck und Sebastian Steinbeisser Fakultät für Physik Technische Universität München Zeitabhängige Schrödingergleichung und der harmonische

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Konstantin Falahati (k.falahati@yahoo.com) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

Lösungsvorschlag Übung 9

Lösungsvorschlag Übung 9 Lösungsvorschlag Übung 9 Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit a Die Wahrscheinlichkeitsdichte ist eine Wahrscheinlichkeit pro Volumenelement. Die Wahrscheinlichkeit selbst ist eine

Mehr

Festkörperelektronik 3. Übung

Festkörperelektronik 3. Übung Festkörperelektronik 3. Übung Felix Glöckler 02. Juni 2006 1 Übersicht Themen heute: Motivation Ziele Rückblick Quantenmechanik Aufgabentypen/Lösungsmethoden in der QM Stückweise konstante Potentiale Tunneln

Mehr

Aufgabe 2: Quantenmechanisches Modell für pseudolineare Polyene

Aufgabe 2: Quantenmechanisches Modell für pseudolineare Polyene Lösungsvorschlag Übung 10 Aufgabe 1: Ein Teilchen im eindimensionalen Kasten a Die Energiedifferenz zwischen zwei aufeinanderfolgenden Energie-Eigenwerten ist E n,n+1 = E n+1 E n ml n + 1 n 1.1 n + 1.

Mehr

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik

VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7 VL6. Elemente der Quantenmechanik I 6.1. Schrödingergleichung als Wellengleichung der Materie 6.2. Messungen in der Quantenmechanik VL7. Elemente der Quantenmechanik II 7.1. Wellenpakete als Lösungen

Mehr

Ferienkurs Quantenmechanik Sommer 2009

Ferienkurs Quantenmechanik Sommer 2009 Physikdepartment Technische Universität München Max Knötig Blatt 4 Ferienkurs Quantenmechanik Sommer 009 Quantenmechanik mit Näherungsmethoden Mehrteilchensystem(** Zwei identische Bosonen werden in einem

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Praktikumsbetreuung: Robert Binder (rbinder@theochem.uni-frankfurt.de) Jan von Cosel (jvcosel@theochem.uni-frankfurt.de)

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Wasserstoffatom Vorlesung: Mo 1h-12h, Do9h-1h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

PC III Aufbau der Materie

PC III Aufbau der Materie PC III Aufbau der Materie Kapitel 3 Einfache Anwendungen Vorlesung: http://www.pci.tu-bs.de/aggericke/pc3 Übung: http://www.pci.tu-bs.de/aggericke/pc3/uebungen Die Schrödingergleichung zeitunabhängige

Mehr

Theorie der chemischen Bindung

Theorie der chemischen Bindung Mitschrieb zur im Sommersemester 2010 gehaltenen Vorlesung Theorie der chemischen Bindung Prof. Dr. W. M. Klopper Matthias Ernst Stand: 13. April 2011 Das vorliegende Skript basiert auf der Vorlesung,

Mehr

Potentialstufen. Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen.

Potentialstufen. Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen. Potentialstufen Gebiet zerfällt in Regionen, in denen Potential konstant ist. Betrachten nun Idealisierung: Bewegung in Potentialstufen. Stetigkeit von ψ(x, ψ (x für stückweise stetiges Potential betrachte

Mehr

6.7 Delta-Funktion Potentialbarriere

6.7 Delta-Funktion Potentialbarriere Skript zur 9. Vorlesung Quantenmechanik, Montag den 6. Mai, 0. 6.7 Delta-Funktion Potentialbarriere Betrachten wir nun eine negative) δ-funktion Potentialbarriere mit dem Potential V) = v 0 δ a). V 0 a

Mehr

MUSTERLÖSUNG ZUR NACHHOLKLAUSUR PHYSIKALISCHE CHEMIE II (3.Sem)

MUSTERLÖSUNG ZUR NACHHOLKLAUSUR PHYSIKALISCHE CHEMIE II (3.Sem) Universität Regensburg Institut für Physikalische und Theoretische Chemie IPTC) Prof. Dr. B. Dick Dr. S. A. Baeurle R. J. Kutta WS/ 6/7 MUSTERLÖSUNG ZUR NACHHOLKLAUSUR PHYSIKALISCHE CHEMIE II 3.Sem) Aufgabe

Mehr

Physik IV - Schriftliche Sessionsprüfung Sommer 2009

Physik IV - Schriftliche Sessionsprüfung Sommer 2009 Physik IV - Schriftliche Sessionsprüfung Sommer 2009 9:00 11:00, Samstag, 8. August 2009, HG F1 & HG F3 Bitte zur Kenntnis nehmen: Es befinden sich insgesamt SECHS Aufgaben auf VIER SEITEN. Es können insgesamt

Mehr

Kapitel 4. Lineare Bewegungen. 4.1 Das Teilchen im eindimensionalen Kasten

Kapitel 4. Lineare Bewegungen. 4.1 Das Teilchen im eindimensionalen Kasten Kapitel 4 Lineare Bewegungen Die quantenmechanische Behandlung der Bewegung eines freien Teilchens ist in Kapitel.4 behandelt worden. Das Teilchen im eindimensionalen Kasten ist bereits im Kapitel 3 eingeführt

Mehr

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK

UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Quantenmechanik II Übungsblatt 10 Solutions 7. Wenn die zeitabhängige Störung periodisch in der Zeit ist, V = αx cos(ωt), mit einer Zahl α und einem

Mehr

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter

Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Kohärente Zustände des harmonischen Oszillators. Thomas Biekötter Seminar zur Theorie der Atome, Kerne und kondensierten Materie Kohärente Zustände des harmonischen Oszillators Thomas Biekötter 16.11.011 QUANTENMECHANISCHER HARMONISCHER OSZILLATOR 1 Klassischer harmonischer

Mehr

Grundlagen und Formalismus

Grundlagen und Formalismus Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 2014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Grundlagen und Formalismus Aufgabe 1 (*) Betrachte

Mehr

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2 3FREIETEICHEN TEICHEN IM KASTEN 17 Somit kann man z. B. a = 2/ setzen. (Man könnte auch a = e iϕ 2/ wählen, mit beliebigem ϕ.) Damit sind die Energie- Eigenzustände des Teilchens im Kasten gegeben durch

Mehr

Wigner-Funktion und kohärente Zustände

Wigner-Funktion und kohärente Zustände Wigner-Funktion und kohärente Zustände Daniel Kavajin Seminar zur Theorie der Atome, Kerne und kondensierten Materie 21.11.2012 Einleitung Ein klassischer Zustand wird durch einen Punkt im Phasenraum repräsentiert.

Mehr

Der Potentialtopf als Illustration des quantenmechanischen Eigenschaftsbegriffs 1

Der Potentialtopf als Illustration des quantenmechanischen Eigenschaftsbegriffs 1 Der Potentialtopf als Illustration des quantenmechanischen Eigenschaftsbegriffs 1 Roland Berger, Rainer Müller und Hartmut Wiesner 1 Einleitung In einem vorangegangenen Artikel [1] wurde dargelegt, daß

Mehr

Ferienkurs Quantenmechanik. Grundlagen und Formalismus

Ferienkurs Quantenmechanik. Grundlagen und Formalismus Ferienkurs Quantenmechanik Sommersemester 203 Seite Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München Grundlagen und Formalismus In der Quantenmechanik werden Zustände

Mehr

1. Klausur zur Quantenmechanik I - Lösungen

1. Klausur zur Quantenmechanik I - Lösungen Prof. U. Mosel, Dr. H. van Hees 06. Juni 2009 1. Klausur zur Quantenmechanik I - Lösungen Aufgabe 1 (10 Punkte) (a) Ein OperatorÔ ist linear, wenn für alle quadratintegrablen Wellenfunktionenψ 1,ψ 2 undλ

Mehr

Die Schrödingergleichung in zwei Dimensionen

Die Schrödingergleichung in zwei Dimensionen a Die Schrödingergleichung in zwei Dimensionen ψ(x, y) E pot 0 b Im zwei-dimensionalen Fall können wir für die Wellenfunktion ψ(x, y) einen Ansatz mit separierten Variablen machen, ψ(x, y) = f(x) (y).

Mehr

Quantenmechanik für das Lehramtsstudium Zuviel Theorie?

Quantenmechanik für das Lehramtsstudium Zuviel Theorie? Quantenmechanik für das Lehramtsstudium Zuviel Theorie? Wolfgang Kinzel WE Heraeus Seniorprofessor, Theoretische Physik, Universität Würzburg Lautrach 2017 Wolfgang Kinzel (WE Heraeus Seniorprofessor,

Mehr

Quantenmechanische Probleme in drei Raumdimensionen

Quantenmechanische Probleme in drei Raumdimensionen KAPITEL VI Quantenmechanische Probleme in drei Raumdimensionen VI. Dreidimensionaler Kastenpotential Der Vollständigkeit halber... VI. Teilchen in einem Zentralpotential In diesem Abschnitt werden die

Mehr

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip

Vorlesung 21. Identische Teilchen und das Pauli-Prinzip Vorlesung 1 Identische Teilchen und das Pauli-Prinzip Identische Teilchen: Jede Art von Teilchen in der Natur definieren wir durch ihre Eigenschaften, z.b. Massen, Spins, Ladungen usw. Das bedeutet, dass

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

14. Teilchen und Wellen

14. Teilchen und Wellen Inhalt 14.1 Strahlung schwarzer Körper 14.2 Der Photoeffekt 14.3 Der Comptoneffekt 14.4 Materiewellen 14.5 Interpretation von Teilchenwellen 14.6 Die Schrödingergleichung 14.7 Heisenberg sche Unschärferelation

Mehr

4.9 Der Harmonische Oszillator

4.9 Der Harmonische Oszillator 4.9 Der Harmonische Oszillator Zum harmonischen Oszillator gehört klassisch die Hamiltonfunktion H = p m + k x. 4.58) Damit wird z.b. näherungsweise die Bewegung von einzelnen Atomen in einem Festkörper

Mehr

10 Quantenmechanik in 3 Dimensionen

10 Quantenmechanik in 3 Dimensionen Skript zur 2. Vorlesung Quantenmechanik, Freitag den 27. Mai, 20. 0 Quantenmechanik in 3 Dimensionen 0. Freies Teilchen Die Operatoren H = ˆp 2 /2m, p x, p y, p z sind alle unter einander vertauschbar:

Mehr

X. Quantisierung des elektromagnetischen Feldes

X. Quantisierung des elektromagnetischen Feldes Hamiltonian des freien em. Feldes 1 X. Quantisierung des elektromagnetischen Feldes 1. Hamiltonian des freien elektromagnetischen Feldes Elektromagnetische Feldenergie (klassisch): Modenentwicklung (Moden

Mehr

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1

2. H Atom Grundlagen. Physik IV SS H Grundl. 2.1 . H Atom Grundlagen.1 Schrödingergleichung mit Radial-Potenzial V(r). Kugelflächen-Funktionen Y lm (θ,φ).3 Radial-Wellenfunktionen R n,l (r).4 Bahn-Drehimpuls l.5 Spin s Physik IV SS 005. H Grundl..1 .1

Mehr

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 014 Fabian Jerzembeck und Christian Kathan Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung

Mehr