1 Grundlagen und Definitionen

Größe: px
Ab Seite anzeigen:

Download "1 Grundlagen und Definitionen"

Transkript

1 Die lassische Mechani beschreibt die Bewegung von Körpern und Bewegungsänderungen durch wirende Kräfte. Dies geschieht auf der Grundlage der Newtonschen Axiome (lassisch) und ist gültig im Bereich leiner Geschwindigeiten und marosopischer großer Systeme. Historisch ist die Mechani das Ursprungsgebiet vieler anderer physialisch-technischer Disziplinen. Mit dem Lagrange-Formalismus wurde eine sehr elegante Formulierung entwicelt, die auch Ausgangspunt weiterer physialischer Theorien ist. 1 Grundlagen und Definitionen 1.1 Vetoroperationen Definition 1.1 Der Nabla-Operator ist definiert als x = y. z Definition 1.2 Der Gradient einer salaren Funtion φ ist gegeben durch grad φ = φ = xφ y φ. z φ Man beachte: φ ist ein Vetorfeld. Definition 1.3 Die Divergenz eines Vetorfeldes A ist gegeben durch Man beachte: A ist ein Salarfeld. div A = A = x A x + y A y + z A z. Definition 1.4 Die Rotation eines Vetorfeldes A ist gegeben durch y F z z F y rot A = A = z F x x F z. x F y y F z Für eine Komponente lässt sich das auch gut mit dem ɛ Tensor schreiben Man beachte: A ist ein Vetorfeld. ( A) i = ɛ ij j A 1

2 1.2 Bahnurve Die Bewegung eines Teilchens im Raum ann durch eine Bahnurve in Abhängigeit von der Zeit t beschrieben werden (Ortsvetor). r(t) = x(t) y(t) z(t) Wir definieren die Geschwindigeit v(t) und die Beschleunigung a(t) = x(t)e x + y(t)e y + z(t)e z v(t) = dr(t) a(t) = d2 r(t) 2 = ṙ(t) = r(t). Man beachte, dass es sich hierbei um totale Zeitableitungen handelt 1. Die artesischen Einheitsvetoren sind onstant e x = 1, e y = deshalb gilt die einfache Beziehung 1, e z =, 1 v(t) = ẋ(t)e x + ẏ(t)e y + ż(t)e z a(t) = ẍ(t)e x + ÿ(t)e y + z(t)e z. Für andere Koordinatensysteme ist dies nicht der Fall, wie wir gleich sehen werden. 1.3 Koordinatensysteme Im Prinzip önnen wir jedes Problem in artesischen Koordinaten lösen, allerdings ist das oft unnötig schwer. Deshalb ann man sich alternative Koordinatensysteme wählen mit einem geeigneten Set an Einheitsvetoren. Oft wählt man sich ein System was der Symmetrie des Problems angepasst ist, welches man lösen möchte. Hier stellen wir zwei häufig genutzte Koordinatensysteme vor, es wird empfohlen diese ggf. auswendig zu lernen, damit man sie jederzeit sicher anwenden ann. 1 df(φ,t) = f t + f φ φ 2

3 1.3.1 Zylinderoordinaten Wir beschreiben die Position im Raum mit einem Radius ρ in der Ebene, einem Winel φ in der Ebene und einer z Koordinate. 2 Diese Koordinaten sollte man immer verwenden wenn es ein Problem mit einer Rotationssymmetrie um eine Achse gibt. Der Ortsvetor in Zylinderoordinaten lautet ρ cos φ r(t) = ρ sin φ z = ρ(t)e ρ + z(t)e z mit den Einheitsvetoren cos φ sin φ e ρ = sin φ, e φ = cos φ, e z = 1 Wenn wir jetzt die Geschwindigeit berechnen, müssen wir auch den Einheitsvetor e ρ (φ) differenzieren. Es ergibt sich v(t) = ṙ = d (ρe ρ) + ż(t)e z = dρ e ρ + ρ de ρ +ż(t)e z }{{} Analog erhalten wir für die Beschleunigung Kugeloordinaten φ e ρ φ = ρ(t)e ρ + ρ φ(t)e φ + ż(t)e z ρ(t)e ρ + φ(t)e φ + ż(t)e z. a(t) = ( ρ ρ φ 2 )e ρ + (ρ φ + 2 ρ φ)e φ + ze z. Bei einem ugelsymmetrischen Problem (z.b. Puntmasse bewegt sich auf Erdoberfläche) bietet es sich an Kugeloordinaten zu verwenden. Der Ortsvetor lässt sich dann mit r, φ, θ schreiben r cos φ sin θ r(t) = r sin φ cos θ r cos θ = r(t)e r 2 Ohne die z-koordinate handelt es sich um Polaroordinaten, die für zweidimensionale Probleme verwendet werden önnen. 3

4 mit den Einheitsvetoren cos φ sin θ sin φ cos φ cos θ e r = sin φ sin θ, e φ = cos φ, e θ = sin φ cos θ cos θ sin θ Wir berechnen beispielhaft die Ableitung für e r und erhalten analog ė r = de r = e r ṙ + e r }{{} r φ φ + e r θ θ = = φ sin φ sin θ cos φ cos θ cos φ sin θ + sin φ cos θ } {{ } sin θe φ = sin θ φe φ + θe θ Damit ergibt sich die Geschwindigeit Näherungen ė θ = θe r + φ cos θe φ } sin θ {{ } e θ ė φ = φ (sin θe r + cos θe θ ). v(t) = ṙe r + r θe θ + r sin θ φe φ. Oft önnen wir die DGL nicht lösen aber wir önnen Näherungen vornehmen, die eine Lösung einfacher machen. Dafür ist die Annahme, dass die Variable nur leine Werte annimmt (z.b. leine Auslenungen beim Fadenpendel). Dann önnen wir Teile der Lösung mit einer Taylorentwiclung vereinfachen, indem wir nur bis zum linearen (oder quadratischen Term) entwiceln. Häufig ommen dabei folgende Situationen vor sin(x) = x 3! + x5 5! +... }{{} x Terme höherer Ordnung x3 cos(x) = 1 2! + x4 4! +... }{{} 1 Terme höherer Ordnung + x2 e x = 1 + x + x2 2! + x3 3! x (1 + x) n 1 + nx 4

5 Als Spezialfälle der letzten Gleichung ergeben sich 2 Newton sche Axiome x = (1 + x) x x = (1 + x) 1 1 x. 1. Galilei sches Trägheitsprinzip: Es gibt ausgezeichnete Koordinatensysteme, sogenannte Inertialsysteme, in denen sich ein räftefreier Körper mit onstanter Geschwindigeit bewegt, d.h. ṙ(t) = const., r =. 2. Newton sches Bewegungsgesetz: In einem Inertialsystem ist die Änderung des Impulses p dem Einwiren einer Kraft proportional und geschieht in Richtung der Kraft, d.h. dp = F mit Impuls p = mv. Die Masse ist gerade der Widerstand, den der Körper der Änderung des Bewegungszustands entgegensetzt. Meist bleibt die Masse onstant und wir schreiben m r = F. 3. Actio = Reactio : Der Kraft, mit der die Umgebung auf einen Massenpunt wirt, entspricht stets eine gleichgroße, entgegengesetzt gerichtete Kraft, mit der der Massenpunt auf seine Umgebung zurücwirt, F 12 = F 21. Kräfte zwischen zwei Massepunten wiren entlang der Verbindungslinie: r 12 F 12 =. Superpositionsprinzip: wiren n Kräfte auf einen Massepunt ein, so ist die Gesamtraft die vetorielle Summe der Einzelräfte (hiervon ann es Abweichungen geben). In der Mechani beschränen wir uns auf Kräfte, die von Ort, Geschwindigeit und Zeit abhängen (eine höheren Ableitungen) F = F(r, ṙ, t). Oft beschränt man sich auch auf eindimensionale Bewegungen. Typische Probleme sind Bewegung im Gravitationsfeld mẍ = mg Bewegung mit Reibung mẍ = γẋ Freie gedämpfte Schwingung mẍ = x γẋ Erzwungene Schwingung Es wird empfohlen sich intensiv mit diesen Problemen auseinander zu setzen. 5

6 2.1 Kochrezept: Newtonsche Axiome 1. Bestimmen der Kräfte und Aufstellen der DGL m r = F. 2. Lösen der DGL durch Integration oder mit Erhaltungsgrößen 3. Bestimmung der Integrationsonstanten durch die Anfangsbedingungen (DGL 2. Ordnung benötigt 2 Anfangsbedingungen). 4. Disussion und physialische Interpretation der Lösung 2.2 Beispiel: Freier Fall im Schwerefeld der Erde mit Reibung Anna lässt einen Ball senrecht fallen (Puntmasse m). Zur Zeit t = gilt z() = h, v() =. Auf den Ball wiren das Schwerefeld der Erde und eine Reibungsraft F R = γv (Luftwiderstand). Lösung Da der Ball senrecht nach unten fällt handelt es sich um eine eindimensionale Bewegung r(t) =. z(t) Wir brauchen also nur die Differentialgleichung für z zu betrachten. Auf den Ball wiren die Schwerraft F g = mg und die Reibungsraft F R = γv. Damit lautet die Differentialgleichung m z = mg γż. Um diese zu lösen setzen wir v = ż und gehen über zu einer DGL 1. Ordnung. m v = mg γv. Diese önnen wir durch Trennung der Variablen lösen dv = g γ m v v dv t 1 + γ = g mg }{{ v } Anfangsbedingung eingesetzt ( ) mg γ ln 1 + γ mg v = gt 1 + γ mg v =e γ m t v = mg γ ( 1 e γ m t). 6

7 Dabei haben wir die Anfangsbedingung v() = verwendet. Erneute Integration liefert uns z(t). dz(t) = mg γ (1 e γ m t) ( z(t) = m2 g γ 1 e γ 2 m t) mg γ t + h Dabei wurde die Anfangsbedingung z() = h verwendet. Im Unterschied zum freien Fall hängen sowohl z(t) als auch die Geschwindigeit von der Masse des Balls ab. Für t ergibt sich ein Gleichgewicht und es stellt sich die Grenzgeschwindigeit mg lim v(t) = t γ ein. Man beachte: Da die Reibungsraft nicht onservativ ist, ann man das Problem nicht mit dem Energierhaltungssatz lösen. 2.3 Beispiel: Harmonischer Oszillator Wir betrachten einen Ball der Masse m der an einer Feder hängt. Zur Zeit t = wird am Ball gezogen und die Feder um die Strece x gedehnt. Bestimme die Trajetorie x(t). Lösung Die DGL für die eindimensionale Bewegung lautet mẍ = x. Wir machen den Lösungsansatz x(t) = Ae αt und setzen dies ein mα 2 Ae αt = Ae αt α = ±i m. Die Lösung lautet also x(t) = Ae i m t + Be i m t. Wir bestimmen A und B durch die Anfangsbedingungen x() = x, ẋ() =. ẋ() = i m A i m B = A = B 7

8 Dies setzen wir ein und benutzen die zweite Anfangsbedingung Damit ergibt sich x(t) = x 2 x() = 2A = x ( A = x 2 e i ( = x cos m t + e i ) m t ) m t Der Ball führt also eine Schwingungsbewegung aus. 3 Erhaltungssätze Eine Erhaltungsgröße ist eine physialische Größe des Systems, deren Wert sich nicht mit der Zeit ändert. Wir werden später den Zusammenhang zwischen Erhaltungsgrößen und den Symmetrien eines Systems betrachten. Es gilt 3.1 Impulserhaltung da = A = const. Wirt auf ein Teilchen eine resultierende Kraft F =, so folgt aus dem 2. Newton schen Axiom diret dp =. Damit ist der Impuls p = const. eine Erhaltungsgröße. Dies ann genauso für einzelne Komponenten von p betrachtet werden. 3.2 Drehimpulserhaltung Der Drehimpuls L ist gegeben durch L = r p und das Drehmoment M durch Es gilt M = r F. dl = M. 8

9 Verschwindet das Drehmoment, so gilt Drehimpulserhaltung M = dl = L = const. Für Zentralräfte gilt F r (vgl. Übungen). Dann gilt und es folgt die Drehimpulserhaltung. 3.3 Energieerhaltung M = r F r r = Die Arbeit W, die beim Zurüclegen eines Weges C in einem Kraftfled F(r) geleistet wird ist gegeben durch W = F(s)ds. Definition 3.1 Für eine Kraft F(r) sind folgende Aussagen äquivalent F ist onservativ Es existiert ein Potential U(r) sodass F(r) = U(r) F(r) = C Die zwischen zwei Punten P 1 und P 2 verrichtete Arbeit ist unabhängig vom Weg bzw. die Arbeit über einen beliebigen geschloßenen Weg ist =. F(r)ds = U(r 2 ) U(r 1 ) C F(r)ds = Für onservative Kraftfelder ist die Energie E = T + U eine Erhaltungsgröße mit T = 1 2 mṙ2. Damit ergibt sich ein weiterer Lösungsansatz um die Trajetorie zu bestimmen E = 1 2 mṙ2 + U(r) 2(E U(r) ṙ = m dr 2(E U(r)) = m dr = 2(E U(r)) m 9

10 3.4 Beispiel: Bewegung im Zentralpotential Wir betrachten die Bewegung einer Puntmasse im Zentralpotential V (r) = V (r). Es gilt Energieerhaltung und Drehimpulserhaltung E = 1 2 mṙ2 + V (r) = const. Die Drehimpulserhaltung folgt aus der Form des Zentralpotentials. Wir legen also das Koordinatensystem sodass die z-achse in Richtung des Drehimpulsvetors zeigt. Dann findet die Bewegung in der Ebene senrecht dazu statt und wir önnen Zylinderoordinaten verwenden. In Zylinderoordinaten berechnen wir L Dies önnen wir nach φ auflösen. L = mr ṙ = m re }{{} r (ṙe r + r φe φ ) }{{} =r =ṙ = mr 2 φez In Zylinderoordinaten gilt φ = L mr 2 ṙ 2 = ṙ 2 + r 2 φ2. Nun setzen wir diese beiden Beziehungen in die inetische Energie ein E = 1 2 mṙ2 + V (r) = 1 2 m(ṙ2 + r 2 φ2 ) + V (r) = 1 2 mṙ2 + L2 2mr 2 + V (r) = 1 2 mṙ2 + U eff (r) Wir önnen alle Zentralpotentialprobleme auf diese Art mit dem effetiven Potential U eff (r) umschreiben. 1

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Vorlesung 1 Klassische Mechanik des Massenpunktes und Bezugssysteme Steen Maurus, Diana Beyerlein, Markus Perner 5.03.2012 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpuntes

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

VORBEREITUNG AUF DAS ABITUR

VORBEREITUNG AUF DAS ABITUR VORBEREITUNG AUF DAS ABITUR 9.5 Sinus- und Kosinusfuntionen 9.5. Bleib fit in Sinus- und Kosinusfuntionen. a) Die. Koordinate eines Puntes P ann diret in den Graphen übertragen werden. r = b) Die. Koordinate

Mehr

Blatt 5. - Lösungsvorschlag

Blatt 5. - Lösungsvorschlag Fautät für Physi der LMU München Lehrstuh für Kosoogie, Prof Dr V Muhanov Übungen zu Kassischer Mechani (T) i SoSe Batt 5 - Lösungsvorschag Aufgabe 5 Binäres Sternsyste a) Wieviee Freiheitsgrade hat das

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Praktikumsbericht: Stoßgesetze 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Die Zykloide 4 2. Das Trägheitsmoment

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler Mechanik: befasst sich mit der Bewegung von Körpern und der Einwirkung von Kräften. Wir unterscheiden: Kinematik: beschreibt die Bewegung von Körpern, Dynamik: befasst sich mit Kräften und deren Wirkung

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK?

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK? Impulsstrom Achim Rosch, Institut für Theoretische Physik, Köln zwei Fragen: Belegt das Gutachten wesentliche fachliche Fehler im KPK? Gibt es im Gutachten selbst wesentliche fachliche Fehler? andere wichtige

Mehr

Die Keplerschen Gesetze

Die Keplerschen Gesetze Die Keplerschen Gesetze Franz Embacher Fakultät für Physik der Universität Wien Didaktik der Astronomie, Sommersemester 009 http://homepage.univie.ac.at/franz.embacher/lehre/didaktikastronomie/ss009/ 1

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 5 8 Aus ontinuierlichem Signal werden in onstanten Zeitintervallen Daten entnommen ontinuierliches Signal x(t) Einheitsimpulsfuntion Gewichtete

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

mentor Abiturhilfe: Physik Oberstufe Weidl

mentor Abiturhilfe: Physik Oberstufe Weidl mentor Abiturhilfen mentor Abiturhilfe: Physik Oberstufe Mechanik von Erhard Weidl 1. Auflage mentor Abiturhilfe: Physik Oberstufe Weidl schnell und portofrei erhältlich bei beck-shop.de DIE ACHBUCHHANDLUNG

Mehr

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung.

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung. Energieerhaltung Energieerhaltung für rollende Kugel W ges = W pot + W kin + W rot h Trägheitsmoment: θ = r 2 dd θ Ist abhängig von Form des Körpers 75 Kräfte Gesamtkraft F : Vektorsumme der Einzelkräfte

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie - 43-2.3 Arbeit und Energie 2.3.1 Motivation und Definition Prinzipiell kann man mit den Newton'schen Axiomen die Bewegung von Massenpunkten wie auch Systemen von Massenpunkten beschreiben. In vielen Fällen

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Inhaltsverzeichnis. Inhalt. Vorbemerkung... 9. 1 Einleitung

Inhaltsverzeichnis. Inhalt. Vorbemerkung... 9. 1 Einleitung Inhalt Inhaltsverzeichnis Vorbemerkung... 9 1 Einleitung 1.1 Gegenstand der Physik... 11 1.2 Teilgebiete der Physik... 14 1.3 Maßsysteme, Einheiten und physikalische Größen... 15 1.3.1 Grober Überblick

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider 1 Inhaltsverzeichnis 1 Hamilton Mechanik 3 1.1 Newton Mechanik.......................... 3 1.2 Lagrange............................... 3 1.3

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

Semidiskretisierung der PDA-Systeme

Semidiskretisierung der PDA-Systeme Kapitel 4 Semidisretisierung der PDA-Systeme Eine Möglicheit zur numerischen Behandlung von Anfangsrandwertproblemen partieller Differentialgleichungen ist die Linienmethode method of lines, MOL, vgl.

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls un Drehimpuls es elektromagnetischen Feles 8.1 Energie In Abschnitt.5 hatten wir em elektrostatischen Fel eine Energie zugeornet, charakterisiert urch ie Energieichte ω el ɛ 0 E. (8.1

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN)

Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN) Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN). Einleitung Kraftmaschinen geben ihre Arbeit meistens durch rotierende Wellen ab. Die Arbeit, die pro Zeiteinheit über die

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 Kapitel 5: Elektrisches Strömungsfeld 5 Elektrisches Strömungsfeld 5.1 Definition des Feldbegriffs 5. Das elektrische Strömungsfeld 3 5..1 Strömungsfeld in einer zylindrischen

Mehr

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Die grundlegenden Gesetze der Physik sind Verallgemeinerungen (manchmal auch Extrapolationen) von hinreichend häufigen und zuverlässigen

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Physikalische Formelsammlung

Physikalische Formelsammlung Physikalische Formelsammlung Gleichförmige Bahnbewegung und Kreisbewegung Bewegungsgleichung für die gleichförmige lineare Bewegung: Winkelgeschwindigkeit bei der gleichmäßigen Kreisbewegung: Zusammenhang

Mehr

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement Kapitel 4 Arbeit und Energie 4.1 Ein Ausflug in die Vektoranalysis 4.1.1 Linienelement Das Linienelement dr längs einer Kurve im Raum lautet (Siehe Abb. 4.1): ds dr = d dy dz (4.1) y dr d dy dz z Abbildung

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Nichtlineare Beobachter: Kollisions- und Fehlerdetektion. Regelungstechnische Methoden in der Robotik

Nichtlineare Beobachter: Kollisions- und Fehlerdetektion. Regelungstechnische Methoden in der Robotik Nichtlineare Beobachter: ollisions- und Fehlerdetetion Motivation Sichere, zuverlässige physische Mensch-Roboter Interation Erhöhung der Reglerperformanz z.b. Bahngenauigeit oder Nachgiebigeit durch Reibungsompensation

Mehr

Dieter Suter - 228 - Physik B

Dieter Suter - 228 - Physik B Dieter Suter - 228 - Physik B 4.5 Erzwungene Schwingung 4.5.1 Bewegungsgleichung In vielen Fällen schwingt ein Syste nicht frei, sondern an führt ih von außen Energie zu, inde an eine periodische Kraft

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Darstellungsformen einer Funktion

Darstellungsformen einer Funktion http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand)

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand) l. Kinematik in der Mechatronik Ein tpisches mechatronisches Sstem nimmt Signale auf, verarbeitet sie und gibt Signale aus, die es in Kräfte und Bewegungen umsett. Mechanische Struktur Leistungsteil phsikalische

Mehr

Grundlagen der Biomechanik. Ewa Haldemann

Grundlagen der Biomechanik. Ewa Haldemann Grundlagen der Biomechanik Ewa Haldemann Was ist Biomechanik 1 Unter Biomechanik versteht man die Mechanik des menschlichen Körpers beim Sporttreiben. 2 Was ist Biomechanik 2 Bewegungen entstehen durch

Mehr

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt 9 8. Wärmelehre 8. emperatursala Wärmeenergie: emperatur: inetische und potentielle Energie, die ein System bei emperaturänderung aunimmt oder abgibt Maß ür mittlere inetische Energie eines Systems (im

Mehr

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n 2 Ele kt rom agnetis c he Sc hwingunge n und We lle n 2.1 Ele kt rom agnetis c he Sc hwingunge n 2.1.1 Kapazit ive r und indukt ive r Wide rs t and In einem Gleichstromkreis hängt die Stromstärke, sieht

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Experimentalphysik I: Lösung Übungsklausur

Experimentalphysik I: Lösung Übungsklausur Experimentalphysik I: Lösung Übungsklausur 3. Januar 1 1 (5 Punkte) Eine Punktmasse, welche sich zum Zeitpunkt t = am Koordinatenursprung befindet, bewegt sich mit der Geschwindigkeit v = α cos t δ βt

Mehr

Energieerhaltung. 8.1 Konservative und nichtkonservative Kräfte... 211 8.2 Potenzielle Energie... 213

Energieerhaltung. 8.1 Konservative und nichtkonservative Kräfte... 211 8.2 Potenzielle Energie... 213 Energieerhaltung 8. Konservative und nichtkonservative Kräfte... 2 8.2 Potenzielle Energie... 23 8 8.3 Mechanische Energie und ihre Erhaltung... 28 8.4 Anwendungen des Energieerhaltungssatzes der Mechanik...

Mehr

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt.

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt. PARAMETERFUNKTIONEN Zwei Beispiele: gsave currentpoint translate 21 4 div setlin 1 1 x = 2t 2 1 y = t < t

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Klausur zur Vorlesung E1 Mechanik (6 ECTS)

Klausur zur Vorlesung E1 Mechanik (6 ECTS) Ludwig Maximilians Universität München Fakultät für Physik Klausur zur Vorlesung E1 Mechanik WS 2013/2014 17. Feb. 2014 für Studierende im Lehramt und Nebenfach Physik (6 ECTS) Prof. J. Rädler, Prof. H.

Mehr

=N 2. 10 Induktivität

=N 2. 10 Induktivität 10 Induktivität Fließt in einem Leiterkreis ein zeitlich veränderlicher Strom, so erzeugt dieser ein zeitlich veränderliches magnetisches Feld. Dieses wiederum wird in einem Nachbarkreis eine Spannung

Mehr

Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Mathematik. Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik

Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Mathematik. Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni 0 Übergang Klasse 0/E (G9) und Klasse 9/E (G8) Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik. Lineare

Mehr

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM. MICHELSON-Interferometer. Sebastian Finkel Sebastian Wilken

PROTOKOLL ZUM ANFÄNGERPRAKTIKUM. MICHELSON-Interferometer. Sebastian Finkel Sebastian Wilken PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK MICHELSON-Interferometer Sebastian Finel Sebastian Wilen Versuchsdurchführung: 5. Juli 6 . Inhalt. Einleitung. Theoretischer Teil.. Interferenz von zwei ebenen Wellen

Mehr

O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik

O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik W eierstraß-institut für Angew andte Analysis und Stochastik Robotik-Seminar O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik Mohrenstr 39 10117 Berlin rott@wias-berlin.de

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

FB Elektrotechnik, Praktikum Sensorik. Versuch Beschleunigungssensoren

FB Elektrotechnik, Praktikum Sensorik. Versuch Beschleunigungssensoren 30.03.07 FB Eletrotechni, Pratium Sensori Versuch Beschleunigungssensoren 1. Versuchsziele 2. Versuchsvorbereitung 2.1 Grundlagen der Beschleunigungssensori In der nebenstehenden Abbildung ist das Prinzip

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

A. Kräfte und Bewegungsgleichungen (19 Punkte) Name: Vorname: Matr. Nr.: Studiengang: Platz Nr.: Tutor:

A. Kräfte und Bewegungsgleichungen (19 Punkte) Name: Vorname: Matr. Nr.: Studiengang: Platz Nr.: Tutor: Prof. Dr. Sophie Kröger Prof. Dr. Gebhard von Oppen Priv. Doz. Dr. Frank Melchert Dr. Thorsten Ludwig Cand.-Phys. Andreas Kochan A. Kräfte und Bewegungsgleichungen (19 Punkte) 1. Was besagen die drei Newtonschen

Mehr

Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie

Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie Tipler-Mosca 6. Arbeit und Energie 6.1 Arbeit und kinetische Energie (Work and kinetic energy) 6. Das Skalarprodukt (The dot product) 6.3 Arbeit und Energie in drei Dimensionen (Work and energy in three

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik

Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik Mechanik und ihre mathematischen Methoden Frank Stallmach Institut für Experimentelle Physik I Vortrag während des LiT.Shortcuts Aktivierung

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik

Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik Von Torsten Pieper Mannheim 11. November 2013 Zusammenfassung

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Gefesselte Masse. Jörg J. Buchholz 23. März 2014

Gefesselte Masse. Jörg J. Buchholz 23. März 2014 Gefesselte Masse Jörg J. Buchholz 23. März 204 Einleitung In Abbildung ist eine Punktmasse m dargestellt, die sich, von einem masselosen starren tab der Länge l gefesselt, auf einer Kreisbahn bewegt. Dabei

Mehr

Der Kostenverlauf spiegelt wider, wie sich die Kosten mit einer Änderung der Ausbringungsmenge (z.b. produzierte Stückzahl) ändern.

Der Kostenverlauf spiegelt wider, wie sich die Kosten mit einer Änderung der Ausbringungsmenge (z.b. produzierte Stückzahl) ändern. U2 verläufe Definition Der verlauf spiegelt wider, wie sich die mit einer Änderung der Ausbringungsmenge (z.b. produzierte Stüczahl) ändern. Variable Die variablen sind in der betriebswirtschaftlichen

Mehr

Reales Gas und kritischer Punkt Seite 1

Reales Gas und kritischer Punkt Seite 1 Reales Gas und ritischer Punt Seite 1 1. Aufgabenstellung 1.1. Die Isothermen des realen Gases Schwefelhexafluorid ( SF 6 ) sind verschiedene Temperaturen aufzunehmen und gemeinsam in einem p() -Diagramm

Mehr