Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand)

Größe: px
Ab Seite anzeigen:

Download "Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand)"

Transkript

1 l. Kinematik in der Mechatronik Ein tpisches mechatronisches Sstem nimmt Signale auf, verarbeitet sie und gibt Signale aus, die es in Kräfte und Bewegungen umsett. Mechanische Struktur Leistungsteil phsikalische Größen Sensoren (Erfassung phsikalischer Größen) Meßwertverarbeitung Meßwerte Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Rückmeldungen (Lage, Bewegungsustand) Stellgrößen Bewegungen Aktoren (lineare oder rotatorische Antriebe) Getriebe und Führungen Kräfte oder Bewegungen Grundstruktur eines mechatronischen Sstems Will man die Bewegungen eines mechatronischen Sstems, das häufig aus einer Vielahl mechanischer und elektrischer Bauteile besteht, beschreiben, so können die Methoden der Kinematik eingesett werden. Die Bewegungsvorgänge in der Mechatronik werden vorwiegend durch rotatorische Antriebe realisiert. Die einelnen Antriebsachsen sind dabei über Drehgelenke und Stäbe gekoppelt. Elektrische Maschine und Getriebe bilden häufig als Getriebemotor den Antrieb.. Kinematik in der Ebene Beim translatorischen Bewegungsablauf müssen der Weg s, die Geschwindigkeit v und die Beschleunigung a durch Rotationsbewegungen der einelnen Antriebselemente wie Drehwinkel, Winkelgeschwindigkeit und Winkelbeschleunigung bw. realisiert werden. P(,) -Achsenantrieb in der -Ebene l Für den -Achsenantrieb gilt nachfolgender Arbeitsbereich: l - l + l + l G. Schenke,.0 Mechatronik FB Technik, Abt. E+I

2 Durch die Geometrie ist der Weg mit seinen -Komponenten gegeben. l cos + l cos ( + ) (.) l sin + l sin ( + ) Die Geschwindigkeit mit den Komponenten und ist die. Ableitung des Weges nach der Zeit. l sin l ( + ) sin ( + ) (.) l cos l ( + ) cos ( + ) Die Beschleunigung mit den Komponenten und ist die. Ableitung des Weges nach der Zeit. l sin l ( + ) sin ( + ) l cos l ( + ) cos ( + ) l cos l ( + ) cos ( + ) l sin l ( + ) sin ( + ) Für die Dimensionierung des Antriebes für jede Achse sind das entsprechende Widerstandsmoment M W ), die Winkelgeschwindigkeit, die Winkelbeschleunigung und das Massenträgheitsmoment J() (beogen auf die jeweilige Achse) erforderlich. Da das Massenträgheitsmoment J() vom Drehwinkel abhängt, ist es während des Bewegungsvorganges auch eitabhängig. Das Antriebsdrehmoment M der jeweiligen Achse muss eakt nach Gl.. berechnet werden. d dj( ) M M W ( ) + J( ) + (.) dt dt Das Massenträgheitsmoment J() wird mit Hilfe des Steiner schen Sates berechnet. Für die Dimensionierung von Antrieben in der Mechatronik ist häufig nur das größte Antriebsdrehmoment von Interesse. Hieraus können die größten Winkelbeschleunigungen bei maimaler Nutlast bw. abhängig von der Nutlast berechnet werden. Im Allgemeinen bestimmen die Beschleunigungsmomente die maimalen Antriebsdrehmomente in der Mechatronik. Aus Gl.. kann unächst der Drehwinkel und anschließend der Drehwinkel berechnet werden. Aus Gl.. können bei bekannten Drehwinkeln und die Winkelgeschwindigkeiten und berechnet werden. Für Servoantriebe sind damit die Lage (Drehwinkel ) und die Drehahl n (Winkelgeschwindigkeit ) bestimmt. Für die maimale Antriebsleistung der Servoantriebe (Dimensionierung des Servoantriebes) müssen usätlich die maimalen Winkelbeschleunigungen und aus Gl.. ermittelt werden.. Kinematik im Raum Im Newton schen Grundgeset m a F präsentiert die Kraft F die Kinetik des Sstems, die Masse m die Trägheit und die Beschleunigung a die Kinematik. Die Bewegung eines realen Sstems ist vollständig beschrieben, wenn der Ortsvektor r (t) für alle Sstemteile bestimmt ist. Für die meisten technischen Ssteme muss diese Aufgabe nur näherungsweise durch Modelle gelöst werden. Das einfachste Modell eines Körpers ist der Massenpunkt. Die aktuelle Position eines Massenpunktes u einem Zeitpunkt t ist durch nachfolgenden Ortsvektor gegeben: r(t) (t) e + (t) e + (t) e (.5) (.) G. Schenke,.0 Mechatronik FB Technik, Abt. E+I 5

3 P (t) r (t) P (t + t) e r (t) (t) r (t + t) Bewegung eines Massenpunktes P in einem kartesischen Koordinatensstem e 0 e Die aktuelle Position auf der Bahnkurve, (t) die der Massenpunkt im Raum beschreibt, ergibt sich u einem Zeitpunkt t + t als (t) der Ortsvektor r (t t), der gegenüber r (t) einen Zuwachs um r (t) aufweist. Die drei Einheitsvektoren e, e und estehen senkrecht aufeinander. Das kartesische Koordinatensstem wird als im Raum ruhend oder geradlinig gleichförmig bewegt angenommen. In einem kartesischen Koordinatensstem (Inertialsstem) sind die Einheitsvektoren von der Zeit unabhängig, deren Ableitungen nach der Zeit sind gleich Null. In Matrienschreibweise gilt für den Ortsvektor r (t): (t) r(t) (t) (t) Durch Ableitung des Ortsvektors r (t) Massenpunktes P auf der Bahnkurve. nach der Zeit erhält man die Geschwindigkeit (.6) v (t) des v(t) (t) e + (t) e + (t) e (t) (t) (t) (.7) Durch Ableitung der Geschwindigkeit v (t) erhält man die Beschleunigung a (t): (t) a(t) (t) e + (t) e + (t) e (t) (.8) (t) Der Geschwindigkeitsvektor tangiert stets die Bahnkurve und kann auch in einem sog. natürlichen Koordinatensstem dargestellt werden. G. Schenke,.0 Mechatronik FB Technik, Abt. E+I 6

4 e b e t a s at Mitbewegtes, natürliches Koordinatensstem Bahnkurve e e r (t) 0 e e n r (t) a a n r (t + t) Im natürlichen Koordinatensstem ist ein dem Massenpunkt begleitendes orthogonales Dreibein mit den Koordinatenachsen t, n und b, die die sog. Schmiegungsebene festlegen. Hierbei ist t die Tangentenrichtung in der Schmiegungsebene, n ist die Normalenrichtung in der Schmiegungsebene und b ist die Binormalenrichtung senkrecht u t und n. Im natürlichen Koordinatensstem gilt: d r(t) d r ds v(t) et v dt ds dt (.9) Dabei ist e t der Tangenteneinheitsvektor. Der Betrag der Geschwindigkeit ist: ds v v dt v + v + v + + In natürlichen Koordinaten ausgedrückt beträgt die Beschleunigung: d dv det a(t) (et v) et + v dt dt dt (.0) (.) Für die Ableitung des Einheitsvektors in Tangentenrichtung nach der Zeit gilt: det det ds det d v en v en v (.) dt ds dt ds ds R Der Beschleunigungsvektor a (t) liegt immer in der Schmiegungsebene. Seine Komponenten in Tangential- und Normalrichtung heißen Tangential- und Normalbeschleunigung. v a(t) v et + en a t + a n (.) R R ist der Krümmungsradius der Bahnkurve. Die Normalbeschleunigung ist stets um Krümmungsmittelpunkt M gerichtet, also immer eine Zentripetalbeschleunigung. Für den Betrag der Beschleunigung gilt: + a + a v v + a t + a n a a a R (.) G. Schenke,.0 Mechatronik FB Technik, Abt. E+I 7

5 Die Bewegung des starren Körpers im Raum kann beschrieben werden, wenn die Lage von wei beliebigen Punkten P und P des starren Körpers verfolgt wird. Die voneinander abhängigen Ortsvektoren r und r erfordern sechs Koordinatenangaben. Die Lage des starren Körpers im Raum wird häufig durch die drei Koordinaten eines Punktes des Starrkörpers in einem Beugssstem und drei Winkelangaben beschrieben. Die Winkel geben die Verdrehung der Achsen eines körpereigenen Koordinatensstems, u den Achsen des ortsfesten Beugssstems an, und war für den betrachteten Punkt. Man beeichnet die drei kartesischen Koordinaten des Punktes P im Beugssstem auch als Position des Punktes und die drei Winkelkoordinaten als Orientierung des Punktes des starren Körpers. Die Absolutbewegung eines Starrkörpers wird durch vektorielle Überlagerung der Führungsbewegung (Position) und der Relativbewegung (Orientierung) ermittelt. Die einfachste räumliche Bewegung erfolgt mit drei linearen Achsen, die orthogonal aufeinander stehen. Durch die reine Translation im Raum verändert sich nur die Position P. Die Bewegung kann mit den Gleichungen.5 bis.8 berechnet werden. Mit Linearantrieben oder Laufkränen mit Laufkranbrücke, Laufkrankate und Laufkranhubwerk werden diese Bewegungen technisch realisiert. Der durch keine Bindungen gefesselte starre Körper hat im Raum 6 Freiheitsgrade. Um seine Lage eindeutig u beschreiben sind daher 6 Koordinatenangaben erforderlich. Häufig sind die Bewegungsmöglichkeiten von einer Kette von starren Körpern durch Bindungen an vorgegebene Bahnen oder durch Fiierung einelner Punkte der Kette eingeschränkt. Bei einem aus verschiedenen starren Körpern bestehenden Mehrkörpersstem kann jeder einelne Körper solchen Bindungen unterworfen sein, außerdem können sie untereinander gekoppelt sein. Diese Kopplungen können starr (Gelenke, Stäbe) oder nicht starr (elastische Federn) sein. Kopplungen, die nicht starr sind schränken die Anahl der Freiheitsgrade des Einelkörpers nicht ein, es wirken aber über die Kopplungselemente Kräfte wischen den Körpern, die bei Problemen in der Kinetik berücksichtigt werden müssen. Starre Kopplungen (kinematische Kopplungen) schränken die Anahl der Freiheitsgrade ein, da wischen den Koordinaten, welche die Lage der Körper beschreiben, feste Beiehungen, sog. Zwangsbedingungen, bestehen. Die Anahl der Koordinaten, die dann mindestens erforderlich ist, um die Lage eines Sstems starrer Körper u beschreiben, entspricht der Anahl der Freiheitsgrade des Sstems. Besteht ein Roboterarm aus l einer kinematischen Kette l von Einelkörpern (Glieder), die jeweils durch ein Drehgelenk miteinander gekop- pelt sind, so hat jeder Einelkörper aufgrund der Ein- l schränkung der Bewegungsmöglichkeit auf eine Rota- l tion nur einen Freiheitsgrad. l 0 0, 0, 0 P (,, ) 5 Roboterarm als kinematische Kette mit 5 Freiheitsgraden G. Schenke,.0 Mechatronik FB Technik, Abt. E+I 8

6 (l l 0 l l cos sin + l + l cos ( sin ( + + ) l ) l cos ( sin ( (l l cos + l cos ( + ) l cos ( + )) sin Abhängig von der Zeit kann ein Punkt P im Raum mit den Koordinaten,, durch den Ortsvektor r (t) beschrieben werden. Da mit dem 5-Achsen-Roboter nur 5 Freiheitsgrade ur Verfügung stehen, können neben den Raumkoordinaten P(,, ) im Arbeitsbereich nur wei von drei Orientierungen im Raum erreicht werden. Es sind dieses die Orientierungen + + und 5. Mit den Gl..5 und.5 bw..6 erhält man den Ortsvektor. Die Geschwindigkeit v (t) erhält man entsprechend Gl..7 und die Beschleunigung a (t) entsprechend Gl..8. Das Antriebsdrehmoment M der jeweiligen Achse muss nach Gl.. berechnet werden. Die Berechnung der Drehwinkel (Lage) und der Winkelgeschwindigkeiten (Drehahl) für die einelnen Achsen ist sehr aufwendig. Das Gleichungssstem wird im allg. in Matrienschreibweise dargestellt und für die jeweiligen Bahnkurven gelöst. Aus den Winkelbeschleunigungen, den Massenträgheitsmomenten J(), den Geschwindigkeiten, den eitlichen Änderungen der Massenträgheitsmomente dj()/dt und den Widerstandsmomenten M W ) wird für die Achsen die maimale Antriebsleistung der Servoantriebe ermittelt. Bei vielen Robotern wird die notwendige Antriebsleistung im wesentlichen durch die Beschleunigungsmomente bestimmt. + + ) )) cos (.5) G. Schenke,.0 Mechatronik FB Technik, Abt. E+I 9

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

1. Rotation um eine feste Achse

1. Rotation um eine feste Achse 1. Rotation um eine feste Achse Betrachtet wird ein starrer Körper, der sich um eine raumfeste Achse dreht. z ω Das Koordinatensystem wird so gewählt, dass die Drehachse mit der z-achse zusammenfällt.

Mehr

Arbeitsblatt Arbeit und Energie

Arbeitsblatt Arbeit und Energie Arbeitsblatt Arbeit und Energie Arbeit: Wird unter der Wirkung einer Kraft ein Körper verschoben, so leistet die Kraft die Arbeit verrichtete Arbeit Kraft Komponente der Kraft in Wegrichtung; tangentiale

Mehr

Leistungsauslegung Servogetriebeantriebe

Leistungsauslegung Servogetriebeantriebe Leistungsauslegung Servogetriebeantriebe Dr.-Ing. Carsten Fräger Leiter Product Management Servotechnik Lene AG Postfach 0 3 52 D-3763 Hameln Standort: Hans-Lene-Straße D-3855 Aeren www.lene.com Zusammenfassung

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Vorlesung 1 Klassische Mechanik des Massenpunktes und Bezugssysteme Steen Maurus, Diana Beyerlein, Markus Perner 5.03.2012 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpuntes

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Vorgehen zur Kalibrierung von Kamerabildern

Vorgehen zur Kalibrierung von Kamerabildern Vorgehen r Kalibrierng von Kamerabildern Prof. Dr.-Ing. Bernhard Lang, 06.04.2013 3 Kalibrierng von Kamerabildern 3.1 Hintergrnd Eine reale Kamera lässt sich geometrisch drch eine Lochkamera modellieren.

Mehr

4 Dynamik der Rotation

4 Dynamik der Rotation 4 Dynamik der Rotation Fragen und Probleme: Was versteht man unter einem, wovon hängt es ab? Was bewirkt ein auf einen Körper einwirkendes? Welche Bedeutung hat das Massenträgheitsmoment eines Körpers?

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena.

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena. Einführung in die Biomechanik Zusammenfassung WS 00/00 Prof. R. Blickhan überarbeitet von A. Seyfarth www.uni-jena.de/~beb www.lauflabor.de Inhalt. Kinematik (Translation und Rotation). Dynamik (Translation

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Gefesselte Masse. Jörg J. Buchholz 23. März 2014

Gefesselte Masse. Jörg J. Buchholz 23. März 2014 Gefesselte Masse Jörg J. Buchholz 23. März 204 Einleitung In Abbildung ist eine Punktmasse m dargestellt, die sich, von einem masselosen starren tab der Länge l gefesselt, auf einer Kreisbahn bewegt. Dabei

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Mathematische Hilfsmittel

Mathematische Hilfsmittel Mathematische Hilfsmittel Koordinatensystem kartesisch Kugelkoordinaten Zylinderkoordinaten Koordinaten (x, y, z) (r, ϑ, ϕ) (r, ϕ, z) Volumenelement dv dxdydz r sin ϑdrdϑdϕ r dr dzdϕ Additionstheoreme:

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors

& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen

Mehr

Einführung in die Mechatronik

Einführung in die Mechatronik Einführung in die Mechatronik Bearbeitet von Werner Roddeck überarbeitet 2012. Taschenbuch. x, 494 S. Paperback ISBN 978 3 8348 1622 1 Format (B x L): 16,8 x 24 cm Gewicht: 847 g Weitere Fachgebiete >

Mehr

E1 Mechanik Lösungen zu Übungsblatt 3

E1 Mechanik Lösungen zu Übungsblatt 3 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik en zu Übungsblatt 3 WS 014 / 015 Prof. Dr. Hermann Gaub Aufgabe 1 Sonnensystem Abstände innerhalb des Sonnensystems werden häufig

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

Mechanik. Dipl. Ing. (FH) Michael Schmidt. März 2016. nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf

Mechanik. Dipl. Ing. (FH) Michael Schmidt. März 2016. nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf Mechanik Dipl. Ing. (FH) Michael Schmidt März 2016 nach Vorlesungsunterlagen von Prof. Dr.-Ing. Barbara Hippauf Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung 7 2. Kinematik 9 2.1. Einführung..............................

Mehr

Möglichkeiten zur Modellierung und Untersuchung von Rotationsbewegungen und deren Überlagerungen in populären Fahrgeschäften

Möglichkeiten zur Modellierung und Untersuchung von Rotationsbewegungen und deren Überlagerungen in populären Fahrgeschäften Universität Bielefeld Fakultät für Physik Wintersemester 2008 / 2009 Prof. Dr. Bärbel Fromme Möglichkeiten zur Modellierung und Untersuchung von Rotationsbewegungen und deren Überlagerungen in populären

Mehr

Kinetik. Schwerpunktsatz (Impulssatz) F 2. F i (1) F 3 S F 4 F 1. r S. F ix. F ir. F iy. F iz. m z S = i. Technische Mechanik III FS 1

Kinetik. Schwerpunktsatz (Impulssatz) F 2. F i (1) F 3 S F 4 F 1. r S. F ix. F ir. F iy. F iz. m z S = i. Technische Mechanik III FS 1 und Eperimentelle Mechanik FS 1 Kinetik Bisher wurde nur die Kinematik von Bewegungen untersucht (d.h. Weg, Geschwindigkeit und Beschleunigung). Es sollen nun Kräfte (später auch Momente) mit diesen kinematischen

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Technische Mechanik I Vorlesungs- Rumpfmanuskript

Technische Mechanik I Vorlesungs- Rumpfmanuskript Technische Mechanik I Vorlesungs- Rumpfmanuskript Prof. Dr.- ing. Jens Jensen Hochschule Bremen (FH) - University of Applied Sciences Fachbereich 05 Maschinenbau Edition 07, Oktober 2007 2 Vorwort Wer

Mehr

r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter

r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter 8 3. Darstellung der Geraden im Raum 3.. Parametergleichung der Geraden Die naheliegende Vermutung, dass eine Gerade des Raumes durch eine Gleichung der Form ax + by + cz +d = 0 beschrieben werden kann

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt ) Physik ET, WS Aufaben mit Lösun. Übun (KW 44). Übun (KW 44) Aufabe (M.3 Schräer Wurf ) Ein Ball soll vom Punkt P (x, y ) (, ) aus unter einem Winkel α zur Horizontalen schrä nach oben eworfen werden. (a)

Mehr

10.4 Funktionen von mehreren Variablen

10.4 Funktionen von mehreren Variablen 10.4 Funktionen von mehreren Variablen 87 10.4 Funktionen von mehreren Variablen Veranschaulichung von Funktionen eine Variable wei Variablen f() oder = f() (, ) f(, ) oder = f(, ) D(f) IR; Darstellung

Mehr

4.3 Systeme von starren Körpern. Aufgaben

4.3 Systeme von starren Körpern. Aufgaben Technische Mechanik 3 4.3-1 Prof. Dr. Wandiner ufabe 1: 4.3 Ssteme von starren Körpern ufaben h S L h D L L L D h H L H SH Ein PKW der Masse m mit Vorderradantrieb zieht einen Seelfluzeuanhäner der Masse

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

Computergraphik II. Computer-Animation. Oliver Deussen Animation 1

Computergraphik II. Computer-Animation. Oliver Deussen Animation 1 Computer-Animation Oliver Deussen Animation 1 Unterscheidung: Interpolation/Keyframing Starrkörper-Animation Dynamische Simulation Partikel-Animation Verhaltens-Animation Oliver Deussen Animation 2 Keyframing

Mehr

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung Julia Ziegler, Jan Krieger Modell zur Optimierung Doppelpendel-Modell Zur Optimierung einer Wurfbewegung wurde ein physikalisches

Mehr

Zusammenfassung Vektorrechnung und Komplexe Zahlen

Zusammenfassung Vektorrechnung und Komplexe Zahlen Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................

Mehr

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler Mechanik: befasst sich mit der Bewegung von Körpern und der Einwirkung von Kräften. Wir unterscheiden: Kinematik: beschreibt die Bewegung von Körpern, Dynamik: befasst sich mit Kräften und deren Wirkung

Mehr

& REGELUNGSTECHNIK AUTOMATISIERUNGS- Fachvertiefung WS 2012/2013

& REGELUNGSTECHNIK AUTOMATISIERUNGS- Fachvertiefung WS 2012/2013 - Fachvertiefung WS 01/013 AUTOMATISIERUNGS- & REGELUNGSTECHNIK Dipl.-Ing. Tobias Glück Dr.-Ing. Wolfgang Kemmetmüller Univ.-Prof. Dr. techn. Andreas Kugi Automatisierungs- und Regelungstechnik Fachvertiefung

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Inhaltsverzeichnis Integrierte mechanisch-elektronische Systeme

Inhaltsverzeichnis Integrierte mechanisch-elektronische Systeme Inhaltsverzeichnis 1 Integrierte mechanisch-elektronische Systeme... 1 1.1 VommechanischenzummechatronischenSystem... 1 1.2 Mechanische Systeme und mechatronische Entwicklungen..... 8 1.2.1 MechatronischeSystemedesMaschinenwesens...

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

on von Strömung Milovan Perić CD-adapco Nürnberg Office www.cd-adapco.com

on von Strömung Milovan Perić CD-adapco Nürnberg Office www.cd-adapco.com Gekoppelte Simulatio on von Strömung und Bewegung umströmter Körper Milovan Perić CD-adapco Nürnberg Office www.cd-adapco.com Milovan.Peric@de.cd-a cd-a adapco.comcom Inhalt Gekoppelte Simulation von Strömung

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik

O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik W eierstraß-institut für Angew andte Analysis und Stochastik Robotik-Seminar O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik Mohrenstr 39 10117 Berlin rott@wias-berlin.de

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 Kapitel 5: Elektrisches Strömungsfeld 5 Elektrisches Strömungsfeld 5.1 Definition des Feldbegriffs 5. Das elektrische Strömungsfeld 3 5..1 Strömungsfeld in einer zylindrischen

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

5 Quasistationäre Felder. 5.1 Poyntingvektor

5 Quasistationäre Felder. 5.1 Poyntingvektor Das quasistationäre Feld 3 5 Quasistationäre Felder 5.1 Poyntingvektor 5.1 Für ein Koaxialkabel mit gegebenen Radien soll mit Hilfe des Poynting schen Vektors der Nachweis geführt werden, dass a) die transportierte

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Hilfsblätter zu Grundlagen der Elektrotechnik III

Hilfsblätter zu Grundlagen der Elektrotechnik III Hilfsblätter zu Grundlagen der Elektrotechnik Empfohlene Literatur:. Grundgebiete der Elektrotechnik Band : eitabhängige Vorgänge von: Führer, Heidemann, Nerreter Carl Hanser Verlag BN -446-7769-8. Elektrische

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Technische Mechanik 1

Technische Mechanik 1 Ergänzungsübungen mit Lösungen zur Vorlesung Aufgabe 1: Geben Sie die Koordinaten der Kraftvektoren im angegebenen Koordinatensystem an. Gegeben sind: F 1, F, F, F 4 und die Winkel in den Skizzen. Aufgabe

Mehr

Vektoren. Hinführung: Vektorielle Größen

Vektoren. Hinführung: Vektorielle Größen Vektoren Dieser Anhang enthält eine Kurzeinführung in den für einfache Anwendungen erforderlichen Teil der Vektorrechnung. Er geht nicht primär davon aus, die zugehörige mathematische Struktur zu beschreiben

Mehr

Dynamik Lehre von den Kräften

Dynamik Lehre von den Kräften Dynamik Lehre von den Kräften Physik Grundkurs Stephie Schmidt Kräfte im Gleichgewicht Kräfte erkennt man daran, dass sie Körper verformen und/oder ihren Bewegungszustand ändern. Es gibt Muskelkraft, magnetische

Mehr

Koppelung von Struktur und Steuerung. Rapperswil. 23. Januar 2014. Elektromechanische Auslegung von Werkzeugmaschinen.

Koppelung von Struktur und Steuerung. Rapperswil. 23. Januar 2014. Elektromechanische Auslegung von Werkzeugmaschinen. Koppelung von Struktur und Steuerung Rapperswil 23. Januar 2014 Elektromechanische Auslegung von Werkzeugmaschinen GF AgieCharmilles Jan Konvicka / FE Inhaltsverzeichnis 1 Der Entwicklungsprozess 3 2 Maschinen-

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

c~åüüçåüëåüìäé==açêíãìåç= FB Informations- und Elektrotechnik FVT - GP Einführung: Blockschaltbild des Versuchsaufbau: Meßvorgang:

c~åüüçåüëåüìäé==açêíãìåç= FB Informations- und Elektrotechnik FVT - GP Einführung: Blockschaltbild des Versuchsaufbau: Meßvorgang: Einführung: In der ahrzeugindustrie werden sämtliche neu entwickelten oder auch nur modifizierten Bauteile und Systeme zum Beispiel ein Sensor oder eine Bordnetzelektronik auf ahrzeugtauglichkeit getestet.

Mehr

E09. Brückenschaltungen. 1. Theoretische Grundlagen 1.1 Ohmsches Gesetz und Widerstand

E09. Brückenschaltungen. 1. Theoretische Grundlagen 1.1 Ohmsches Gesetz und Widerstand E9 Brückenschaltungen Die Verwendung von Brückenschaltungen ist von praktischer Bedeutung, da hierbei im Gegensat u anderen Messmethoden die Messgröße selbst durch die Messung unbeeinflusst bleibt. Mit

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TEHNISHE UNIVERSITÄT MÜNHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern Geometriekalküle WS 00/ Lösungen u ufgabenblatt (0. Oktober 00) Präsenaufgaben ufgabe. Dualität. Gegeben

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich.

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Kapitel 1 Animation (Belebung) Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Anwendungen findet die

Mehr

mentor Abiturhilfe: Physik Oberstufe Weidl

mentor Abiturhilfe: Physik Oberstufe Weidl mentor Abiturhilfen mentor Abiturhilfe: Physik Oberstufe Mechanik von Erhard Weidl 1. Auflage mentor Abiturhilfe: Physik Oberstufe Weidl schnell und portofrei erhältlich bei beck-shop.de DIE ACHBUCHHANDLUNG

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Übungen zu Kurvenscharen

Übungen zu Kurvenscharen Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte

Mehr

Dynamischer Entwurf von Achterbahnfiguren

Dynamischer Entwurf von Achterbahnfiguren Dynamischer Entwurf von Achterbahnfiguren Prof. Dr.-Ing.. Rill 1 Einleitung Bei der Entwicklung von Achterbahnfiguren wird in der Regel die Bahngeometrie vorgegeben. Mit Hilfe von Simulationsprogrammen

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Freitag, 29. Mai 2009, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen

Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen Übungen zur Analytischen Abitur 00 Die Punkte A( 0), B( 0) und C(5 0) sind Eckpunkte eines Rechtecks ABCD. Der Punkt S ist die Spitze einer geraden Pyramide mit dem Rechteck ABCD als Grundfläche und der

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

Skalierung des Ausgangssignals

Skalierung des Ausgangssignals Skalierung des Ausgangssignals Definition der Messkette Zur Bestimmung einer unbekannten Messgröße, wie z.b. Kraft, Drehmoment oder Beschleunigung, werden Sensoren eingesetzt. Sensoren stehen am Anfang

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Elektrische Maschinen

Elektrische Maschinen 1/5 Elektrische Maschinen 1 unktionsprinzipien 1.1 Kraftwirkung efindet sich ein stromdurchflossener, gerader Leiter der Leiterlänge l in einem homogenen Magnetfeld, so bewirkt die Lorentz-Kraft auf die

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

2.5.2 Selbstorganisierte Karten: das Modell von Kohonen. Weil es beim Perzeptron keine Wechselwirkung in der Verarbeitungsschicht

2.5.2 Selbstorganisierte Karten: das Modell von Kohonen. Weil es beim Perzeptron keine Wechselwirkung in der Verarbeitungsschicht 2.5.2 Selbstorganisierte Karten: das Modell von Kohonen Weil es beim Perzeptron keine Wechselwirkung in der Verarbeitungsschicht zwischen den einzelnen Neuronen gibt, spielt deren räumliche Anordnung keine

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

3.6 Drehungen in der Ebene

3.6 Drehungen in der Ebene 3.6-1 3.6 Drehungen in der Ebene 3.6.1 Die Drehmatrix Gelegentlich müssen wir die Lage eines Teilchens in einem ebenen Koordinatensystem beschreiben, das gegenüber einem festen System um φ gedreht ist.

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Übung zur theoretischen Mechanik (Bachelor) Blatt 1

Übung zur theoretischen Mechanik (Bachelor) Blatt 1 PD Dr. Gerald Kasner Dr. Volker Becker Übung zur theoretischen Mechanik (Bachelor) Blatt 1 WS 2013 16. 10. 2013 1. Global Positioning System 8 Pkt. Das amerikanische GPS-System findet heutzutage in vielen

Mehr

Fachlehrplan Physik - Berufsmaturität Natur, Landschaft und Lebensmittel

Fachlehrplan Physik - Berufsmaturität Natur, Landschaft und Lebensmittel Fachlehrplan Physik - Berufsmaturität Natur, Landschaft und Lebensmittel 1. Allgemeine Bildungsziele Der naturwissenschaftliche Unterricht beinhaltet Biologie, Chemie und Physik und hat zum Ziel, die Neugier

Mehr

3. Zentrales ebenes Kräftesystem

3. Zentrales ebenes Kräftesystem 3. Zentrales ebenes Kräftesystem Eine ruppe von Kräften, die an einem starren Körper angreifen, bilden ein zentrales Kräftesystem, wenn sich die Wirkungslinien aller Kräfte in einem Punkt schneiden. f

Mehr

Mathematische Grundlagen der. Computergeometrie

Mathematische Grundlagen der. Computergeometrie Technische Universität Chemnitz Fakultät für Mathematik TECHNISCHE UNIVERSITÄT C H E M N I T Z Mathematische Grundlagen der Computergeometrie (Vorlesung: Dr. M. Pester) Inhalt: Grundlagen der analtischen

Mehr

M07. Foucault-Pendel. Coriolis-Beschleunigung (1) Dieser Beschleunigung entspricht eine Kraft. Coriolis-Kraft (2)

M07. Foucault-Pendel. Coriolis-Beschleunigung (1) Dieser Beschleunigung entspricht eine Kraft. Coriolis-Kraft (2) M07 Foucault-Pendel Unter Verwendung eines Foucault-Pendels wird die Erddrehung nachgewiesen. Die auftretende Corioliskraft und der Breitengrad des Versuchsortes werden bestimmt. 1. Theoretische Grundlagen

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr