Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie

Größe: px
Ab Seite anzeigen:

Download "Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie"

Transkript

1 Tipler-Mosca 6. Arbeit und Energie 6.1 Arbeit und kinetische Energie (Work and kinetic energy) 6. Das Skalarprodukt (The dot product) 6.3 Arbeit und Energie in drei Dimensionen (Work and energy in three dimensions) 6.4 Potentielle Energie (Potential energy) Universität Salzburg Seite

2 Dubbel Universität Salzburg Seite

3 6.1 Arbeit und kinetische Energie Work and kinetic energy) Eindimensionale Bewegung mit konstanten Kräften SI-Einheit von Arbeit und Energie: Joule (J) 1 J = 1 N m in der Atomphysik, Molekülphysik, Kernphysik, Festkörperphysik Elektronenvolt (ev) siehe auch Teil Die Potentialdifferenz 1 ev = J Universität Salzburg Seite

4 Der Zusammenhang zwischen Gesamtarbeit und kinetischer Energie F = ma mit a = konst aus Gl. (.17) v = v + a Δ a 1 = Δ v v m F = ma = ( vf, vi, ) Δ m 1 1 F Δ = W = ( v v ) = mv mv = E E 1 wobei Ekin = mv (, ) f, i, f, i f, i, f, i, kin, f kin, i Universität Salzburg Seite

5 Beispiel 6.1: Verladung mit einem Kran aus W = F cos θ Δy mit θ = 0 F = 31 kn Δ y = m W = 6 kj app - mit θ = 180 m = 3000 kg g = 9.81 ms mg = 9.43 kn mit Δ y = m Wg = 58.8 kj aus mit 1 1 W =ΔEkin Wapp + Wg = mvf mvi v i ( W + Wg ) W = 0 vi = = = 1.45 m s m m app -1 Universität Salzburg Seite

6 Beispiel 6.: Die Kraft auf einem Elektron aus Gl. (6.1), (6.6) und (6.7) W = F Δ = Δ E = E E kin kin, f kin, i mit E = 0 ev E =.5 kev Δ = 0.8 m F F kin, i kin, f kin, f kin, i = E E Δ kev J Nm 16 = = = 10 = N 0.8 m 0.8 m m siehe auch Wikipedia Kathodenstrahlröhre Universität Salzburg Seite

7 Beispiel 6.3: Schlittenrennen vergleiche auch Beispiel 4.5 Schlittenrennen aus n mit g = 0 g = g F = 0 F = F F = Fcos θ F = Fsinθ y n, n, y n y -Komponente: Fcosθ = ma y-komponente: - mg + F + Fsinθ = 0 aus W = F Δ W = Fcosθ Δ aus Gl. (6.7) F = ma mg + F + F = ma mit v = 0 v = i W =ΔE W = f, kin n W m 1 mv 1 mv f, i, Anfangssituation Endsituation Universität Salzburg Seite

8 Das Halten eines schweren Körpers in einer festen Stellung erfordert das Aufbringen von Energie, aber laut Definition wird keine Arbeit verrichtet. Muskelarbeit: während des Haltens des Gewichtes wird in den Muskeln chemische Energie in Wärmeenergie umgewandelt. Universität Salzburg Seite

9 Die von einer ortsabhängigen Kraft verrichtete Arbeit F variabel F konstant Universität Salzburg Seite

10 Beispiel: 6.4: Die an einem Teilchen verrichtete Arbeit aus W = F d 1 1 W = A1+ A = ( 5 N) ( 4 m) + ( 5 N) ( m) = 5 Nm = 5 J ΔF Geradengleichung F = F0, + = F0, + k Δ von = 0 m bis = 4 m ist F = 5 N , ( 0, ) ( ) von = 4 m bis = 6 m ist F = 15 N +.5 N m W = F d + F d = F d + F + k d = 1 = F0, ( 1 0 ) + F0, ( 1) + k( 1 ) = 1 = ( 5 N) ( 4 m) + ( 15 N) ( m) + (.5 N m ) ( 0 m = 0 J + 30 J - 5 J = 5 J -1 ) = Universität Salzburg Seite

11 Beispiel 6.5: Die von der Feder an einem Block verrichtete Arbeit aus W = F d mit F = k 1 1 W = k = k = k = k d d ( 1 ) aus W =Δ Ekin = mv mv1 mit v = 0 v = 1 W m Universität Salzburg Seite

12 6. Das Skalarprodukt (The dot product) Universität Salzburg Seite

13 A = Ae + Ayey + Azez B = B e + B yey + B zez A B = A e + A e + A e B e + B e + B e = ( y y z z) ( y y z z) = A B cos0 + A B cos90 + A B cos90 + y z + A B cos90 + A B cos 0 + A B cos 90 + y y y y z + A B cos90 + A B cos90 + A B cos0 = z z y z z A B + A B + A B = A B y y z z i i wobei Konvention: A ib i= AnB 3 n= 1 n d d dbi ( A B) = ( Ai Bi) = Ai + Bi dt dt dt A B C A B C ( + ) = ( + ) i i i dai dt Universität Salzburg Seite

14 Beispiel 6.6: Zur Anwendung des Skalarprodukts A = 3e + ey B = 4e 3ey A B aus A B = A B cos θ cosθ = = A B A B = AB i i = 34 3 = 6 A = A A = AA i i = 9+ 4 = 13 B = B B = BB = = 5 6 θ = acos = i i A B i i A B A = 3e + e B = 4e 3e y y B aus AB = A eb = A = A cos θ B A B = AB i i = 34 3 = 6 B = B B = BB = = 5 A B 6 6 = bzw. AB = 13 cos wobei θ = acos = Universität Salzburg Seite i i

15 Universität Salzburg Seite

16 Beispiel 6.7: Verschieben einer Kiste F = (100 N) e + (0 N) e Verschiebungsvektor: y Startpunkt Koordinaten (0,0), Endpunkt Koordinaten (4,3) s = (4 m) e + (3 m) ey W = F s = F s = 400 J i i F s 400 J 4 cos θ = = = F s 100 N 5 m 5 ( )( ) 4 W = F s cosθ = ( 100 N)( 5 m) = J s Fs = F es = F = F cosθ = 80 J W = Fs s = 400 J s F sf = s ef = s = s cosθ = 4 m W = F sf = 400 J F Universität Salzburg Seite

17 Beispiel 6.8: Ein verschobenes Teilchen aus W = F s mit F = (3 N) e + (4 N) e und s = ( m) e (5 m) e W = Fi si = Fs + Fysy = 6 J 0 J = 14 J Kraftkomponente in Richtung s s Fs = F es = F s mit s = s s = s s = s s + s s = m = 9 m 14 J Fs = =.60 N 9 m y y i i y y Beispiel 6.9: Die Ableitung des Skalarrproduktes aus = = v v v vv i i d dvi dvi dvi ( vv i i) = vi + vi = vi = vi ai = v a dt dt dt dt Universität Salzburg Seite

18 Leistung Musso: Physik I SI-Einheit der Leistung: Watt (W) 1 W = 1 J s -1 Energieunternehmen stellen Energie, nicht Leistung, in Rechnung: 6 1 kwh 1000 W 3600 s J 3.6 MJ = = = Nicht-SI-Einheit Pferdestärke (PS) 1 PS = W Universität Salzburg Seite

19 Beispiel 6.10: Die Leistung eines Motors Beispiel 6.11: Leistung und kinetische Energie dekin zu zeigen: P = dt dv aus Beispiel 6.9 = a v dt m erweitert mit m d v d dekin = mv = = m a v = F v = P dt dt dt aus P = F v = F v cos θ mit 10 m F = v = = = 0 s P = = = N 0.5 ms θ N 0.5 ms 400 Nms 400 W P bzw. = 400 W PS W = 0.54 PS Universität Salzburg Seite

20 6.3 Arbeit und Energie in drei Dimensionen (Work and energy in three dimensions) de kin ds aus = F v = F dt dt de dt = F d t Δ E = F ds = W kin ds kin dt dt hier K entspricht E kin Universität Salzburg Seite

21 Beispiel 6.1: Skilauf als Arbeit aus W =Δ E und W = W + W kin von der Normalkraft geleistete Arbeit: dwn = Fn ds = FncosΦds da Fn d s dwn = Fn ds = 0 Wn = 0 dw = F ds = mge de + dye = mgd y 0 1 n ( ) g g y y W = dw = mgd y = mgh g anf g h 1 1 W = Wn + Wg = mgh = Δ E = mv mv mit v = 0 1 mgh = mvend v end = gh g kin end anf Universität Salzburg Seite

22 6.4 Potentielle Energie (Potential energy) Erhöhung der potentiellen Energie beim Zusammendrückem der Feder Wenn der Gewichtheber das Gewicht anhebt, verrichtet er Arbeit an das System. Universität Salzburg Seite

23 Konservative Kräfte Die Arbeit ist gleich auf jedem Weg, der die beiden Punkte 1 und verbindet Nichtkonservative Kräfte Die Schubkraft um einen Karton entlang einer Gerade auf einem Tisch zu verschieben ist ein Besipiel für eine nichtkonservative Kraft, für die man deshalb auch keine potentielle Energie definieren kann. Universität Salzburg Seite

24 Die Funktion der potentiellen Energie U = E pot Universität Salzburg Seite

25 Beispiel 6.13: Die fallende Flasche Universität Salzburg Seite

26 Die potentielle Energie einer Feder aus Δ E = E E = F d s pot pot, pot,1 mit F = F e = k e F 1 E E F s F k k 1 = d = d = d = pot, pot,1 F F 1 1 E E = k k pot, pot,1 F F 1 Beispiel 6.14: Die potentielle Energie eines Basketballspielers Universität Salzburg Seite

27 Potentielle Energie uund Gleichgewicht Die Kraft ist die negative Ableitung der potentiellen Energie nach dem Ort (gilt für konservative Kräfte) Beispiel: Feder 1 de pot Epot = kf F = = kf d Ein Minimum der potentiellen Energie bedeutet einen Punkt mit stabilem Gleichgewicht Universität Salzburg Seite

28 Universität Salzburg Seite

29 Universität Salzburg Seite

30 sonstige Literatur Alonso-Finn 9. Arbeit und Energie 9.1 Einführung 9. Arbeit 9.3 Leistung 9.4 Einheiten der Arbeit und der Leistung 9.5 Kinetische Energie 9.6 Einheiten der Energie 9.7 Arbeit einer konstanten Kraft 9.8 Potentielle Energie 9.9 Beziehung zwischen Kraft und potentielle Energie 9.10 Energieerhaltung eines Teilchens 9.11 Diskussion von Kurven der potentiellen Energie 9.1 Nichtkonservative Kräfte und Energiedissipation Universität Salzburg Seite

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Physik A VL8 (25.10.2012)

Physik A VL8 (25.10.2012) Physik A VL8 (5.10.01) Arbeit, nergie und Leistung Arbeit und nergie nergiebilanzen Leistung Reibung Arbeit und nergie umgangssprachlich: man muss arbeiten, um etwas hochzuheben: physikalisch im alle der

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

4.1.1 Die Energie als fundamentale physikalische Grösse

4.1.1 Die Energie als fundamentale physikalische Grösse Kapitel 4 Energie Im Prinzip kann man die Newtonschen Gesetze, die die Kraft und die Beschleunigung verbinden, verwenden, um ein beliebiges Bewegungsproblem, zu lösen. Die Gesetze können allgemein und

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie - 43-2.3 Arbeit und Energie 2.3.1 Motivation und Definition Prinzipiell kann man mit den Newton'schen Axiomen die Bewegung von Massenpunkten wie auch Systemen von Massenpunkten beschreiben. In vielen Fällen

Mehr

4.5 Wegunabhängige Arbeit, konservative Kräfte

4.5 Wegunabhängige Arbeit, konservative Kräfte 4 Arbeit, Energie, Leistung 4.0 Exkurs: Skalarprodukt 4. Arbeit 4. Energie 4.3 Energieformen 4.4 Leistung 4.5 Wegunabhängige Arbeit, konservative Kräfte 4.7 Einfache Maschinen R. Girwidz 4 Arbeit, Energie,

Mehr

Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz

Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz Dieser Vortrag, von kleinen Änderungen abgesehen, wurde im SS 05 von Jessica Rinninger zusammengestellt. Inhalt: Arbeit: Was ist Arbeit? Wozu

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

It is important to realize that in physik today, we have no knowledge of what energie is.

It is important to realize that in physik today, we have no knowledge of what energie is. 9. Energie It is important to realize that in physik today, we have no knowledge of what energie is. Richard Feynmann, amerikanischer Physiker und Nobelpreisträger 1965. Energieformen: Mechanische Energie:

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

5) Impuls und Energie

5) Impuls und Energie 5) Impuls und Energie 5.) Arbeit und Energie 5.) Energieerhaltung 5.3) Impuls und Impulserhaltung 5.4) Stöße 5.) Arbeit und Energie 5..) Arbeit 5..) Arbeit bei konseratien Kräften 5..3) Zusammenhang Potential

Mehr

Energieerhaltung. 8.1 Konservative und nichtkonservative Kräfte... 211 8.2 Potenzielle Energie... 213

Energieerhaltung. 8.1 Konservative und nichtkonservative Kräfte... 211 8.2 Potenzielle Energie... 213 Energieerhaltung 8. Konservative und nichtkonservative Kräfte... 2 8.2 Potenzielle Energie... 23 8 8.3 Mechanische Energie und ihre Erhaltung... 28 8.4 Anwendungen des Energieerhaltungssatzes der Mechanik...

Mehr

Arbeit Leistung Energie

Arbeit Leistung Energie Arbeit Leistung Energie manuell geistig Was ist Arbeit Wie misst man Arbeit? Ist geistige Arbeit messbar? Wann wird physikalische Arbeit verrichtet? Es wird physikalische Arbeit verrichtet, wenn eine Kraft

Mehr

1 J=1 Nm (Newtonmeter) 1 J=1 Ws (Wattsekunde) Da eine Stunde 60 Minuten und eine Minute 60 Sekunden hat folgt daraus direkt dass wohl

1 J=1 Nm (Newtonmeter) 1 J=1 Ws (Wattsekunde) Da eine Stunde 60 Minuten und eine Minute 60 Sekunden hat folgt daraus direkt dass wohl Zu beginn dieses Kapitels möchte ich ihnen einiges über Chips erzählen. Meine Erfahrung zeigt mir das dies ein wesendlich beliebteres Themen ist als Physikalische Grundlagen. Ich gehe nun davon aus, dass

Mehr

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement Kapitel 4 Arbeit und Energie 4.1 Ein Ausflug in die Vektoranalysis 4.1.1 Linienelement Das Linienelement dr längs einer Kurve im Raum lautet (Siehe Abb. 4.1): ds dr = d dy dz (4.1) y dr d dy dz z Abbildung

Mehr

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung.

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung. Energieerhaltung Energieerhaltung für rollende Kugel W ges = W pot + W kin + W rot h Trägheitsmoment: θ = r 2 dd θ Ist abhängig von Form des Körpers 75 Kräfte Gesamtkraft F : Vektorsumme der Einzelkräfte

Mehr

Physik Formelsammlung

Physik Formelsammlung Physik Formelsammlung Allgemeine Berechnung: v = delta s/delta t a = delta v/delta t -> Durchschnittsgeschwindigkeit / für delta t -> 0: Momentanbeschl. -> Durchschnittsbeschleunigung / für delta t ->

Mehr

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler Mechanik: befasst sich mit der Bewegung von Körpern und der Einwirkung von Kräften. Wir unterscheiden: Kinematik: beschreibt die Bewegung von Körpern, Dynamik: befasst sich mit Kräften und deren Wirkung

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Arbeitsblatt Arbeit und Energie

Arbeitsblatt Arbeit und Energie Arbeitsblatt Arbeit und Energie Arbeit: Wird unter der Wirkung einer Kraft ein Körper verschoben, so leistet die Kraft die Arbeit verrichtete Arbeit Kraft Komponente der Kraft in Wegrichtung; tangentiale

Mehr

Experimentalphysik I: Lösung Übungsklausur

Experimentalphysik I: Lösung Übungsklausur Experimentalphysik I: Lösung Übungsklausur 3. Januar 1 1 (5 Punkte) Eine Punktmasse, welche sich zum Zeitpunkt t = am Koordinatenursprung befindet, bewegt sich mit der Geschwindigkeit v = α cos t δ βt

Mehr

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg Mensch und Energie Kurs: CWK/ A 41/ E-Phase /PH 2 Datum: 19.03.2012 im 2.Block Dozent: Herr Winkowski Protokollantin: Saviana Theiss Themen der

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Grundwissen. Physik. Jahrgangsstufe 8

Grundwissen. Physik. Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Seite 1 1. Energie; E [E] = 1Nm = 1J (Joule) 1.1 Energieerhaltungssatz Formulierung I: Energie kann nicht erzeugt oder vernichtet

Mehr

Energie und Implus(energía, la; impulso (el)

Energie und Implus(energía, la; impulso (el) 4 4.1 Energie und Implus(energía, la; impulso (el) 1 o ímpetu, el ) Arbeit (trabajo, el ) Abb.1: Eine Zugmaschine übt auf den Anhänger eine Kraft F längs eines Weges s aus. Dabei wird Arbeit verrichtet.

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Stichpunkte zur Vorbereitung auf das Praktikum Theresia Kraft Molekular und Zellphysiologie November 2012 Kraft.Theresia@mh hannover.de

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Kapitel III Arbeit, Leistung und Energie

Kapitel III Arbeit, Leistung und Energie Kapitel III Arbeit, Leistung und Energie 3.1 Arbeit Betrachtet man die Momentaufnahme eines Gewichtsstück, welches an einem Kran hängt, so kann man an den Kräften zunächst nicht unterscheiden, ob die Last

Mehr

Maßeinheiten der Mechanik

Maßeinheiten der Mechanik Maßeinheiten der Mechanik Einheiten der Masse m Kilogramm kg 1 kg ist die Masse des internationalen Kilogrammprototyps. (Gültig seit 1901) Statt Megagramm wird die allgemein gültige SI-fremde Einheit Tonne

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

FORD RANGER Ranger_2013.5_Cover_V2.indd 1 12/02/2013 12:59

FORD RANGER Ranger_2013.5_Cover_V2.indd 1 12/02/2013 12:59 FORD RANGER 1 2 3 4 5 1.8 m3 6 7 8 9 10 11 3 7 8 5 1 2 4 6 9 10 12 13 3500kg 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 [Nm] 475 450 425 400 375 350 325 [kw] [PS] 180 245 165 224 150 204 135 184

Mehr

FORD RANGER _Ranger_2015.5_COVER_V2.indd /08/ :39:54

FORD RANGER _Ranger_2015.5_COVER_V2.indd /08/ :39:54 FORD RANGER 2 3 4 5 1.8 m3 6 7 8 9 10 11 1 4 6 10 9 7 2 8 5 3 12 13 3500kg 14 15 16 17 18 19 20 21 22 23 24 25 26 28 28 29 29 [Nm] 475 [kw] [PS] 180 245 30 450 425 400 375 165 224 150 204 135 184 31 350

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt 5 Dr. P. P. Orth Abgabe und Besprechung 29..23. Messung der Gravitationsbeschleunigung

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Vorlesung 1 Klassische Mechanik des Massenpunktes und Bezugssysteme Steen Maurus, Diana Beyerlein, Markus Perner 5.03.2012 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpuntes

Mehr

Der elektrische Strom

Der elektrische Strom Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei

Mehr

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen?

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen? Arbeit, Leitung und Wirkunggrad und Energie. Welche Leitung erbringt ein Auto da bei einer geamten Fahrwidertandkraft von 200 N mit einer Gechwindigkeit von 72 km fährt? h 2: Ein Latkran wird mit einem

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also

Mehr

1. Pflichtstation: Bedeutung der Begriffe Arbeit, Energie, Leistung

1. Pflichtstation: Bedeutung der Begriffe Arbeit, Energie, Leistung 1. Pflichtstation: Bedeutung der Begriffe Arbeit, Energie, Leistung Findet in den ausliegenden Schulbüchern und physikalischen Fachbüchern verschiedene Definitionen der Begriffe Arbeit, Energie und Leistung.

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Praktikumsbericht: Stoßgesetze 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Die Zykloide 4 2. Das Trägheitsmoment

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 010 10. 14. Mai 010 Physik für Bauingenieure Übungsblatt 4 1. Wie viele Luftmoleküle befinden sich im Hörsaal Gruppenübungen

Mehr

Institut für medizinische Physik und Informatik DIE MECHANISCHE KRAFT, ARBEIT, UND LEISTUNG

Institut für medizinische Physik und Informatik DIE MECHANISCHE KRAFT, ARBEIT, UND LEISTUNG DIE MECHANISCHE KRAFT, ARBEIT, UND LEISTUNG I. Zielsetzung Einführung der Definition für die mechanische Kraft, die mechanische Arbeit und die mechanische Leistung. Klärung des Zusammenhanges zwischen

Mehr

Energie und Arbeit sind also zueinander äquivalent und lassen sich ineinander transferieren. Die Energieänderung ist gleich die Arbeit.

Energie und Arbeit sind also zueinander äquivalent und lassen sich ineinander transferieren. Die Energieänderung ist gleich die Arbeit. ENERGIE Definition (Physik): Energie ist die Fähigkeit eines Körpers, Arbeit zu verrichten. Entsprechend dieser Definition kann Energie weder erzeugt noch verbraucht oder zerstört werden. Ein Körper kann

Mehr

Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik

Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik Mechanik und ihre mathematischen Methoden Frank Stallmach Institut für Experimentelle Physik I Vortrag während des LiT.Shortcuts Aktivierung

Mehr

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut.

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut. 5.3 Oberflächenspannung mewae/aktscr/kap5_3_oberflsp/kap5_3_s4.tex 20031214 Anziehende Molekularkräfte (ànm) zwischen Molekülen des gleichen Stoffes: Kohäsionskräfte,...verschiedene Stoffe: Adhäsionskräfte

Mehr

Lehrprobe im Fach Physik

Lehrprobe im Fach Physik Lehrprobe im Fach Physik Thema der Unterrichtseinheit: Mechanik II Thema der Unterrichtsstunde: Mechanische Arbeit und mechanische Leistung Name: Jens Bernheiden Schule: Schulleiter: Seminarleiterin: Studienleiter:

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

AchterbahnfahrenimFreizeitparkund imklassenzimmer EinmodernerZugangzurMechanik - Staatsexamensarbeit im Fachbereich Physik Johannes Gutenberg - Universität Mainz von Verena Heintz Gutachter: Prof. Dr.

Mehr

Die Höhenenergie. Nach diesen Überlegungen wird die Höhenenergie wie folgt festgelegt: Die Bewegungsenergie

Die Höhenenergie. Nach diesen Überlegungen wird die Höhenenergie wie folgt festgelegt: Die Bewegungsenergie Die Höhenenergie Fallbeispiel: Fall 1: Ein Kran hebt einen Eisenträger ( G = 50.000 N ) in den 1. Stock eines Hauses. Dabei verbraucht er eine bestimmte Menge Treibstoff. Fall 2: Hebt der Kran die Last

Mehr

Energiearten, Energieumwandlung

Energiearten, Energieumwandlung Energie Aus dem täglichen Leben ist sicher folgende Aussage bekannt: Ich bin voller Energie Wenn Du aber voller Energie bist, dann hast du ein grosses Bedürfnis etwas zu tun, eine bestimmte Arbeit zu verrichten.

Mehr

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte)

Aufgabe 1: Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1. (10 Punkte) Klausur Physik für Maschinenbauer (SS 2009) Lösungen 1 Aufgabe 1: Schiefe Ebene Auf einer reibungsfreien, schiefen Ebene mit dem Winkel 30 befindet sich eine Kiste der Masse m = 100 kg zunächst in Ruhe.

Mehr

Physikalische Formelsammlung

Physikalische Formelsammlung Physikalische Formelsammlung Gleichförmige Bahnbewegung und Kreisbewegung Bewegungsgleichung für die gleichförmige lineare Bewegung: Winkelgeschwindigkeit bei der gleichmäßigen Kreisbewegung: Zusammenhang

Mehr

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung kinetische Gastheorie Zurückführung der makroskopischen Zusammenhänge: p(v,t) auf mikroskopische Ursachen. Atomistische Natur der Gase lange umstritten, Akzeptanz Ende 19. Jahrh., Boltzmann. Modell des

Mehr

Arbeit und Energie. W= F s Ds

Arbeit und Energie. W= F s Ds Arbeit und Energie Experiment 18 Arbeit ist ein Mass für den Energie-transfer. Wenn keine Reibung vorhanden ist und wenn positive Arbeit an einem Objekt geleistet wird, dann führt dies zu einer Zunahme

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

Temperatur Wärme Thermodynamik

Temperatur Wärme Thermodynamik Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten

Mehr

Zur Vorbereitung auf die Aufnahmeprüfung für die WO im Fach Physik

Zur Vorbereitung auf die Aufnahmeprüfung für die WO im Fach Physik Zur Vorbereitung auf die Aufnahmeprüfung für die WO im Fach Physik Fachlehrer: Schmidt Folgende Themen sind vorgesehen: Mechanik - Geradlinig gleichförmige Bewegung, Geschwindigkeit - Masse, Volumen, Dichte

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

2 3 4 5 6 7 8 9 10 11 [Nm] 350 330 310 290 270 250 230 210 190 170 150 130 110 90 70 [Nm] 400 380 360 340 320 130 PS 110 PS 85 PS 50 1000 1500 2000 2500 3000 3500 4000 RPM [kw] [PS] 100 136 0 4500 90 122

Mehr

10. Versuch: Schiefe Ebene

10. Versuch: Schiefe Ebene Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 10. Versuch: Schiefe Ebene In diesem Versuch untersuchen Sie Mechanik der schiefen Ebene, indem Sie mithilfe dem statischen und dynamischen

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 13/14 Prof. Dr. J. Schmalian Blatt 1, 1 Punkte Dr. P. P. Orth Abgabe und Besprechung 17.1.14 1. Schiefe Ebene

Mehr

1. Rotation um eine feste Achse

1. Rotation um eine feste Achse 1. Rotation um eine feste Achse Betrachtet wird ein starrer Körper, der sich um eine raumfeste Achse dreht. z ω Das Koordinatensystem wird so gewählt, dass die Drehachse mit der z-achse zusammenfällt.

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen MECHANIK II Arbeit, Energie, Leistung Impuls Rotationen Mechanik ikii Flaschenzug Mechanik ikii Flaschenzug: beobachte: F 1 kleiner als F (Gewichtskraft), aber: r größer alsr aber: r 1 größer als r genauer:

Mehr

elektrischespotential =

elektrischespotential = Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #6 am 02.05.2007 Vladimir Dyakonov Elektrisches Potential Wieviel Arbeit muss ich aufwenden

Mehr

Die Leistung und ihre Messung

Die Leistung und ihre Messung Die Leistung und ihre Messung Bei der Definition der Arbeit spielt die Zeit, in der die Arbeit verrichtet wird, keine Rolle. In vielen Fällen ist es aber wichtig, anzugeben, in welcher Zeit eine bestimmte

Mehr

Vorstellung einer Methode zur Festkörperuntersuchung

Vorstellung einer Methode zur Festkörperuntersuchung Synchrotron-Strahlung Vorstellung einer Methode zur Festkörperuntersuchung Dennis Aulich & Daniel Schmidt Technische Universität Berlin FAKULTÄT II, Mathematik und Naturwissenschaften Synchrotron-Strahlung

Mehr

5) Nennen Sie zwei Beispiele für Scheinkräfte! (2 Punkte)

5) Nennen Sie zwei Beispiele für Scheinkräfte! (2 Punkte) 1) a) Wie ist Dichte definiert? (2 Punkte) b) In welcher Einheit wird sie gemessen? (2 Punkte) c) Von welchen Parametern hängt die Dichte eines idealen Gases ab? Leiten sie dazu die Dichte aus dem idealen

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

Was ist überhaupt Thermodynamik? Das Wort Thermodynamik kommt aus dem Griechischen von therme (Wärme) und dynamis (Kraft).

Was ist überhaupt Thermodynamik? Das Wort Thermodynamik kommt aus dem Griechischen von therme (Wärme) und dynamis (Kraft). Struktur Was ist Thermodynamik Geschichte Einstieg Thermodynamik Thermische Zustandsgrößen Thermische Zustandsgleichungen Thermodynamische Systeme Zustand und Prozess Hauptsätze Was ist überhaupt Thermodynamik?

Mehr

FOS: Lösungen Aufgaben zu Arbeit, Energie, Leistung und dem Wirkungsgrad

FOS: Lösungen Aufgaben zu Arbeit, Energie, Leistung und dem Wirkungsgrad R. Brinkann http://brinkann-du.de Seite 5..03 FOS: Löungen Aufgaben zu Arbeit, Energie, Leitung und de Wirkunggrad. Welche Größen betien die Arbeit in der Phyik? Wie wird die Arbeit berechnet und in welchen

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Musso: Physik I Teil 14 Schwingungen Seite 1

Musso: Physik I Teil 14 Schwingungen Seite 1 Musso: Physik I Teil 4 Schwingungen Seite Tipler-Mosca SCHWINGUNGEN UND WELLEN 4. Schwingungen (Oscillations) 4. Harmonische Schwingung (Simple harmonic motion) 4. Energie eines harmonischen Oszillators

Mehr

1. Energie im Alltag. BMS Physik Theorie Arbeit, Leistung und Energie. Quelle:. www.statistik.admin.ch/

1. Energie im Alltag. BMS Physik Theorie Arbeit, Leistung und Energie. Quelle:. www.statistik.admin.ch/ 1. Energie im Alltag Unser Alltag ist ohne Energieeinsatz nicht zu bewältigen. Viele Prozesse laufen nur dank Energieeinsatz. Ein Blick auf die Energiebilanz der Schweiz zeigt das folgende Bild: Endverbrauch

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 Kapitel 5: Elektrisches Strömungsfeld 5 Elektrisches Strömungsfeld 5.1 Definition des Feldbegriffs 5. Das elektrische Strömungsfeld 3 5..1 Strömungsfeld in einer zylindrischen

Mehr

Maßeinheiten der Elektrizität und des Magnetismus

Maßeinheiten der Elektrizität und des Magnetismus Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange

Mehr

Elektrische Energie, Arbeit und Leistung

Elektrische Energie, Arbeit und Leistung Elektrische Energie, Arbeit und Leistung Wenn in einem Draht ein elektrischer Strom fließt, so erwärmt er sich. Diese Wärme kann so groß sein, dass der Draht sogar schmilzt. Aus der Thermodynamik wissen

Mehr