Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie

Save this PDF as:

Größe: px
Ab Seite anzeigen:

Download "Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie"

Transkript

1 Tipler-Mosca 6. Arbeit und Energie 6.1 Arbeit und kinetische Energie (Work and kinetic energy) 6. Das Skalarprodukt (The dot product) 6.3 Arbeit und Energie in drei Dimensionen (Work and energy in three dimensions) 6.4 Potentielle Energie (Potential energy) Universität Salzburg Seite

2 Dubbel Universität Salzburg Seite

3 6.1 Arbeit und kinetische Energie Work and kinetic energy) Eindimensionale Bewegung mit konstanten Kräften SI-Einheit von Arbeit und Energie: Joule (J) 1 J = 1 N m in der Atomphysik, Molekülphysik, Kernphysik, Festkörperphysik Elektronenvolt (ev) siehe auch Teil Die Potentialdifferenz 1 ev = J Universität Salzburg Seite

4 Der Zusammenhang zwischen Gesamtarbeit und kinetischer Energie F = ma mit a = konst aus Gl. (.17) v = v + a Δ a 1 = Δ v v m F = ma = ( vf, vi, ) Δ m 1 1 F Δ = W = ( v v ) = mv mv = E E 1 wobei Ekin = mv (, ) f, i, f, i f, i, f, i, kin, f kin, i Universität Salzburg Seite

5 Beispiel 6.1: Verladung mit einem Kran aus W = F cos θ Δy mit θ = 0 F = 31 kn Δ y = m W = 6 kj app - mit θ = 180 m = 3000 kg g = 9.81 ms mg = 9.43 kn mit Δ y = m Wg = 58.8 kj aus mit 1 1 W =ΔEkin Wapp + Wg = mvf mvi v i ( W + Wg ) W = 0 vi = = = 1.45 m s m m app -1 Universität Salzburg Seite

6 Beispiel 6.: Die Kraft auf einem Elektron aus Gl. (6.1), (6.6) und (6.7) W = F Δ = Δ E = E E kin kin, f kin, i mit E = 0 ev E =.5 kev Δ = 0.8 m F F kin, i kin, f kin, f kin, i = E E Δ kev J Nm 16 = = = 10 = N 0.8 m 0.8 m m siehe auch Wikipedia Kathodenstrahlröhre Universität Salzburg Seite

7 Beispiel 6.3: Schlittenrennen vergleiche auch Beispiel 4.5 Schlittenrennen aus n mit g = 0 g = g F = 0 F = F F = Fcos θ F = Fsinθ y n, n, y n y -Komponente: Fcosθ = ma y-komponente: - mg + F + Fsinθ = 0 aus W = F Δ W = Fcosθ Δ aus Gl. (6.7) F = ma mg + F + F = ma mit v = 0 v = i W =ΔE W = f, kin n W m 1 mv 1 mv f, i, Anfangssituation Endsituation Universität Salzburg Seite

8 Das Halten eines schweren Körpers in einer festen Stellung erfordert das Aufbringen von Energie, aber laut Definition wird keine Arbeit verrichtet. Muskelarbeit: während des Haltens des Gewichtes wird in den Muskeln chemische Energie in Wärmeenergie umgewandelt. Universität Salzburg Seite

9 Die von einer ortsabhängigen Kraft verrichtete Arbeit F variabel F konstant Universität Salzburg Seite

10 Beispiel: 6.4: Die an einem Teilchen verrichtete Arbeit aus W = F d 1 1 W = A1+ A = ( 5 N) ( 4 m) + ( 5 N) ( m) = 5 Nm = 5 J ΔF Geradengleichung F = F0, + = F0, + k Δ von = 0 m bis = 4 m ist F = 5 N , ( 0, ) ( ) von = 4 m bis = 6 m ist F = 15 N +.5 N m W = F d + F d = F d + F + k d = 1 = F0, ( 1 0 ) + F0, ( 1) + k( 1 ) = 1 = ( 5 N) ( 4 m) + ( 15 N) ( m) + (.5 N m ) ( 0 m = 0 J + 30 J - 5 J = 5 J -1 ) = Universität Salzburg Seite

11 Beispiel 6.5: Die von der Feder an einem Block verrichtete Arbeit aus W = F d mit F = k 1 1 W = k = k = k = k d d ( 1 ) aus W =Δ Ekin = mv mv1 mit v = 0 v = 1 W m Universität Salzburg Seite

12 6. Das Skalarprodukt (The dot product) Universität Salzburg Seite

13 A = Ae + Ayey + Azez B = B e + B yey + B zez A B = A e + A e + A e B e + B e + B e = ( y y z z) ( y y z z) = A B cos0 + A B cos90 + A B cos90 + y z + A B cos90 + A B cos 0 + A B cos 90 + y y y y z + A B cos90 + A B cos90 + A B cos0 = z z y z z A B + A B + A B = A B y y z z i i wobei Konvention: A ib i= AnB 3 n= 1 n d d dbi ( A B) = ( Ai Bi) = Ai + Bi dt dt dt A B C A B C ( + ) = ( + ) i i i dai dt Universität Salzburg Seite

14 Beispiel 6.6: Zur Anwendung des Skalarprodukts A = 3e + ey B = 4e 3ey A B aus A B = A B cos θ cosθ = = A B A B = AB i i = 34 3 = 6 A = A A = AA i i = 9+ 4 = 13 B = B B = BB = = 5 6 θ = acos = i i A B i i A B A = 3e + e B = 4e 3e y y B aus AB = A eb = A = A cos θ B A B = AB i i = 34 3 = 6 B = B B = BB = = 5 A B 6 6 = bzw. AB = 13 cos wobei θ = acos = Universität Salzburg Seite i i

15 Universität Salzburg Seite

16 Beispiel 6.7: Verschieben einer Kiste F = (100 N) e + (0 N) e Verschiebungsvektor: y Startpunkt Koordinaten (0,0), Endpunkt Koordinaten (4,3) s = (4 m) e + (3 m) ey W = F s = F s = 400 J i i F s 400 J 4 cos θ = = = F s 100 N 5 m 5 ( )( ) 4 W = F s cosθ = ( 100 N)( 5 m) = J s Fs = F es = F = F cosθ = 80 J W = Fs s = 400 J s F sf = s ef = s = s cosθ = 4 m W = F sf = 400 J F Universität Salzburg Seite

17 Beispiel 6.8: Ein verschobenes Teilchen aus W = F s mit F = (3 N) e + (4 N) e und s = ( m) e (5 m) e W = Fi si = Fs + Fysy = 6 J 0 J = 14 J Kraftkomponente in Richtung s s Fs = F es = F s mit s = s s = s s = s s + s s = m = 9 m 14 J Fs = =.60 N 9 m y y i i y y Beispiel 6.9: Die Ableitung des Skalarrproduktes aus = = v v v vv i i d dvi dvi dvi ( vv i i) = vi + vi = vi = vi ai = v a dt dt dt dt Universität Salzburg Seite

18 Leistung Musso: Physik I SI-Einheit der Leistung: Watt (W) 1 W = 1 J s -1 Energieunternehmen stellen Energie, nicht Leistung, in Rechnung: 6 1 kwh 1000 W 3600 s J 3.6 MJ = = = Nicht-SI-Einheit Pferdestärke (PS) 1 PS = W Universität Salzburg Seite

19 Beispiel 6.10: Die Leistung eines Motors Beispiel 6.11: Leistung und kinetische Energie dekin zu zeigen: P = dt dv aus Beispiel 6.9 = a v dt m erweitert mit m d v d dekin = mv = = m a v = F v = P dt dt dt aus P = F v = F v cos θ mit 10 m F = v = = = 0 s P = = = N 0.5 ms θ N 0.5 ms 400 Nms 400 W P bzw. = 400 W PS W = 0.54 PS Universität Salzburg Seite

20 6.3 Arbeit und Energie in drei Dimensionen (Work and energy in three dimensions) de kin ds aus = F v = F dt dt de dt = F d t Δ E = F ds = W kin ds kin dt dt hier K entspricht E kin Universität Salzburg Seite

21 Beispiel 6.1: Skilauf als Arbeit aus W =Δ E und W = W + W kin von der Normalkraft geleistete Arbeit: dwn = Fn ds = FncosΦds da Fn d s dwn = Fn ds = 0 Wn = 0 dw = F ds = mge de + dye = mgd y 0 1 n ( ) g g y y W = dw = mgd y = mgh g anf g h 1 1 W = Wn + Wg = mgh = Δ E = mv mv mit v = 0 1 mgh = mvend v end = gh g kin end anf Universität Salzburg Seite

22 6.4 Potentielle Energie (Potential energy) Erhöhung der potentiellen Energie beim Zusammendrückem der Feder Wenn der Gewichtheber das Gewicht anhebt, verrichtet er Arbeit an das System. Universität Salzburg Seite

23 Konservative Kräfte Die Arbeit ist gleich auf jedem Weg, der die beiden Punkte 1 und verbindet Nichtkonservative Kräfte Die Schubkraft um einen Karton entlang einer Gerade auf einem Tisch zu verschieben ist ein Besipiel für eine nichtkonservative Kraft, für die man deshalb auch keine potentielle Energie definieren kann. Universität Salzburg Seite

24 Die Funktion der potentiellen Energie U = E pot Universität Salzburg Seite

25 Beispiel 6.13: Die fallende Flasche Universität Salzburg Seite

26 Die potentielle Energie einer Feder aus Δ E = E E = F d s pot pot, pot,1 mit F = F e = k e F 1 E E F s F k k 1 = d = d = d = pot, pot,1 F F 1 1 E E = k k pot, pot,1 F F 1 Beispiel 6.14: Die potentielle Energie eines Basketballspielers Universität Salzburg Seite

27 Potentielle Energie uund Gleichgewicht Die Kraft ist die negative Ableitung der potentiellen Energie nach dem Ort (gilt für konservative Kräfte) Beispiel: Feder 1 de pot Epot = kf F = = kf d Ein Minimum der potentiellen Energie bedeutet einen Punkt mit stabilem Gleichgewicht Universität Salzburg Seite

28 Universität Salzburg Seite

29 Universität Salzburg Seite

30 sonstige Literatur Alonso-Finn 9. Arbeit und Energie 9.1 Einführung 9. Arbeit 9.3 Leistung 9.4 Einheiten der Arbeit und der Leistung 9.5 Kinetische Energie 9.6 Einheiten der Energie 9.7 Arbeit einer konstanten Kraft 9.8 Potentielle Energie 9.9 Beziehung zwischen Kraft und potentielle Energie 9.10 Energieerhaltung eines Teilchens 9.11 Diskussion von Kurven der potentiellen Energie 9.1 Nichtkonservative Kräfte und Energiedissipation Universität Salzburg Seite

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Arbeit Leistung Energie

Arbeit Leistung Energie Arbeit Leistung Energie manuell geistig Was ist Arbeit Wie misst man Arbeit? Ist geistige Arbeit messbar? Wann wird physikalische Arbeit verrichtet? Es wird physikalische Arbeit verrichtet, wenn eine Kraft

Mehr

Arbeitsblatt Arbeit und Energie

Arbeitsblatt Arbeit und Energie Arbeitsblatt Arbeit und Energie Arbeit: Wird unter der Wirkung einer Kraft ein Körper verschoben, so leistet die Kraft die Arbeit verrichtete Arbeit Kraft Komponente der Kraft in Wegrichtung; tangentiale

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler Mechanik: befasst sich mit der Bewegung von Körpern und der Einwirkung von Kräften. Wir unterscheiden: Kinematik: beschreibt die Bewegung von Körpern, Dynamik: befasst sich mit Kräften und deren Wirkung

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg Mensch und Energie Kurs: CWK/ A 41/ E-Phase /PH 2 Datum: 19.03.2012 im 2.Block Dozent: Herr Winkowski Protokollantin: Saviana Theiss Themen der

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

It is important to realize that in physik today, we have no knowledge of what energie is.

It is important to realize that in physik today, we have no knowledge of what energie is. 9. Energie It is important to realize that in physik today, we have no knowledge of what energie is. Richard Feynmann, amerikanischer Physiker und Nobelpreisträger 1965. Energieformen: Mechanische Energie:

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung

Tutorium Physik 1. Arbeit, Energie, Leistung 1 Tutorium Physik 1. Arbeit, Energie, Leistung WS 15/16 1.Semester BSc. Oec. und BSc. CH 9.015 Tutorium Physik 1 Arbeit, Energie, Leistung Großmann 3 3. ARBEIT, ENERGIE, LEISTUNG 9.015 Tutorium Physik

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie - 43-2.3 Arbeit und Energie 2.3.1 Motivation und Definition Prinzipiell kann man mit den Newton'schen Axiomen die Bewegung von Massenpunkten wie auch Systemen von Massenpunkten beschreiben. In vielen Fällen

Mehr

Physik A VL8 (25.10.2012)

Physik A VL8 (25.10.2012) Physik A VL8 (5.10.01) Arbeit, nergie und Leistung Arbeit und nergie nergiebilanzen Leistung Reibung Arbeit und nergie umgangssprachlich: man muss arbeiten, um etwas hochzuheben: physikalisch im alle der

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung.

Tutorium Physik 1. Arbeit, Energie, Leistung. Tutorium Physik 1. Arbeit, Energie, Leistung. WS 18/19 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Inhaltsverzeichnis Physikalisches Praktikum Versuchsbericht M4 Stoßgesetze in einer Dimension Dozent: Prof. Dr. Hans-Ilja Rückmann email: irueckm@uni-bremen.de http: // www. praktikum. physik. uni-bremen.

Mehr

5. Arbeit und Energie

5. Arbeit und Energie 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5. Arbeit und Energie Energie = Fähigkeit Arbeit zu verrichten 5.1 Arbeit Wird Masse m von Punkt

Mehr

Erfahrungen mit Hartz IV- Empfängern

Erfahrungen mit Hartz IV- Empfängern Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November

Mehr

Physik 4, Übung 11, Prof. Förster

Physik 4, Übung 11, Prof. Förster Physik 4, Übung 11, Prof. Förster Christoph Hansen Emailkontakt ieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren: 4. AUSSAGENLOGIK: SYNTAX 4.1 Objektsprache und Metasprache 4.2 Gebrauch und Erwähnung 4.3 Metavariablen: Verallgemeinerndes Sprechen über Ausdrücke von AL 4.4 Die Sprache der Aussagenlogik 4.5 Terminologie

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Elektrische Energie, Arbeit und Leistung

Elektrische Energie, Arbeit und Leistung Elektrische Energie, Arbeit und Leistung Wenn in einem Draht ein elektrischer Strom fließt, so erwärmt er sich. Diese Wärme kann so groß sein, dass der Draht sogar schmilzt. Aus der Thermodynamik wissen

Mehr

21. Wärmekraftmaschinen

21. Wärmekraftmaschinen . Wärmekraftmaschinen.. Einleitung Wärmekraftmaschinen (Motoren, Gasturbinen) wandeln Wärmeenergie in mechanische Energie um. Analoge Maschinen ( Kraftwärmemaschinen ) verwandeln mechanische Energie in

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Skalierung des Ausgangssignals

Skalierung des Ausgangssignals Skalierung des Ausgangssignals Definition der Messkette Zur Bestimmung einer unbekannten Messgröße, wie z.b. Kraft, Drehmoment oder Beschleunigung, werden Sensoren eingesetzt. Sensoren stehen am Anfang

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet. Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4 1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

4.1.1 Die Energie als fundamentale physikalische Grösse

4.1.1 Die Energie als fundamentale physikalische Grösse Kapitel 4 Energie Im Prinzip kann man die Newtonschen Gesetze, die die Kraft und die Beschleunigung verbinden, verwenden, um ein beliebiges Bewegungsproblem, zu lösen. Die Gesetze können allgemein und

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung.

Tutorium Physik 1. Arbeit, Energie, Leistung. 1 Tutorium Physik 1. Arbeit, Energie, Leistung. WS 17/18 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe

Mehr

Arbeitsanweisung Energie und Spielzeug

Arbeitsanweisung Energie und Spielzeug Arbeitsanweisung und Spielzeug Auf den Tischen im Raum findest Du Spielzeuge und dazu jeweils ein Aufgabenblatt. Die Aufgaben auf diesem Blatt sind unterteilt in drei Schwierigkeitsgrade: einer mit einer

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

Geringwertige Wirtschaftsgüter (GWG) - Sammelposten (Wahlrechte in Steuerbilanz und Handelsbilanz)

Geringwertige Wirtschaftsgüter (GWG) - Sammelposten (Wahlrechte in Steuerbilanz und Handelsbilanz) Geringwertige Wirtschaftsgüter (GWG) - (Wahlrechte in Steuerbilanz und Handelsbilanz) Leonberg, im Februar 2011 Die Spielregeln für die Behandlung der Geringwertigen Wirtschaftsgüter wurden mit dem Wachstumsbeschleunigungsgesetz

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

9 Auto. Rund um das Auto. Welche Wörter zum Thema Auto kennst du? Welches Wort passt? Lies die Definitionen und ordne zu.

9 Auto. Rund um das Auto. Welche Wörter zum Thema Auto kennst du? Welches Wort passt? Lies die Definitionen und ordne zu. 1 Rund um das Auto Welche Wörter zum Thema Auto kennst du? Welches Wort passt? Lies die Definitionen und ordne zu. 1. Zu diesem Fahrzeug sagt man auch Pkw oder Wagen. 2. kein neues Auto, aber viel billiger

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Pädagogische Hochschule Thurgau. Lehre Weiterbildung Forschung

Pädagogische Hochschule Thurgau. Lehre Weiterbildung Forschung Variante 1 Swisscom-Router direkt ans Netzwerk angeschlossen fixe IP-Adressen (kein DHCP) 1. Aufrufen des «Netz- und Freigabecenters». 2. Doppelklick auf «LAN-Verbindung» 3. Klick auf «Eigenschaften» 4.

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 30. Okt. Kraftfelder und Potential Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die vier fundamentalen Kräfte Relative Stärke Reichweite

Mehr

Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang. Aufgabenblatt 3 (KW 44) (30.10.02)

Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang. Aufgabenblatt 3 (KW 44) (30.10.02) Tutorium zur Mikroökonomie II WS 02/03 Universität Mannheim Tri Vi Dang Aufgabenblatt 3 (KW 44) (30.10.02) Aufgabe 1: Preisdiskriminierung dritten Grades (20 Punkte) Ein innovativer Uni-Absolvent plant,

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015

Michelson Interferometer: Aufbau und Anwendungen. 21. Mai 2015 Michelson Interferometer: Aufbau und Anwendungen 1. Mai 015 1 Prinzipieller Aufbau eines Michelson Interferometers Interferenz zweier ebener elektromagnetischer Wellen gleicher Frequenz, aber unterschiedlicher

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 05.

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen?

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen? Arbeit, Leitung und Wirkunggrad und Energie. Welche Leitung erbringt ein Auto da bei einer geamten Fahrwidertandkraft von 200 N mit einer Gechwindigkeit von 72 km fährt? h 2: Ein Latkran wird mit einem

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Simulation LIF5000. Abbildung 1

Simulation LIF5000. Abbildung 1 Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles

Mehr

Fachbereich Physik Dr. Wolfgang Bodenberger

Fachbereich Physik Dr. Wolfgang Bodenberger UniversitätÉOsnabrück Fachbereich Physik Dr. Wolfgang Bodenberger Der Transistor als Schalter. In vielen Anwendungen der Impuls- und Digital- lektronik wird ein Transistor als einfacher in- und Aus-Schalter

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

2. Negative Dualzahlen darstellen

2. Negative Dualzahlen darstellen 2.1 Subtraktion von Dualzahlen 2.1.1 Direkte Subtraktion (Tafelrechnung) siehe ARCOR T0IF Nachteil dieser Methode: Diese Form der Subtraktion kann nur sehr schwer von einer Elektronik (CPU) durchgeführt

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Arbeitsmarkt. Einführung in die Makroökonomie. 10. Mai 2012 SS 2012. Einführung in die Makroökonomie (SS 2012) Arbeitsmarkt 10.

Arbeitsmarkt. Einführung in die Makroökonomie. 10. Mai 2012 SS 2012. Einführung in die Makroökonomie (SS 2012) Arbeitsmarkt 10. Arbeitsmarkt Einführung in die Makroökonomie SS 2012 10. Mai 2012 Einführung in die Makroökonomie (SS 2012) Arbeitsmarkt 10. Mai 2012 1 / 31 Was bisher geschah Im IS-LM haben wir eine Volkswirtschaft in

Mehr

Eine Logikschaltung zur Addition zweier Zahlen

Eine Logikschaltung zur Addition zweier Zahlen Eine Logikschaltung zur Addition zweier Zahlen Grundlegender Ansatz für die Umsetzung arithmetischer Operationen als elektronische Schaltung ist die Darstellung von Zahlen im Binärsystem. Eine Logikschaltung

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Die Bundes-Zentrale für politische Bildung stellt sich vor

Die Bundes-Zentrale für politische Bildung stellt sich vor Die Bundes-Zentrale für politische Bildung stellt sich vor Die Bundes-Zentrale für politische Bildung stellt sich vor Deutschland ist ein demokratisches Land. Das heißt: Die Menschen in Deutschland können

Mehr

erster Hauptsatz der Thermodynamik,

erster Hauptsatz der Thermodynamik, 1.2 Erster Hautsatz der hermodynamik Wir betrachten ein thermodynamisches System, dem wir eine beliebige Wärmemenge δq zuführen, und an dem wir eine Arbeit da leisten wollen. Werden umgekehrt dem System

Mehr

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 54 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 51 5.1 Arbeit Wird Masse

Mehr

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und

Mehr

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Die grundlegenden Gesetze der Physik sind Verallgemeinerungen (manchmal auch Extrapolationen) von hinreichend häufigen und zuverlässigen

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

www.leipzig-medizin.de

www.leipzig-medizin.de Die mittlere kinetische Energie der Teilchen eines Körpers ist ein Maß für (A) die absolute Temperatur des Körpers (B) die Dichte des Körpers (C) die spezifische Wärmekapazität (D) das spezifische Wärmeleitvermögen

Mehr

180 -Winkel-Greifer Ausführung mit Nockenführung

180 -Winkel-Greifer Ausführung mit Nockenführung Winkelgreifer 18 mit Nockenführung 18 -Winkel-Greifer Ausführung mit Nockenführung ø1, ø16, ø2, ø2 Merkmale Leicht und kompakt dank Verwendung einer Nockenführung Zusammenbau Spannen vom Werkstück Technische

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Andreas Aigner email: andreasa@sbox.tu-graz.ac.at. Januar 00 Inhaltsverzeichnis Theorie. Stromfunktion...........................

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Bildbearbeitung mit IrfanView

Bildbearbeitung mit IrfanView Inhaltsverzeichnis Bildgröße ändern... 2 Spezielle Markierung erstellen... 3 Auswahl (Markierung) erstellen... 7 Ausschneiden Markierung... 8 Ausschneiden außerhalb der Markierung... 8 Freistellen... 9

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Impulserhaltung beim zentralen elastischen Mehrfachstoß mit der Rollenfahrbahn und Zeitmessgerät 4 4

Impulserhaltung beim zentralen elastischen Mehrfachstoß mit der Rollenfahrbahn und Zeitmessgerät 4 4 Impulserhaltung beim zentralen DAP Einleitung Als Kraftstoß auf einen Körper wird die durch eine Kraft F in einer kurzen Zeit t bewirkte Impulsänderung bezeichnet. Der Impuls p ist dabei als das Produkt

Mehr