Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Musso: Physik I. Dubbel. Teil 6 Arbeit und Energie"

Transkript

1 Tipler-Mosca 6. Arbeit und Energie 6.1 Arbeit und kinetische Energie (Work and kinetic energy) 6. Das Skalarprodukt (The dot product) 6.3 Arbeit und Energie in drei Dimensionen (Work and energy in three dimensions) 6.4 Potentielle Energie (Potential energy) Universität Salzburg Seite

2 Dubbel Universität Salzburg Seite

3 6.1 Arbeit und kinetische Energie Work and kinetic energy) Eindimensionale Bewegung mit konstanten Kräften SI-Einheit von Arbeit und Energie: Joule (J) 1 J = 1 N m in der Atomphysik, Molekülphysik, Kernphysik, Festkörperphysik Elektronenvolt (ev) siehe auch Teil Die Potentialdifferenz 1 ev = J Universität Salzburg Seite

4 Der Zusammenhang zwischen Gesamtarbeit und kinetischer Energie F = ma mit a = konst aus Gl. (.17) v = v + a Δ a 1 = Δ v v m F = ma = ( vf, vi, ) Δ m 1 1 F Δ = W = ( v v ) = mv mv = E E 1 wobei Ekin = mv (, ) f, i, f, i f, i, f, i, kin, f kin, i Universität Salzburg Seite

5 Beispiel 6.1: Verladung mit einem Kran aus W = F cos θ Δy mit θ = 0 F = 31 kn Δ y = m W = 6 kj app - mit θ = 180 m = 3000 kg g = 9.81 ms mg = 9.43 kn mit Δ y = m Wg = 58.8 kj aus mit 1 1 W =ΔEkin Wapp + Wg = mvf mvi v i ( W + Wg ) W = 0 vi = = = 1.45 m s m m app -1 Universität Salzburg Seite

6 Beispiel 6.: Die Kraft auf einem Elektron aus Gl. (6.1), (6.6) und (6.7) W = F Δ = Δ E = E E kin kin, f kin, i mit E = 0 ev E =.5 kev Δ = 0.8 m F F kin, i kin, f kin, f kin, i = E E Δ kev J Nm 16 = = = 10 = N 0.8 m 0.8 m m siehe auch Wikipedia Kathodenstrahlröhre Universität Salzburg Seite

7 Beispiel 6.3: Schlittenrennen vergleiche auch Beispiel 4.5 Schlittenrennen aus n mit g = 0 g = g F = 0 F = F F = Fcos θ F = Fsinθ y n, n, y n y -Komponente: Fcosθ = ma y-komponente: - mg + F + Fsinθ = 0 aus W = F Δ W = Fcosθ Δ aus Gl. (6.7) F = ma mg + F + F = ma mit v = 0 v = i W =ΔE W = f, kin n W m 1 mv 1 mv f, i, Anfangssituation Endsituation Universität Salzburg Seite

8 Das Halten eines schweren Körpers in einer festen Stellung erfordert das Aufbringen von Energie, aber laut Definition wird keine Arbeit verrichtet. Muskelarbeit: während des Haltens des Gewichtes wird in den Muskeln chemische Energie in Wärmeenergie umgewandelt. Universität Salzburg Seite

9 Die von einer ortsabhängigen Kraft verrichtete Arbeit F variabel F konstant Universität Salzburg Seite

10 Beispiel: 6.4: Die an einem Teilchen verrichtete Arbeit aus W = F d 1 1 W = A1+ A = ( 5 N) ( 4 m) + ( 5 N) ( m) = 5 Nm = 5 J ΔF Geradengleichung F = F0, + = F0, + k Δ von = 0 m bis = 4 m ist F = 5 N , ( 0, ) ( ) von = 4 m bis = 6 m ist F = 15 N +.5 N m W = F d + F d = F d + F + k d = 1 = F0, ( 1 0 ) + F0, ( 1) + k( 1 ) = 1 = ( 5 N) ( 4 m) + ( 15 N) ( m) + (.5 N m ) ( 0 m = 0 J + 30 J - 5 J = 5 J -1 ) = Universität Salzburg Seite

11 Beispiel 6.5: Die von der Feder an einem Block verrichtete Arbeit aus W = F d mit F = k 1 1 W = k = k = k = k d d ( 1 ) aus W =Δ Ekin = mv mv1 mit v = 0 v = 1 W m Universität Salzburg Seite

12 6. Das Skalarprodukt (The dot product) Universität Salzburg Seite

13 A = Ae + Ayey + Azez B = B e + B yey + B zez A B = A e + A e + A e B e + B e + B e = ( y y z z) ( y y z z) = A B cos0 + A B cos90 + A B cos90 + y z + A B cos90 + A B cos 0 + A B cos 90 + y y y y z + A B cos90 + A B cos90 + A B cos0 = z z y z z A B + A B + A B = A B y y z z i i wobei Konvention: A ib i= AnB 3 n= 1 n d d dbi ( A B) = ( Ai Bi) = Ai + Bi dt dt dt A B C A B C ( + ) = ( + ) i i i dai dt Universität Salzburg Seite

14 Beispiel 6.6: Zur Anwendung des Skalarprodukts A = 3e + ey B = 4e 3ey A B aus A B = A B cos θ cosθ = = A B A B = AB i i = 34 3 = 6 A = A A = AA i i = 9+ 4 = 13 B = B B = BB = = 5 6 θ = acos = i i A B i i A B A = 3e + e B = 4e 3e y y B aus AB = A eb = A = A cos θ B A B = AB i i = 34 3 = 6 B = B B = BB = = 5 A B 6 6 = bzw. AB = 13 cos wobei θ = acos = Universität Salzburg Seite i i

15 Universität Salzburg Seite

16 Beispiel 6.7: Verschieben einer Kiste F = (100 N) e + (0 N) e Verschiebungsvektor: y Startpunkt Koordinaten (0,0), Endpunkt Koordinaten (4,3) s = (4 m) e + (3 m) ey W = F s = F s = 400 J i i F s 400 J 4 cos θ = = = F s 100 N 5 m 5 ( )( ) 4 W = F s cosθ = ( 100 N)( 5 m) = J s Fs = F es = F = F cosθ = 80 J W = Fs s = 400 J s F sf = s ef = s = s cosθ = 4 m W = F sf = 400 J F Universität Salzburg Seite

17 Beispiel 6.8: Ein verschobenes Teilchen aus W = F s mit F = (3 N) e + (4 N) e und s = ( m) e (5 m) e W = Fi si = Fs + Fysy = 6 J 0 J = 14 J Kraftkomponente in Richtung s s Fs = F es = F s mit s = s s = s s = s s + s s = m = 9 m 14 J Fs = =.60 N 9 m y y i i y y Beispiel 6.9: Die Ableitung des Skalarrproduktes aus = = v v v vv i i d dvi dvi dvi ( vv i i) = vi + vi = vi = vi ai = v a dt dt dt dt Universität Salzburg Seite

18 Leistung Musso: Physik I SI-Einheit der Leistung: Watt (W) 1 W = 1 J s -1 Energieunternehmen stellen Energie, nicht Leistung, in Rechnung: 6 1 kwh 1000 W 3600 s J 3.6 MJ = = = Nicht-SI-Einheit Pferdestärke (PS) 1 PS = W Universität Salzburg Seite

19 Beispiel 6.10: Die Leistung eines Motors Beispiel 6.11: Leistung und kinetische Energie dekin zu zeigen: P = dt dv aus Beispiel 6.9 = a v dt m erweitert mit m d v d dekin = mv = = m a v = F v = P dt dt dt aus P = F v = F v cos θ mit 10 m F = v = = = 0 s P = = = N 0.5 ms θ N 0.5 ms 400 Nms 400 W P bzw. = 400 W PS W = 0.54 PS Universität Salzburg Seite

20 6.3 Arbeit und Energie in drei Dimensionen (Work and energy in three dimensions) de kin ds aus = F v = F dt dt de dt = F d t Δ E = F ds = W kin ds kin dt dt hier K entspricht E kin Universität Salzburg Seite

21 Beispiel 6.1: Skilauf als Arbeit aus W =Δ E und W = W + W kin von der Normalkraft geleistete Arbeit: dwn = Fn ds = FncosΦds da Fn d s dwn = Fn ds = 0 Wn = 0 dw = F ds = mge de + dye = mgd y 0 1 n ( ) g g y y W = dw = mgd y = mgh g anf g h 1 1 W = Wn + Wg = mgh = Δ E = mv mv mit v = 0 1 mgh = mvend v end = gh g kin end anf Universität Salzburg Seite

22 6.4 Potentielle Energie (Potential energy) Erhöhung der potentiellen Energie beim Zusammendrückem der Feder Wenn der Gewichtheber das Gewicht anhebt, verrichtet er Arbeit an das System. Universität Salzburg Seite

23 Konservative Kräfte Die Arbeit ist gleich auf jedem Weg, der die beiden Punkte 1 und verbindet Nichtkonservative Kräfte Die Schubkraft um einen Karton entlang einer Gerade auf einem Tisch zu verschieben ist ein Besipiel für eine nichtkonservative Kraft, für die man deshalb auch keine potentielle Energie definieren kann. Universität Salzburg Seite

24 Die Funktion der potentiellen Energie U = E pot Universität Salzburg Seite

25 Beispiel 6.13: Die fallende Flasche Universität Salzburg Seite

26 Die potentielle Energie einer Feder aus Δ E = E E = F d s pot pot, pot,1 mit F = F e = k e F 1 E E F s F k k 1 = d = d = d = pot, pot,1 F F 1 1 E E = k k pot, pot,1 F F 1 Beispiel 6.14: Die potentielle Energie eines Basketballspielers Universität Salzburg Seite

27 Potentielle Energie uund Gleichgewicht Die Kraft ist die negative Ableitung der potentiellen Energie nach dem Ort (gilt für konservative Kräfte) Beispiel: Feder 1 de pot Epot = kf F = = kf d Ein Minimum der potentiellen Energie bedeutet einen Punkt mit stabilem Gleichgewicht Universität Salzburg Seite

28 Universität Salzburg Seite

29 Universität Salzburg Seite

30 sonstige Literatur Alonso-Finn 9. Arbeit und Energie 9.1 Einführung 9. Arbeit 9.3 Leistung 9.4 Einheiten der Arbeit und der Leistung 9.5 Kinetische Energie 9.6 Einheiten der Energie 9.7 Arbeit einer konstanten Kraft 9.8 Potentielle Energie 9.9 Beziehung zwischen Kraft und potentielle Energie 9.10 Energieerhaltung eines Teilchens 9.11 Diskussion von Kurven der potentiellen Energie 9.1 Nichtkonservative Kräfte und Energiedissipation Universität Salzburg Seite

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 30. Okt. Kraftfelder und Potential Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die vier fundamentalen Kräfte Relative Stärke Reichweite

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Physik A VL8 (25.10.2012)

Physik A VL8 (25.10.2012) Physik A VL8 (5.10.01) Arbeit, nergie und Leistung Arbeit und nergie nergiebilanzen Leistung Reibung Arbeit und nergie umgangssprachlich: man muss arbeiten, um etwas hochzuheben: physikalisch im alle der

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg:

In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg: Werkstatt: Arbeit = Kraft Weg Viel Kraft für nichts? In der Physik definiert man Arbeit durch das Produkt aus Kraft und Weg: W = * = F * s FII bezeichnet dabei die Kraftkomponente in Wegrichtung s. Die

Mehr

4.1.1 Die Energie als fundamentale physikalische Grösse

4.1.1 Die Energie als fundamentale physikalische Grösse Kapitel 4 Energie Im Prinzip kann man die Newtonschen Gesetze, die die Kraft und die Beschleunigung verbinden, verwenden, um ein beliebiges Bewegungsproblem, zu lösen. Die Gesetze können allgemein und

Mehr

4.5 Wegunabhängige Arbeit, konservative Kräfte

4.5 Wegunabhängige Arbeit, konservative Kräfte 4 Arbeit, Energie, Leistung 4.0 Exkurs: Skalarprodukt 4. Arbeit 4. Energie 4.3 Energieformen 4.4 Leistung 4.5 Wegunabhängige Arbeit, konservative Kräfte 4.7 Einfache Maschinen R. Girwidz 4 Arbeit, Energie,

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

2.3 Arbeit und Energie

2.3 Arbeit und Energie - 43-2.3 Arbeit und Energie 2.3.1 Motivation und Definition Prinzipiell kann man mit den Newton'schen Axiomen die Bewegung von Massenpunkten wie auch Systemen von Massenpunkten beschreiben. In vielen Fällen

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung

Tutorium Physik 1. Arbeit, Energie, Leistung 1 Tutorium Physik 1. Arbeit, Energie, Leistung WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 3. ARBEIT, ENERGIE, LEISTUNG 3.1 Energie: Aufgabe (*) 4 a. Was ist Energie? b. Worin liegt der Unterschied zwischen

Mehr

Prüfungsklausur - Lösung

Prüfungsklausur - Lösung Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems

Mehr

5) Impuls und Energie

5) Impuls und Energie 5) Impuls und Energie 5.) Arbeit und Energie 5.) Energieerhaltung 5.3) Impuls und Impulserhaltung 5.4) Stöße 5.) Arbeit und Energie 5..) Arbeit 5..) Arbeit bei konseratien Kräften 5..3) Zusammenhang Potential

Mehr

Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz

Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz Biodynamische Merkmal: Arbeit, Energie, Leistung und Effizienz Dieser Vortrag, von kleinen Änderungen abgesehen, wurde im SS 05 von Jessica Rinninger zusammengestellt. Inhalt: Arbeit: Was ist Arbeit? Wozu

Mehr

Musso: Physik I. Teil 4 Newton-Axiome

Musso: Physik I. Teil 4 Newton-Axiome Tipler-Mosca 4. Die Newton'schen Aiome (Newton's Laws) 4.1 Das erste Newton'sche Aiom: Das Trägheitsgesetz (Newton's first law: the law of inertia) 4.2 Kraft, Masse und das zweite Newton'sche Aiom (Force,

Mehr

It is important to realize that in physik today, we have no knowledge of what energie is.

It is important to realize that in physik today, we have no knowledge of what energie is. 9. Energie It is important to realize that in physik today, we have no knowledge of what energie is. Richard Feynmann, amerikanischer Physiker und Nobelpreisträger 1965. Energieformen: Mechanische Energie:

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement

Kapitel 4. Arbeit und Energie. 4.1 Ein Ausflug in die Vektoranalysis. 4.1.1 Linienelement Kapitel 4 Arbeit und Energie 4.1 Ein Ausflug in die Vektoranalysis 4.1.1 Linienelement Das Linienelement dr längs einer Kurve im Raum lautet (Siehe Abb. 4.1): ds dr = d dy dz (4.1) y dr d dy dz z Abbildung

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

Energieerhaltung. 8.1 Konservative und nichtkonservative Kräfte... 211 8.2 Potenzielle Energie... 213

Energieerhaltung. 8.1 Konservative und nichtkonservative Kräfte... 211 8.2 Potenzielle Energie... 213 Energieerhaltung 8. Konservative und nichtkonservative Kräfte... 2 8.2 Potenzielle Energie... 23 8 8.3 Mechanische Energie und ihre Erhaltung... 28 8.4 Anwendungen des Energieerhaltungssatzes der Mechanik...

Mehr

Arbeit Leistung Energie

Arbeit Leistung Energie Arbeit Leistung Energie manuell geistig Was ist Arbeit Wie misst man Arbeit? Ist geistige Arbeit messbar? Wann wird physikalische Arbeit verrichtet? Es wird physikalische Arbeit verrichtet, wenn eine Kraft

Mehr

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung.

Energieerhaltung für rollende Kugel. W ges = W pot + W kin + W rot. Kapitel 3: Klassische Mechanik Energieerhaltung. Energieerhaltung Energieerhaltung für rollende Kugel W ges = W pot + W kin + W rot h Trägheitsmoment: θ = r 2 dd θ Ist abhängig von Form des Körpers 75 Kräfte Gesamtkraft F : Vektorsumme der Einzelkräfte

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder )

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder ) Aufgabenblatt 8 Aufgabe 1 (M 4. Feder ) Ein Körper der Masse m wird in der Höhe z 1 losgelassen und trifft bei z = 0 auf das Ende einer senkrecht stehenden Feder mit der Federkonstanten k, die den Fall

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Physik Formelsammlung

Physik Formelsammlung Physik Formelsammlung Allgemeine Berechnung: v = delta s/delta t a = delta v/delta t -> Durchschnittsgeschwindigkeit / für delta t -> 0: Momentanbeschl. -> Durchschnittsbeschleunigung / für delta t ->

Mehr

Arbeitsblatt Arbeit und Energie

Arbeitsblatt Arbeit und Energie Arbeitsblatt Arbeit und Energie Arbeit: Wird unter der Wirkung einer Kraft ein Körper verschoben, so leistet die Kraft die Arbeit verrichtete Arbeit Kraft Komponente der Kraft in Wegrichtung; tangentiale

Mehr

1 J=1 Nm (Newtonmeter) 1 J=1 Ws (Wattsekunde) Da eine Stunde 60 Minuten und eine Minute 60 Sekunden hat folgt daraus direkt dass wohl

1 J=1 Nm (Newtonmeter) 1 J=1 Ws (Wattsekunde) Da eine Stunde 60 Minuten und eine Minute 60 Sekunden hat folgt daraus direkt dass wohl Zu beginn dieses Kapitels möchte ich ihnen einiges über Chips erzählen. Meine Erfahrung zeigt mir das dies ein wesendlich beliebteres Themen ist als Physikalische Grundlagen. Ich gehe nun davon aus, dass

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Experimentalphysik I: Lösung Übungsklausur

Experimentalphysik I: Lösung Übungsklausur Experimentalphysik I: Lösung Übungsklausur 3. Januar 1 1 (5 Punkte) Eine Punktmasse, welche sich zum Zeitpunkt t = am Koordinatenursprung befindet, bewegt sich mit der Geschwindigkeit v = α cos t δ βt

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler Mechanik: befasst sich mit der Bewegung von Körpern und der Einwirkung von Kräften. Wir unterscheiden: Kinematik: beschreibt die Bewegung von Körpern, Dynamik: befasst sich mit Kräften und deren Wirkung

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Energie und Implus(energía, la; impulso (el)

Energie und Implus(energía, la; impulso (el) 4 4.1 Energie und Implus(energía, la; impulso (el) 1 o ímpetu, el ) Arbeit (trabajo, el ) Abb.1: Eine Zugmaschine übt auf den Anhänger eine Kraft F längs eines Weges s aus. Dabei wird Arbeit verrichtet.

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Grundwissen Physik (8. Klasse)

Grundwissen Physik (8. Klasse) Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:

Mehr

Übungen für die dritte Klausur

Übungen für die dritte Klausur Übungen für die dritte Klausur 205-03-2 formeln Übungen für die dritte Klausur Formeln Diese Formeln sollten sie kennen. Kennen bedeutet dabei, dass Sie wissen, was die einzelnen Formel- Buchstaben bedeuten

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 23/24 Prof. Dr. J. Schmalian Blatt 5 Dr. P. P. Orth Abgabe und Besprechung 29..23. Messung der Gravitationsbeschleunigung

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Grundwissen. Physik. Jahrgangsstufe 8

Grundwissen. Physik. Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Seite 1 1. Energie; E [E] = 1Nm = 1J (Joule) 1.1 Energieerhaltungssatz Formulierung I: Energie kann nicht erzeugt oder vernichtet

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t.

Formelsammlung. Physik. [F] = kg m s 2 = N (Newton) v = ṡ = ds dt. [v] = m/s. a = v = s = d2 s dt 2 [s] = m/s 2. v = a t. Formelsammlung Physik Mechanik. Kinematik und Kräfte Kinematik Erstes Newtonsches Axiom (Axio/Reaxio) F axio = F reaxio Zweites Newtonsches Axiom Translationsbewegungen Konstante Beschleunigung F = m a

Mehr

10. Arbeit, Energie, Leistung

10. Arbeit, Energie, Leistung 0. Arbeit, Energie, Leistung Peter Riegler, FH Wolfenbüttel 0.0 Matheatische Grundlagen à Skalarprodukt Das Skalarprodukt a ÿ b = a x b x + a b + a b =» a»»b» coshgl ist das Produkt der Länge des Vektors

Mehr

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg Mensch und Energie Kurs: CWK/ A 41/ E-Phase /PH 2 Datum: 19.03.2012 im 2.Block Dozent: Herr Winkowski Protokollantin: Saviana Theiss Themen der

Mehr

Der elektrische Strom

Der elektrische Strom Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei

Mehr

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme

Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Stichpunkte zur Vorbereitung auf das Praktikum Theresia Kraft Molekular und Zellphysiologie November 2012 Kraft.Theresia@mh hannover.de

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert M04 Energieumwandlung am Maxwellrad (Pr_PhI_M04_Maxwellrad_6, 14.7.014)

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

Kapitel III Arbeit, Leistung und Energie

Kapitel III Arbeit, Leistung und Energie Kapitel III Arbeit, Leistung und Energie 3.1 Arbeit Betrachtet man die Momentaufnahme eines Gewichtsstück, welches an einem Kran hängt, so kann man an den Kräften zunächst nicht unterscheiden, ob die Last

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 Vorlesung 1 Klassische Mechanik des Massenpunktes und Bezugssysteme Steen Maurus, Diana Beyerlein, Markus Perner 5.03.2012 Inhaltsverzeichnis 1 Klassische Mechanik des Massenpuntes

Mehr

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen?

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen? Arbeit, Leitung und Wirkunggrad und Energie. Welche Leitung erbringt ein Auto da bei einer geamten Fahrwidertandkraft von 200 N mit einer Gechwindigkeit von 72 km fährt? h 2: Ein Latkran wird mit einem

Mehr

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also

Mehr

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut.

Münze auf Wasser: Resultierende F gegen Münze: Wegrdrängen der. der Moleküle aus Oberfl. analog zu Gummihaut. 5.3 Oberflächenspannung mewae/aktscr/kap5_3_oberflsp/kap5_3_s4.tex 20031214 Anziehende Molekularkräfte (ànm) zwischen Molekülen des gleichen Stoffes: Kohäsionskräfte,...verschiedene Stoffe: Adhäsionskräfte

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Institut für medizinische Physik und Informatik DIE MECHANISCHE KRAFT, ARBEIT, UND LEISTUNG

Institut für medizinische Physik und Informatik DIE MECHANISCHE KRAFT, ARBEIT, UND LEISTUNG DIE MECHANISCHE KRAFT, ARBEIT, UND LEISTUNG I. Zielsetzung Einführung der Definition für die mechanische Kraft, die mechanische Arbeit und die mechanische Leistung. Klärung des Zusammenhanges zwischen

Mehr

Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik

Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik Mechanik und ihre mathematischen Methoden Frank Stallmach Institut für Experimentelle Physik I Vortrag während des LiT.Shortcuts Aktivierung

Mehr

Lehrprobe im Fach Physik

Lehrprobe im Fach Physik Lehrprobe im Fach Physik Thema der Unterrichtseinheit: Mechanik II Thema der Unterrichtsstunde: Mechanische Arbeit und mechanische Leistung Name: Jens Bernheiden Schule: Schulleiter: Seminarleiterin: Studienleiter:

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Eine Erhaltungsgröße ist eine physikalische Größe, die.. s...

Eine Erhaltungsgröße ist eine physikalische Größe, die.. s... Eine Erhaltungsgröße ist eine physikalische Größe, die.... Die drei mechanischen Erhaltungsgrößen sind:.. Ein abgeschlossenes System ist ein Bereich, in dem.. Ein Beispiel für ein abgeschlossenes System

Mehr

Vektoren: Grundbegriffe. 6-E Ma 1 Lubov Vassilevskaya

Vektoren: Grundbegriffe. 6-E Ma 1 Lubov Vassilevskaya Vektoren: Grundbegriffe 6-E Ma 1 Lubov Vassilevskaya Parallele Vektoren Abb. 6-1: Vektoren a, b, c und d liegen auf drei zueinander parallelen Linien l, l' und l'' und haben gleiche Richtung Linien l,

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Praktikumsbericht: Stoßgesetze 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Die Zykloide 4 2. Das Trägheitsmoment

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische

Mehr

Maßeinheiten der Mechanik

Maßeinheiten der Mechanik Maßeinheiten der Mechanik Einheiten der Masse m Kilogramm kg 1 kg ist die Masse des internationalen Kilogrammprototyps. (Gültig seit 1901) Statt Megagramm wird die allgemein gültige SI-fremde Einheit Tonne

Mehr

Energie und Arbeit sind also zueinander äquivalent und lassen sich ineinander transferieren. Die Energieänderung ist gleich die Arbeit.

Energie und Arbeit sind also zueinander äquivalent und lassen sich ineinander transferieren. Die Energieänderung ist gleich die Arbeit. ENERGIE Definition (Physik): Energie ist die Fähigkeit eines Körpers, Arbeit zu verrichten. Entsprechend dieser Definition kann Energie weder erzeugt noch verbraucht oder zerstört werden. Ein Körper kann

Mehr

EXPERIMENTALPHYSIK I - 4. Übungsblatt

EXPERIMENTALPHYSIK I - 4. Übungsblatt Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle

Mehr

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional

Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Kinetik des Massenpunktes

Kinetik des Massenpunktes Technische Mechanik II Kinetik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Klausur Physik 1 (GPH1) am

Klausur Physik 1 (GPH1) am Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 18.9.09 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition

Cusanus-Gymnasium Wittlich. Physik Schwingungen. Fachlehrer : W.Zimmer. Definition Physik Schwingungen Definition Fachlehrer : W.Zimmer Eine Schwingung ist eine Zustandsänderung eines Masseteilchens bzw. eines Systems von Masseteilchen bei der das System durch eine rücktreibende Kraft

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung

Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung Labor zur Vorlesung Physik Versuch : Energie- und Impulserhaltung Abb : Luftkissen-Fahrbahn. Zur Vorbereitung Die folgenden Begriffe müssen Sie kennen und erklären können: Impuls, Energie, kinetische und

Mehr

Name, Vorname:... Klasse:...

Name, Vorname:... Klasse:... Berufsmaturitätsschule BMS Physik Berufsmatur 2012 Name, Vorname:... Klasse:... Zeit: 120 Minuten Hilfsmittel: Hinweise: Taschenrechner, Formelsammlung nach eigener Wahl. Die Formelsammlung darf mit persönlichen

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 13/14 Prof. Dr. J. Schmalian Blatt 9, 1 Bonuspunkte Dr. P. P. Orth Abgabe und Besprechung 1.1.14 1. Kollision

Mehr

Musso: Physik II Teil 26 Das Magnetfeld Seite 1

Musso: Physik II Teil 26 Das Magnetfeld Seite 1 Musso: Physik II Teil 6 Das Magnetfeld Seite 1 Tipler-Mosca ELEKTRIZITÄT UND MAGNETISMUS 6. Das Magnetfeld (The magnetic field) 6.1 Die magnetische Kraft (The force exerted by a magnetic field) 6. Die

Mehr

Die Höhenenergie. Nach diesen Überlegungen wird die Höhenenergie wie folgt festgelegt: Die Bewegungsenergie

Die Höhenenergie. Nach diesen Überlegungen wird die Höhenenergie wie folgt festgelegt: Die Bewegungsenergie Die Höhenenergie Fallbeispiel: Fall 1: Ein Kran hebt einen Eisenträger ( G = 50.000 N ) in den 1. Stock eines Hauses. Dabei verbraucht er eine bestimmte Menge Treibstoff. Fall 2: Hebt der Kran die Last

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 010 10. 14. Mai 010 Physik für Bauingenieure Übungsblatt 4 1. Wie viele Luftmoleküle befinden sich im Hörsaal Gruppenübungen

Mehr

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN BERUFSMATURITÄTSSCHULE BMS Gesundheit und Soziales GESO Formelsammlung Physik David Kamber, Ruben Mäder Stand 7.5.016 Inhalte gemäss Rahmenlehrplan 01 GESO Mechanik:

Mehr

Arbeitsblatt Mathematik 2 (Vektoren)

Arbeitsblatt Mathematik 2 (Vektoren) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften Arbeitsblatt Mathematik (Vektoren Dozent: - Brückenkurs Mathematik / Physik 6. Aufgabe Gegeben

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr