Reales Gas und kritischer Punkt Seite 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Reales Gas und kritischer Punkt Seite 1"

Transkript

1 Reales Gas und ritischer Punt Seite 1 1. Aufgabenstellung 1.1. Die Isothermen des realen Gases Schwefelhexafluorid ( SF 6 ) sind verschiedene Temperaturen aufzunehmen und gemeinsam in einem p() -Diagramm darzustellen. Qualitative Experimente in der Nähe des ritischen Puntes sind durchzuführen. 1.. Der Sättigungsdampfdruc ist in einem p(t) -Diagramm bis zum ritischen Punt darzustellen und die molare erdampfungswärme nach Clausius-Clapeyron als Funtion der Temperatur zu berechnen. 1.. Aus dem ritischen Druc p und der ritischen Temperatur T sind die an-der-waals- Konstanten a und b zu berechnen. Die Gleichungen hier sind herzuleiten und bei ersuchsbeginn vorzulegen. Literatur: Schen, W. Kremer, F. (Hrsg.) Walcher, W. Demtröder, W. Stroppe, H. alisches Pratium ieweg und Teubner erlag Springer Fachmedien Wiesbaden GmbH 1. Auflage 011, S , S Pratium der B. G. Teubner Stuttgart Leipzig Wiesbaden 8. Auflage 004, S Experimentalphysi 1, Mechani und Wärme Springer erlag Berlin Heidelberg New Yor 4. Ausgabe 006, S. 1-7 Studenten der Natur- und Techniwissenschaften Fachbuchverlag Leipzig im Carl Hanser erlag 11. Ausgabe 1999, S Grundlagen Für das einfachste thermodynamische System, das ideale Gas, lässt sich im thermischen Gleichgewicht der Zusammenhang zwischen den drei Zustandsgrößen Druc p, olumen und Temperatur T durch die thermische Zustandsgleichung beschreiben: p = nrt (1) (n Molzahl, R universelle Gasonstante). oraussetzung hier sind dem Modell zufolge volumenlose Massepunte, deren einzige Wechselwirungen elastische Stöße untereinander und mit den Behälterwänden sind. Das erhalten realer Gase weicht vor allem bei tiefen Temperaturen oder hohen Drücen, häufig auch schon bei Normalbedingungen, vom Zusammenhang (1) ab. Ursache hier sind das Eigenvolumen der Gasteilchen sowie Wechselwirungsräfte zwischen ihnen, die bei großer Annäherung eine Korretur des zur erfügung stehenden Gasvolumens und des tatsächlich wirenden Gasdrucs erfordern. Johannes Dideri van der Waals veröffentlichte

2 Reales Gas und ritischer Punt Seite 187 in seiner Dissertation eine Zustandsgleichung, die mit einfachen gasspezifischen Korreturgliedern ausommt und sowohl die gasförmige als auch die flüssige Phase des Stoffes zufriedenstellend beschreibt: n a p+ ( nb ) = nrt. () Die so genannten an-der-waals-konstanten a und b önnen empirisch ermittelt werden. Der Korreturterm n a heißt Binnen- oder Kohäsionsdruc und ist Folge zwischenmoleularer Anziehungsräfte, während vom olumen das Kovolumen nb abgezogen werden muss. Für diese Leistung erhielt van der Waals 1910 den Nobelpreis. p p T 1 T1 < T < T T T ideales Gas, T1 Bei onstanter Temperatur beschreibt Gl. () Isothermen, die entweder genau ein Maximum und ein Minimum, einen Sattelpunt (so genannter ritischer Punt) oder gar einen Extremwert haben. Experimentell werden die Extrema jedoch nicht realisiert, sie entsprechen labilen Zuständen. p S Komprimiert man ein reales Gas unterhalb der ritischen Temperatur T B A Sättigungsgebiet, dann setzt am Punt A der Kondensationsvorgang ein, bei weiterer olumenverringerung bleibt der Druc F D onstant und wird Sättigungsdampfdruc p S genannt. Am Punt B ist die Abb. 1: Isothermen nach van der Waals erflüssigung vollständig, ein ersuch, das olumen weiter zu verringern, führt wegen der geringen Kompressibilität von Flüssigeiten zu einem staren Drucanstieg (Abb. 1). Zwischen den Punten A und B spricht man vom Koexistenzgebiet zwischen flüssiger und gasförmiger Phase, die Gerade BA heißt auch Maxwellsche Gerade und verläuft so, dass die schraffierten Flächeninhalte ober- und unterhalb gleich sind. Während der olumenverringerung von A nach B wird die Kondensationswärme Λ freigesetzt und muss abgeführt werden (umehrt wird die gleiche erdampfungswärme zugeführt). Nach Clausius- Clapeyron lässt sich ihr Betrag aus dem Anstieg der temperaturabhängigen Dampfdrucurve, dem Dampfvolumen D, dem Flüssigeitsvolumen F sowie der Temperatur T, bei der die Zustandsänderung durchgeführt wurde, berechnen: dps ( D F) T Λ=. () dt

3 Um zur molaren erdampfungswärme Reales Gas und ritischer Punt Seite Λ m zu gelangen, ist die Kenntnis der Molzahl erforderlich. Zu ihrer Bestimmung wird Gl. () nach p aufgelöst und umgeformt: 1 nb 1 n a p(, T) = n R T 1. (4) Für große olumina nähert sich das erhalten des realen Gases dem eines idealen immer mehr, entwicelt man daher nb den reziproen Klammerausdruc in Gl. (4) in eine Taylorreihe und vernachlässigt die (n b ) -Terme höherer Ordnung, dann gelangt man nach Multipliation mit zu: ( ) p = n R T+ n R T b a. (5) 1 Gl. (5) nennt man auch Linearisierung der irialentwiclung ein reales an-der-waals-gas (gültig nb ). Man sieht sofort: 1 0 ( ) lim p = n R T (6) und ( ) dp 1 d ( ) n RTb a =. (7) Eine lineare Extrapolation experimentell gewonnener Daten auf 1 0 erlaubt demnach die Bestimmung der Molzahl des untersuchten Gases. Hinweise zur Berechnung der an-der-waals-konstanten: Am ritischen Punt hat die Isotherme eine horizontale Wendetangente, d. h. erste und zweite Ableitung der Funtion p() nach sind 0. Gehen Sie zur ermeidung unnötiger Schreibarbeit von der modifizierten Gl. () ein Mol aus, wird dann. m Ein Zwischenergebnis, der Zusammenhang zwischen dem molaren Kovolumen b und dem ritischen Molvolumen m,, wird bereits die Durchführung des Experimentes am ritischen Punt benötigt. Für das untersuchte Gas Schwefelhexafluorid ( SF 6 ) beträgt die ritische Temperatur T = 18,7 K und der ritische Druc p = 7,59 bar.

4 Reales Gas und ritischer Punt Seite 4. Messanleitung Kernstüc der Messapparatur ist eine dicwandige, volumenalibrierte Glasapillare, gefüllt mit Schwefelhexafluorid. An ihrem unteren Ende wird das Gasvolumen durch einen Quecsilberolben verschlossen, dessen Position mittels eines Handrades geändert werden ann. Der zugehörige Druc wird an einem Manometer mit großer, gut erennbarer Sala abgelesen. Zur Thermostatierung ist die Kompressionsapillare von einem Wasserbad mit eingestectem Laborthermometer umgeben, dieses bietet außerdem noch einen gewissen Schutz im Falle des Berstens der Messammer (vgl. Abb. ). Wichtige Sicherheitshinweise! Die eingestellte Wassertemperatur darf 55 C nicht übersteigen! Thermometer Wasserbad SF 6 Messapillare Manometer Der maximale Betriebsdruc in der Messapillare darf einen Wert von 5 MPa nicht übersteigen (Beginn der roten Marierung)! Hierauf ist insbesondere bei vollständiger erflüssigung des SF 6 zu achten. Das die Kapillare umgebende Wasserbad muss vollständig gefüllt sein! Öffnen Sie bei Bedarf, während der Thermostat eingeschaltet ist, urz den Klemmring am Thermometer. Am Ende des Experimentes ist der Kolben in die Position,5 cm³ zurüczudrehen. Damit ist er die nächste ersuchsgruppe gut zu erennen. Pa Quecsilber Kolben Handrad Abb. : Prinzipsizze der ersuchsanordnung Messmare die olumenablesung ist die das Messvolumen begrenzende Quecsilbersäule (unterer Menisusrand). Der Thermostat neigt zu einem geringfügigen Überschwingen der Temperatur. Stellen Sie daher die gewünschte Solltemperatur 0,5K tiefer ein. Klopfen Sie zum Ablesen des Drucs leicht an das Manometer..1. Die Isothermen von Schwefelhexafluorid sind puntweise die Temperaturen 5 C, 0 C, 5 C, 40 C, ritische Temperatur ϑ und 50 C aufzunehmen. Die erste Messung bei 5 C soll auch die Bestimmung der Molzahl des eingeschlossenen Gases verwendet werden (vgl.

5 Auswertung 4.1). Man beginnt diese bei Reales Gas und ritischer Punt Seite 5 = 4,0 cm und verringere das olumen bis zum Einsetzen der erflüssigung zunächst in Schritten von des olumens jeweils um 0, cm. 0,1 cm. Danach genügt die erringerung Nach jeder Kompression ist das thermische Gleichgewicht, erennbar am onstant bleibenden Druc, abzuwarten. Die Wartezeit beträgt erfahrungsgemäß am Anfang einige Seunden und wird mit leiner werdendem olumen immer größer (mindestens 1min ). Das Gas ist beim Komprimieren gut zu beobachten. Bei beginnender erflüssigung werden das Dampfvolumen D und der zugehörige Druc p als extra Messwert notiert. Wenn das Gas vollständig verflüssigt ist, wird der Druc vorsichtig bis auf p = 5MPa erhöht und das Flüssigeitsvolumen abgelesen. Sodann reduziert man den Druc langsam wieder, bis Anzeichen einer Gasphase in der Spitze der Kapillare sichtbar werden. Der abgelesene Druc p und das Flüssigeitsvolumen F werden wieder extra notiert. Für alle anderen einzustellenden Temperaturen genügt der Beginn der Messung bei =,0 cm. Besonderheit ritischer Punt: Bei ϑ= 40 C stellt man möglichst genau das ritische olumen ein. Hierzu ist die Kenntnis der Molzahl n sowie der Zusammenhang zwischen Kovolumen b und m, vonnöten (ersuchsvorbereitung bzw. Anleitung zur Auswertung). Gas- und Flüssigphase nehmen jeweils etwa die Hälfte des zur erfügung stehenden olumens ein. Die Solltemperatur des Thermostaten wird zunächst auf 44,5 C eingestellt, die Temperatur des Wasserbades und das erhalten des eingeschlossenen Gases sind genau zu verfolgen. orsichtig tastet man sich in Schritten von etwa 0,5K an die ritische Temperatur heran und notiert die Beobachtungen im Messprotooll. Abschließend sind die Isothermen bei ϑ und Phasenumwandlungen in der Nähe des ritischen Puntes: ϑ= 50 C, wie oben beschrieben, aufzunehmen. Interessant ist eine Umfahrung des ritischen Puntes. Hierzu wird die Temperatur des Wasserbades auf ϑ= 40 C abgesent und ein Gasvolumen etwa in der Mitte des Sättigungsbereiches eingestellt. Ist das thermische Gleichgewicht erreicht, führt man eine isotherme Expansion durch, bis die gesamte Flüssigeit verdampft ist. Bei onstantem olumen wird die Temperatur auf einen Wert oberhalb der ritischen Temperatur erhöht (z. B. ϑ= 50 C ). Sodann omprimiert man das SF 6 bis auf den zulässigen Maximaldruc p = 5MPa, eine erflüssigung ist nicht mehr möglich. Wieder bei onstantem olumen reduziert man die Temperatur unter ϑ und beobachtet das Gas genau.

6 Reales Gas und ritischer Punt Seite 6 Bei erreichtem thermischen Gleichgewicht lässt man das Gas vorsichtig expandieren und wird feststellen, dass es während der Abühlung bei hohem Druc unmerlich seinen Aggregatzustand geändert haben muss. 4. Auswertung 4.1. Zur Bestimmung der Molzahl des untersuchten Stoffes fertigt man gemäß Gl. (5) ein Dia- p = f1, eine so genannte irialdarstellung, der Isotherme bei ϑ= 5 C den gramm ( ) olumenbereich zwischen 4 cm und 1 cm an. Man erennt hier sehr schön die Abweichung vom erhalten eines idealen Gases, dessen Isotherme in diesem Bild eine horizontale Gerade ergeben würde. Die Extrapolation des linearen Teils auf 1 0 ermöglicht nach Gl. (6) die Bestimmung von n (lineare Regression, Pratiumsprogramm). Alle gemessenen Isothermen sind gemeinsam in einem p() -Diagramm im olumenbereich unterhalb cm darzustellen. Zu marieren sind der ritische Punt, das Sättigungsgebiet sowie alle Temperaturen unter ϑ die olumina D und F. 4.. In einem p(t) -Diagramm sind die ermittelten Sättigungsdampfdrüce p S bis zum ritischen Punt als Funtion der Temperatur darzustellen. Der erlauf ann sehr gut mittels einer nichtlinearen Regression (allgemeine Parabel, Pratiumsprogramm) angepasst werden. Für dps die Temperaturen T< T ist aus den Anstiegen dt und den olumendifferenzen (D F) gemäß Gl. () die erdampfungswärme Λ zu berechnen, unter erwendung der ermittelten Stoffmenge n als molare erdampfungswärme Λ m zu tabellieren und grafisch darzustellen.

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2) Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über

Mehr

Reale Gase. Versuch: RG. Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: E. Beyer Aktualisiert: am Physikalisches Grundpraktikum

Reale Gase. Versuch: RG. Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: E. Beyer Aktualisiert: am Physikalisches Grundpraktikum Versuch: RG Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: E. Beyer Aktualisiert: am 01. 10. 2010 Bearbeitet: J. Kelling F. Lemke S. Majewsky M. Justus Reale Gase Inhaltsverzeichnis 1 Aufgabenstellung

Mehr

Gruppennummer: lfd. Nummer: Datum:

Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physi Versuch W5 - p(v )-Diagramm eines realen Gases Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Nehmen

Mehr

Versuch Beschreiben Sie die Vorgänge, die in der Nähe des kritischen Punktes zu beobachten sind.

Versuch Beschreiben Sie die Vorgänge, die in der Nähe des kritischen Punktes zu beobachten sind. 1 Versuch 220 Reale Gase 1. Aufgaben 1.1 Nehmen Sie ein Isothermennetz für Schwefelhexafluorid (SF 6 ) auf. Bestimmen Sie daraus die kritischen Daten, und berechnen Sie die Konstanten der Van-der-Waals-Gleichung.

Mehr

Praktikum Physikalische Chemie I. Versuch 4. p, V, T - Verhalten realer Gase am Beispiel von SF 6

Praktikum Physikalische Chemie I. Versuch 4. p, V, T - Verhalten realer Gase am Beispiel von SF 6 Praktikum Physikalische Chemie I ersuch 4 p,, T - erhalten realer Gase am Beispiel von SF 6 1. Grundlagen Komprimiert man ein Gas isotherm, so steigt dessen Druck näherungsweise gemäß dem idealen Gasgesetz

Mehr

8. Reale Gase D1-1. Bereiten Sie folgende Themengebiete vor

8. Reale Gase D1-1. Bereiten Sie folgende Themengebiete vor D1-1 8. Reale Gase Bereiten Sie folgende Themengebiete vor Modell des idealen Gases, ideales Gasgesetz reales Gas, van der Waals-Gleichung, Virialgleichungen pv- und pt-diagramme, kritische Isotherme kinetische

Mehr

Modul Chemische Thermodynamik: Kritischer Punkt

Modul Chemische Thermodynamik: Kritischer Punkt Modul Chemische Thermodynami: Kritischer Punt M. Broszio, F. Noll, Otober 2007, Korreturen September 2008 Lernziele Ziel dieses Versuches die nähere Betrachtung des ritischen Puntes eines Stoffes und seiner

Mehr

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt 9 8. Wärmelehre 8. emperatursala Wärmeenergie: emperatur: inetische und potentielle Energie, die ein System bei emperaturänderung aunimmt oder abgibt Maß ür mittlere inetische Energie eines Systems (im

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

Vorlesung #7. M.Büscher, Physik für Mediziner

Vorlesung #7. M.Büscher, Physik für Mediziner Vorlesung #7 Zustandsänderungen Ideale Gase Luftfeuchtigkeit Reale Gase Phasenumwandlungen Schmelzwärme Verdampfungswärme Dampfdruck van-der-waals Gleichung Zustandsdiagramme realer Gase Allgem. Gasgleichung

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

2. Ideale und reale Gase

2. Ideale und reale Gase . Ideale und reale Gase. Ideale und reale Gase... 1.1 Ideales Gas... 1.1.1 Satz von Avogadro:... 1.1.. Gay-Lussac: p=onst:....1.3. Boyle-Mariotte: T=onst:....1.4. Zustandsgleichung (ideales Gasgesetz):...

Mehr

Reale Gase - kritischer Pumkt

Reale Gase - kritischer Pumkt 1 Reale Gase - kritischer Pumkt In diesem Versuch werden Isothermen eines realen Gases (Ethan oder Schwefelhexafluorid) im Temperaturbereich zwischen 10 C und 50 C vermessen und mit den Isothermen des

Mehr

MOL - Bestimmung der Molaren Masse nach Dumas

MOL - Bestimmung der Molaren Masse nach Dumas MOL - Bestimmung der Molaren Masse nach Dumas Anfängerpraktikum 2, 2006 Janina Fiehl Daniel Flassig Gruppe 129 Einleitung Das Mol ist, vor allem in der Chemie, als Einheit für die Basisgröße der Stoffmenge

Mehr

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 Institut für Physikalische und heoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2. Das Gasgesetz von Gay-Lussac hema In diesem ersuch soll das erhalten von Gasen bei Erwärmung unter

Mehr

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie Seminar zur Theorie der Teilchen und Felder Van der Waals Theorie Tobias Berheide 18.11.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das Van der Waals Gas 3 2.1 Das ideale Gas..............................

Mehr

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Zustandsformen der Materie Thermische Eigenschaften der Materie. Temperatur. skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle Zustandsformen der Materie hermische Eigenschaften der Materie Aggregatzustände: fest flüssig suprafluide gasförmig überkritisch emperatur skalare Zustandsgröße der Materie Maß für die Bewegung der Moleküle

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Physikalische Chemie Praktikum. Reale Gase, Kritischer Punkt

Physikalische Chemie Praktikum. Reale Gase, Kritischer Punkt Hochschule Eden / Leer Physikalische Cheie Praktiku Reale Gase, Kritischer Punkt Vers.Nr. 1 April 015 Allgeeine Grundlagen Reale Gase, Kopressionsfaktor (Realgasfaktor), Van der Waals Gleichung, Kritischer

Mehr

Die Van der Waals Zustandsgleichung realer Gase

Die Van der Waals Zustandsgleichung realer Gase deale Gase sind dadurch definiert, dass sie die Zustandsgleichung = nrt erfüllen n ist dabei gleich der Molzahl des vorhandenen Gases). n der Praxis ist dies dann der Fall, wenn die Gase bei niedrigem

Mehr

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE

VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE GRUNDPRAKTIKUM PHYSIKALISCHE CHEMIE VERSUCH 16 CHEMISCHES GLEICHGEWICHT IN DER GASPHASE Kurzbeschreibung: Die Temperaturabhängigkeit des chemischen Gasphasen-Gleichgewichts wird unter isobaren Bedingungen

Mehr

IIW3. Modul Wärmelehre. Kritischer Punkt

IIW3. Modul Wärmelehre. Kritischer Punkt IIW3 Modul Wärmelehre Kritischer Punkt Jeder Stoff kann in fester, flüssiger oder gasförmiger Phase (oder in mehreren Zuständen gleichzeitig) auftreten. Die einzelnen Phasen können durch Zustandsgleichungen

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 2007 ladimir Dyakonov #2 am 10.01.2007 Raum E143, el. 888-5875, email: dyakonov@hysik.uni-wuerzburg.de 10.2 emeraturmessung Wärmeausdehnung

Mehr

Laborversuche zur Physik 1 I - 13

Laborversuche zur Physik 1 I - 13 Laborversuche zur Physik 1 I - 13 Zustandsgleichung realer Gase Reyher FB Physik 18.09.14 Ziele Messung von Druck und Volumen eines realen Gases bei verschiedenen Temperaturen. Bestimmung des sogenannten

Mehr

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig W 10 Wärmepumpe Aufgaben 1 Nehmen Sie die Temperatur- und Druckverläufe einer Wasser-Wasser-Wärmepumpe auf!

Mehr

Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN)

Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN) Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN). Einleitung Kraftmaschinen geben ihre Arbeit meistens durch rotierende Wellen ab. Die Arbeit, die pro Zeiteinheit über die

Mehr

Versuch 8: Der Dampfdruck von Wasser

Versuch 8: Der Dampfdruck von Wasser Versuch 8: Der Dampfdruck von Wasser Inhaltsverzeichnis 1 Einführung 3 2 Theorie 3 2.1 Reale Gase.................................... 3 2.2 Dampfdruck................................... 3 2.3 Arrhenius-Plot.................................

Mehr

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe Die Stichworte: Thermische Maschinen; 1. und. Hauptsatz; Wirkungsgrad und Leistungsziffer 1 Einführung und Themenstellung Mit einer wird - entgegen der natürlichen Richtung eines Wärmestroms - Wärme von

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen

Mehr

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind:

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind: Was ist Physikalische Chemie? Die klassischen eilgebiete der Physikalischen Chemie sind: 1) hermodynamik (z. B. Energetik chemischer Reaktionen, Lage von Gleichgewichten). 2) Kinetik chemischer Reaktionen

Mehr

Protokoll zum Versuch W1: Reale Gase / Verflüssigung

Protokoll zum Versuch W1: Reale Gase / Verflüssigung Protokoll zum Versuch W1: Reale Gase / Verflüssigung Sven E Tobias F Abgabedatum: 24. April 2007 1 Inhaltsverzeichnis 1 Einleitung 2 2 Physikalischer Zusammenhang 2 2.1 Ideale Gase................................

Mehr

Protokoll Dampfdruck. Punkte: /10

Protokoll Dampfdruck. Punkte: /10 Protokoll Dampfdruck Gruppe Biologie Assistent: Olivier Evelyn Jähne, Eva Eickmeier, Claudia Keller Kontakt: claudiakeller@teleport.ch Sommersemester 2006 6. Juni 2006 Punkte: /0 . Einleitung Wenn eine

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 ladimir Dyakonov # am 25.0.2007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,

Mehr

W07. Gasthermometer. (2) Bild 1: Skizze Gasfeder

W07. Gasthermometer. (2) Bild 1: Skizze Gasfeder W07 Gasthermometer Das Gasthermometer ist zur Untersuchung der Gesetzmäßigkeiten idealer Gase geeignet. Insbesondere ermöglicht es eine experimentelle Einführung der absoluten Temperaturskala und gestattet

Mehr

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion...

5 Gase...2. 5.1 Das ideale Gasgesetz...2. 5.2 Kinetische Gastheorie...3. 5.2.1 Geschwindigkeit der Gasteilchen:...5. 5.2.2 Diffusion... 5 Gase...2 5.1 Das ideale Gasgesetz...2 5.2 Kinetische Gastheorie...3 5.2.1 Geschwindigkeit der Gasteilchen:...5 5.2.2 Diffusion...5 5.2.3 Zusammenstöße...6 5.2.4 Geschwindigkeitsverteilung...6 5.2.5 Partialdruck...7

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Thermodynamik II für den Studiengang Computational Engineering Science H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Inhalt von Thermodynamik II 6. Beziehungen zwischen Zustandsgrößen

Mehr

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert TH 01 Wärmekapazität und Wirkungsgrad (Pr_PhI_TH01_Wärmekapazität_6, 30.8.009)

Mehr

Versuch 3: Bestimmung des Volumenausdehnungskoeffizienten γ von Luft

Versuch 3: Bestimmung des Volumenausdehnungskoeffizienten γ von Luft ersuch : Bestimmung des olumenausdehnungskoeffizienten γ von Luft Theoretische Grundlagen: I. Theoretische Bestimmung des vom Wassertropfen eingeschlossenen Gases nach ersuchsaufbau. olumen des Erlenmeyerkolbens:.

Mehr

PC I Thermodynamik J. Stohner / M. Quack SoSe 2006

PC I Thermodynamik J. Stohner / M. Quack SoSe 2006 PC I Thermodynamik J. Stohner / M. Quack SoSe 2006 Musterlösung zu Übung 9 9.1 Druckfehler: In der Spalte 2 der Tabelle 4.1 (Seite 73) muss es T K /K statt T K heissen. 9.2 Bild 4.3a stellt das Phasendiagramm

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Die 4 Phasen des Carnot-Prozesses

Die 4 Phasen des Carnot-Prozesses Die 4 Phasen des Carnot-Prozesses isotherme Expansion: A B V V T k N Q ln 1 1 isotherme Kompression: adiabatische Kompression: adiabatische Expansion: 0 Q Q 0 C D V V T k N Q ln 2 2 S Q 1 1 /T1 T 1 T 2

Mehr

Versuch 08 Der Dampfdruck von Wasser

Versuch 08 Der Dampfdruck von Wasser Physikalisches A-Praktikum Versuch 08 Der Dampfdruck von Wasser Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 22.05.2012 Unterschrift: Inhaltsverzeichnis

Mehr

UNIVERSITÄT BIELEFELD -

UNIVERSITÄT BIELEFELD - UNIVERSITÄT BIELEFELD - FAKULTÄT FÜR PHYSIK LEHRSTUHL FÜR SUPRAMOLEKULARE SYSTEME, ATOME UND CLUSTER PROF. DR. ARMIN GÖLZHÄUSER Versuch 2.9 Thermodynamik Die Wärmepumpe Durchgeführt am 12.04.06 BetreuerIn:

Mehr

ZUS - Zustandsgleichung realer und idealer Gase

ZUS - Zustandsgleichung realer und idealer Gase ZUS - Zustandsgleichung realer und idealer Gase Anfängerpraktikum 2, 2006 Janina Fiehl Daniel Flassig Gruppe 129 Einleitung Ein wichtiges Teilgebiet der Thermodynamik ist die Beschreibung des Verhaltens

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Mischungslücke in der flüssigen Phase

Mischungslücke in der flüssigen Phase Übungen in physikalischer Chemie für B. Sc.-Studierende Versuch Nr.: S05 Version 2015 Kurzbezeichnung: Mischungslücke Mischungslücke in der flüssigen Phase Aufgabenstellung Die Entmischungskurven von Phenol/Wasser

Mehr

1. Ziel des Versuchs. 2. Theorie. Dennis Fischer Gruppe 9 Magdalena Boeddinghaus

1. Ziel des Versuchs. 2. Theorie. Dennis Fischer Gruppe 9 Magdalena Boeddinghaus Versuch Nr. 12: Gasthermometer 1. Ziel des Versuchs In diesem Versuch soll die Temperaturmessung durch Druckmessung erlernt werden. ußerdem soll der absolute Nullpunkt des Thermometers bestimmt werden.

Mehr

Der Konversionsfaktor ist ein Um rechungsfaktor zwischen m assenund volumenbasierten Mengenangaben von Gasen.

Der Konversionsfaktor ist ein Um rechungsfaktor zwischen m assenund volumenbasierten Mengenangaben von Gasen. Folie 1 Flüchtige Organische Verbindungen in der Gasphase Themen: o Konversionsfaktoren Berechnen o Abschätzen von Dampfdruckkurven aus 2 vorhandenen Werten o Dampfdruck wässriger Lösungen von flüchtigen

Mehr

Physikalische Grundlagen der Hygrometrie

Physikalische Grundlagen der Hygrometrie Den Druck der durch die verdampfenden Teilchen entsteht, nennt man auch Dampfdru Dampfdruck einen gewissen Wert, so können keine weiteren Teilchen aus der Flüssigk Physikalische Grundlagen der Hygrometrie

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Marion Pucher Membrantechnik S26 Matthias Steiger. Membrantechnik. Betreuer: Univ. Prof. Dr. Anton Friedl. Durchgeführt von:

Marion Pucher Membrantechnik S26 Matthias Steiger. Membrantechnik. Betreuer: Univ. Prof. Dr. Anton Friedl. Durchgeführt von: Membrantechnik Betreuer: Univ. Prof. Dr. Anton Friedl Durchgeführt von: Marion Pucher Mtk.Nr.:0125440 Kennzahl: S26 Mtk.Nr.:0125435 Kennzahl: Datum der Übung: 17.3.2004 Seite 1/11 1. Ziel der Übung Mithilfe

Mehr

Allgemeine Speicherberechnung

Allgemeine Speicherberechnung doc 6. Seite von 5 Allgemeine Seicherberechnung echnische Daten Grundlage Die Berechnung eines Hydroseichers bezieht sich auf die Zustandsänderung des Gases im Hydroseicher. Die gleiche Veränderung erfolgt

Mehr

Kritischer Punkt. Im zweiten Versuchsteil werden Sie eine adiabatische Zustandsänderung untersuchen und den Adiabatenkoeffizienten von Luft bestimmen.

Kritischer Punkt. Im zweiten Versuchsteil werden Sie eine adiabatische Zustandsänderung untersuchen und den Adiabatenkoeffizienten von Luft bestimmen. Im ersten Teil dieses Versuchs werden Sie beobachten, wie ein Gas bei hohen Drücken zu einer Flüssigkeit umgewandelt wird. Verringert man den Druck schlagartig, so fängt diese Flüssigkeit an zu sieden

Mehr

Übungsblatt 3 (10.06.2011)

Übungsblatt 3 (10.06.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt (0.06.0 Wärmedämmung Ein Verbundfenster der Fläche A =.0 m besteht aus zwei Glasscheiben der Dicke d =.5 mm, zwischen

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel

Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel Hochschule Physikalische Chemie Vers.Nr. 11 Emden / Leer Praktikum Sept. 2005 Aufbau der Materie: Oberflächenspannung von Flüssigkeiten EÖTVÖSsche Regel In diesem Versuch soll die Oberflächenspannung einer

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang

Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang Aufgaben 1. Berechnen Sie die Wärmekapazität des Kalorimetergefäßes.

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 1- Dampfdruckdiagramm Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Dampfdruckdiagramm wird dieses Vorgespräch durch einen Multiple-Choice

Mehr

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 05. Wärmeübergang in Gaswirbelschichten

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 05. Wärmeübergang in Gaswirbelschichten Praktikum Technische Chemie Europa Fachhochschule Fresenius, Idstein SS 2010 Versuch 05 Wärmeübergang in Gaswirbelschichten Betreuer: Michael Jusek (jusek@dechema.de, Tel: +49-69-7564-339) Symbolverzeichnis

Mehr

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung

W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung W2 Gasthermometer Stoffgebiet: Versuchsziel: Literatur: emperaturmessung, Gasthermometer, Gasgesetze Mit Hilfe eines Gasthermometers ist der Ausdehnungs- und Druckkoeffizient von Luft zu bestimmen. Beschäftigung

Mehr

Thermodynamik: Definition von System und Prozess

Thermodynamik: Definition von System und Prozess Thermodynamik: Definition von System und Prozess Unter dem System verstehen wir den Teil der elt, an dem wir interessiert sind. Den Rest bezeichnen wir als Umgebung. Ein System ist: abgeschlossen oder

Mehr

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10. Inhalt 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.4 Wärmekapazität Aufgabe: - Temperaturverhalten von Gasen, Flüssigkeiten, Festkörpern

Mehr

VERDAMPFUNGSGLEICHGEWICHTE: SIEDEDIAGRAMM EINER BINÄREN MISCHUNG

VERDAMPFUNGSGLEICHGEWICHTE: SIEDEDIAGRAMM EINER BINÄREN MISCHUNG VERDAMPFUNGSGLEICHGEWICHTE: RAMM EINER BINÄREN MISCHUNG 1. Lernziel Ziel des Versuchs ist es, ein zu bestimmen, um ein besseres Verständnis für Verdampfungsgleichgewichte und Mischeigenschaften flüssiger

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

Modelle zur Beschreibung von Gasen und deren Eigenschaften

Modelle zur Beschreibung von Gasen und deren Eigenschaften Prof. Dr. Norbert Hampp 1/7 1. Das Ideale Gas Modelle zur Beschreibung von Gasen und deren Eigenschaften Modelle = vereinfachende mathematische Darstellungen der Realität Für Gase wollen wir drei Modelle

Mehr

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer

Gasthermometer. durchgeführt am von Matthias Dräger, Alexander Narweleit und Fabian Pirzer Gasthermometer 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 21.06.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Zustandgleichung des idealen Gases Ein ideales

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

PC-Übung Nr.1 vom

PC-Übung Nr.1 vom PC-Übung Nr.1 vom 17.10.08 Sebastian Meiss 25. November 2008 1. Allgemeine Vorbereitung a) Geben Sie die Standardbedingungen in verschiedenen Einheiten an: Druck p in Pa, bar, Torr, atm Temperatur T in

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

Phasengleichgewicht. 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. A fl. A g

Phasengleichgewicht. 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. A fl. A g Physikalisch-Chemische Praktika Phasengleichgewicht Versuch T-2 Aufgaben 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. 2. Ermittlung der Phasenumwandlungsenthalpie

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

PHYSIKALISCHE CHEMIE: Eine Einführung

PHYSIKALISCHE CHEMIE: Eine Einführung 1 PHYSIKALISCHE CHEMIE: Eine Einführung makroskoische Phänomene statische Phänomene Gleichgewichte in makroskoischen Systemen THERMODYNAMIK ELEKTROCHEMIE dynamische Phänomene Änderung der Konzentration

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Thermische Ausdehnung

Thermische Ausdehnung Versuch: TA Fachrichtung Physik Physikalisches Grundpraktikum Aktualisiert: am 16. 09. 2009 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Thermische Ausdehnung Inhaltsverzeichnis

Mehr

Kann man Wärme pumpen? Die Wärmepumpe

Kann man Wärme pumpen? Die Wärmepumpe Kann man Wärme pumpen? Die Wärmepumpe Inhalt 1. Was ist eine Wärmepumpe? Wie funktioniert sie? 2. Experimente 2.1 Welchen Wirkungsgrad hat die Wärmepumpe? (Experiment 1) 2.2 Wie groß ist die spezifische

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

8.4.5 Wasser sieden bei Zimmertemperatur ******

8.4.5 Wasser sieden bei Zimmertemperatur ****** 8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 Vladimir Dyakonov #12 am 26.01.2007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ;

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ; 4.11. Innere Energie (ideals. Gas): U =!! nr Erhöhung der inneren Energie durch emperaturerhöhung um Δ: bei konstanten olumen (isochor): ΔU = C! Δ Differentiell: du = C v d δq=du=c d => d=δq/c 1. Hauptsatz

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Elektrochemie II: Potentiometrie

Elektrochemie II: Potentiometrie ersuchsprotokoll ersuchsdatum: 25.10.04 Zweitabgabe: Sttempell Durchgeführt von: Elektrochemie II: Potentiometrie 1. Inhaltsangabe 1..Inhaltsangabe---------------------------------------------------------------------------------

Mehr