Mathematische Grundlagen der Computerlinguistik I. Relationen und Funktionen (Teil 4)

Größe: px
Ab Seite anzeigen:

Download "Mathematische Grundlagen der Computerlinguistik I. Relationen und Funktionen (Teil 4)"

Transkript

1 Mathematische Grundlagen der Computerlinguistik I Relationen und Funktionen (Teil 4) Funktionen und ihre Eigenschaften Exzerpt aus dem Skript von Prof. Dr. Klaus U. Schulz Michaela Geierhos M.A. Centrum für Informations- und Sprachverarbeitung Ludwig-Maximilians-Universität München

2 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 129 Injektivität, Surjektivität und Bijektivität (1) Wir kommen zu einigen wichtigen Eigenschaften von Funktionen. Definition (Injektive Funktion) Eine Funktion f: A B heißt injektiv (oder eineindeutig) genau dann, falls verschiedene Argumente stets verschiedene Werte unter f haben, das heißt, falls gilt x, y A: (f(x) = f(y) x = y). Eine injektive Funktion wird auch Injektion genannt.

3 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 130 Injektivität, Surjektivität und Bijektivität (2) Wenn es eine injektive Funktion f von A nach B gibt, so bedeutet dies, dass B,,bis auf Namensgebung eine Kopie der Elemente von A enthält. Das Bild f(a) hat dann nämlich dieselbe Anzahl von Elementen wie A selbst. Abbildung 1: Injektivität von Funktionen.

4 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 131 Injektivität, Surjektivität und Bijektivität (3) Bezeichnen wir für eine endliche Menge M mit M die Anzahl der Elemente von M (auch Kardinalität von M genannt), so gilt also: Lemma Es seien A und B endliche Mengen. Gibt es eine injektive Funktion f: A B, so folgt A B. Die Umkehrung gilt ebenfalls. Eine Umformulierung diese Lemmas ist in der Literatur unter der Bezeichung,,pigeonhole principle (Taubenloch-Prinzip) bekannt: Gilt A > B, so kann es keine injektive Funktion von A nach B geben. Oder suggestiver: will man m Tauben auf n Löcher verteilen, und gilt m > n, so muss man zumindest in ein Loch zwei oder mehr Tauben stecken.

5 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 132 Injektivität, Surjektivität und Bijektivität (4) Beispiel Die Sitzordnung im Hörsaal definiert eine injektive Funktion von der Menge der Zuhörer auf die Menge der Plätze im Hörsaal. In einem Konzertsaal definiert die Platznummer eine injektive Funktion der Menge der Plätze in IN. Beispiel Injektive Funktionen f: A B werden häufig in Situationen verwendet, wo wir auf Elemente aus A referieren wollen, sprachlich aber besser auf die Elemente von B zugreifen können. Betrachten wir als Beispiel das folgende Bild einer injektiven Funktion f: A {1, 2, 3, 4, 5}.

6 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 133 Injektivität, Surjektivität und Bijektivität (5) Definition (Surjektive Funktion) Eine Funktion f: A B heißt surjektiv (oder Funktion von A auf B) genau dann, wenn jedes b B als Bild unter f auftritt, das heißt, falls gilt b B a A: f(a) = b. Eine surjektive Funktion wird auch Surjektion genannt. Wenn es eine surjektive Funktion f von A auf B gibt, so bedeutet dies, dass man genau diejenigen Elemente aus A identifiziert, die dasselbe Bild unter f in B haben.

7 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 134 Injektivität, Surjektivität und Bijektivität (6) Damit zusammenhängend wird deutlich, dass die Menge {f 1 ({b}) b B} eine Partition von A ist. Bezüglich der Zahl der Elemente von A und B gilt die folgende Aussage: Lemma Es seien A und B endliche Mengen. Gibt es eine surjektive Funktion f: A B, so folgt A B. Die Umkehrung gilt ebenfalls.

8 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 135 Injektivität, Surjektivität und Bijektivität (7) Definition (Bijektive Funktion) Eine Funktion f: A B heißt bijektiv genau dann, wenn f sowohl injektiv als auch surjektiv ist. Eine bijektive Funktion wird auch Bijektion genannt. Eine Bijektion einer Menge M auf sich selbst wird auch Permutation von M genannt. Abbildung 2 verdeutlicht das Konzept der Bijektion.

9 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 136 Injektivität, Surjektivität und Bijektivität (8) Lemma Es seien A und B endliche Mengen. Gibt es eine bijektive Funktion f: A B, so folgt A = B. Die Umkehrung gilt ebenfalls. Beispiel Sind bei einer Vorlesung alle Plätze besetzt (ohne dass sich zwei Zuhörer einen Platz teilen), so definiert die Sitzordnung eine Bijektion zwischen der Menge der Zuhörer und der Menge der Plätze. Abbildung 2: Beispiele bijektiver Funktionen.

10 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 137 Injektivität, Surjektivität und Bijektivität (9) Lemma (Charakterisierung der Injektivität) Sei A und f: A B. Die folgenden Aussagen sind äquivalent: (i) f ist injektiv, (ii) X, X A: f(x X ) = f(x) f(x ), (iii) f besitzt ein Rechtsinverses, das heißt, es gibt eine Funktion g: B A so dass f g = Id A. Beweis,,(i) (ii) : Sei f injektiv. Sind nun X, X A so gilt stets f(x X ) f(x) f(x ). Es bleibt daher die umgekehrte Inklusion f(x) f(x ) f(x X ) zu zeigen. Sei b f(x) f(x ). Dann gilt x X: b = f(x) x X : b = f(x )

11 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 138 Da f injektiv ist, folgt x = x X X und somit b f(x X ).,,(ii) (iii) : Es gelte Eigenschaft (ii). Wir zeigen zunächst, dass f 1 eine Funktion ist. Dazu seien y, x 1 und y, x 2 in f 1. Wir müssen also x 1 = x 2 zeigen. Es sind x 1, y und x 2, y in f, nach Definition von f 1. Wäre nun x 1 x 2, so wäre {x 1 } {x 2 } = und wegen (ii) somit {y} = f({x 1 }) f({x 2 }) = f({x 1 } {x 2 }) = f( ) =, was unmöglich ist. Daher ist tatsächlich x 1 = x 2. Somit ist f 1 eine Funktion. Es ist klar, dass Def (f 1 ) = f(a).

12 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 139 Wir wählen nun irgendein a A, was geht, da A nach Voraussetzung. Durch die Definition g(y) = { f 1 (y) für y f(a) a für y B \ f(a) erhalten wir die Funktion g: B A. Es sei x A gegeben. Es gilt (f g)(x) = g(f(x)) = f 1 (f(x)) = x, damit ist (iii) gezeigt.,,(iii) (i) : Wir nehmen an, dass es eine Funktion g: B A mit (f g)(x) = x für alle x A gibt. Es seien x 1, x 2 A und f(x 1 ) = f(x 2 ). Damit folgt g(f(x 1 )) = g(f(x 2 )) = x 1 = x 2. Somit ist f injektiv.

13 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 140 Injektivität, Surjektivität und Bijektivität (10) Der letzte Beweis verwendet einen sogenannten Ringschluss: obwohl wir nur drei Richtungen gezeigt haben, folgt nun sofort, dass tatsächlich alle Aussagen äquivalent sind. Alle nicht explizit gezeigten Richtungen folgen wegen der Transitivität der Implikation. Lemma Sei f: A B. Es ist f 1 eine Funktion genau dann, wenn f injektiv ist. In diesem Fall ist auch f 1 wieder injektiv, und jedes a A tritt als Bild unter f 1 auf. Ist f außerdem surjektiv, so ist f 1 : B A eine Bijektion und es gilt f f 1 = Id A und f 1 f = Id B.

14 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 141 Injektivität, Surjektivität und Bijektivität (11) Lemma Es sei f: A B. Die folgenden Aussagen sind äquivalent: (i) f ist surjektiv, (ii) Y B : f(f 1 (Y )) = Y, (iii) f hat ein Linksinverses, das heißt, es gibt eine Funktion g: B A mit g f = Id B.

15 Relationen und Funktionen (Teil 4) - Funktionen und ihre Eigenschaften 142 Injektivität, Surjektivität und Bijektivität (12) Lemma Es seien f: A B und g: B C Funktionen. (i) Sind f und g injektiv, so ist auch f g injektiv. (ii) Sind f und g surjektiv, so ist auch f g surjektiv. (iii) Sind f und g bijektiv, so ist auch f g bijektiv und es gilt (f g) 1 = g 1 f 1, (iv) Ist f g bijektiv, so ist g surjektiv und f injektiv.

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 Es gibt eine Vielzahl von unterschiedlichen Funktionen. Um sie weiter zu unterteilen unterscheidet man 3 wichtige

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

2. Übungsblatt zur Analysis I. Gruppenübungen

2. Übungsblatt zur Analysis I. Gruppenübungen Prof. Dr. Helge Glöckner Wintersemester 2013/2014 24.10.2013 2. Übungsblatt zur Analysis I Wichtig: Bitte geben Sie die Hausübungen in ihrer jeweiligen Übungsgruppe ab. Gruppenübungen Aufgabe G1 (Rechnen

Mehr

Vorkurs Mathematik. Vorlesung 4. Abbildungen

Vorkurs Mathematik. Vorlesung 4. Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 4 Abbildungen Definition 4.1. Seien L und M zwei Mengen. Eine Abbildung F von L nach M ist dadurch gegeben, dass jedem Element der

Mehr

x 2 + y 2 = f x y = λ

x 2 + y 2 = f x y = λ Lineare Abbildungen Def Es seien (V 1,+, ) und (V 2,+, ) zwei Vektorräume Eine Abbildung f : V 1 V 2 heißt linear, falls für alle Vektoren u,v V 1 und für jedes λ R gilt: f (u + v) = f (u) + f (v), f (λu)

Mehr

3 Werkzeuge der Mathematik

3 Werkzeuge der Mathematik 3.1 Mengen (18.11.2011) Definition 3.1 Die Menge heißt leere Menge. :=»x M x x Definition 3.2 Es seien N und M Mengen. Wir definieren: und analog M N : (x M x N). N M : (x N x M). Wir sagen M ist Teilmenge

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Wir betrachten nun das Deformieren einer Abbildung in eine andere.

Wir betrachten nun das Deformieren einer Abbildung in eine andere. Abschnitt 1 Quotienten Homotopie, erste Definitionen Wir betrachten nun das Deformieren einer Abbildung in eine andere. 1.1 Definition. Seien X, Y topologische Räume und f 0, f 1 : X Y stetige Abbildungen.

Mehr

MGS Abbildungen (Funktionen) Beispiele: Einkommensteuer Regelungs- und Steuerungstechnik

MGS Abbildungen (Funktionen) Beispiele: Einkommensteuer Regelungs- und Steuerungstechnik 4. Abbildungen (Funktionen) MGS 4-1 08.10.02 Beispiele: Einkommensteuer Regelungs- und Steuerungstechnik Rolf Linn Berechnung Ralf Linn Produkt * Kaufpreis MGS 4-5 08.10.02 1950.- 500000.- 495.- 4. Abbildungen

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

4. Übung zur Linearen Algebra I -

4. Übung zur Linearen Algebra I - 4. Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. WS 2009-10. Aufgabe 13 Auf dem Cartesischen Produkt Z Z werden 2 Verknüpfungen, definiert durch: Man zeige: (a

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Aufgabenblatt 1: Abgabe am vor der Vorlesung

Aufgabenblatt 1: Abgabe am vor der Vorlesung Aufgabenblatt 1: Abgabe am 17.09.09 vor der Vorlesung Aufgabe 1. a.) (1P) Geben Sie die Lösungsmenge der folgenden Gleichung an: 6x + y = 10. Zeichnen Sie die Lösungsmenge in ein Koordinatensystem. b.)

Mehr

Vorkurs Gruppen. Jonas Müller. 11. Oktober 2018

Vorkurs Gruppen. Jonas Müller. 11. Oktober 2018 Vorkurs Gruppen Jonas Müller 11. Oktober 2018 Für den Vorkurs der Fachschaft MathPhysInfo im Wintersemester 2018/19. Basierend auf den Vorträgen der letzten Jahre von Saskia Klaus. Inhaltsverzeichnis 1

Mehr

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y 5 GRUPPEN 5 Gruppen Hier fehlt eine schöne Einleitung oder ein motivierendes Beispiel. Definition [5.1] Sei G eine nicht-leere Menge, e G ein (ausgezeichnetes) Element in G und : G G G eine Abbildung.

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

1.3 Relationen und Funktionen

1.3 Relationen und Funktionen 1.3. RELATIONEN UND FUNKTIONEN 1 1.3 Relationen und Funktionen Es gibt eine Konstruktion (Übungsaufgabe!) einer Klasse (a, b) mit der Eigenschaft (a, b) = (c, d) a = c b = d. Diese Klasse (a, b) heißt

Mehr

Diskrete Strukturen Vorlesungen 5 und 6

Diskrete Strukturen Vorlesungen 5 und 6 Sebastian Thomas RWTH Aachen, WS 2016/17 07.11.2016 09.11.2016 Diskrete Strukturen Vorlesungen 5 und 6 3 Abbildungen In diesem Abschnitt führen wir Abbildungen zwischen Mengen ein. Während Mengen von der

Mehr

Lösung des 2. Übungsblattes (Lösung erstellt von Adam.)

Lösung des 2. Übungsblattes (Lösung erstellt von Adam.) Lösung des 2. Übungsblattes (Lösung erstellt von Adam.) Aufgabe 1: Für die gesamte Aufgabe nehmen wir an, dass stärker bindet als und, damit wir uns im Folgenden ein paar Klammern sparen können. (i) Für

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2006/07 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik &

Mehr

(das heißt, dass a, b K, a + b K und a b K). (K, +, ) bildet ein Körper wenn die folgenden Axiome gelten:

(das heißt, dass a, b K, a + b K und a b K). (K, +, ) bildet ein Körper wenn die folgenden Axiome gelten: FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 3 Voraussetzungen Körperaxiome Sei K eine Menge, und seien +, zwei Verknüpfungen + :K K K, : K K K (a, b) a + b (a, b) a b (das heißt, dass

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen 1. Mengentheoretische Grundbegriffe Cantors (1845 1918) naiver Mengenbegriff : Slide 1 Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres

Mehr

5 Der Transzendenzgrad

5 Der Transzendenzgrad $Id: trgrad.tex,v 1.6 2009/05/11 14:48:57 hk Exp $ 5 Der Transzendenzgrad Wir stellen nun einige der Tatsachen über die Mächtigkeit von Mengen zusammen, die Ihnen wahrscheinlich aus den ersten Semester

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Prof. Dr. Peter Becker Fachbereich Informatik Mathematische Grundlagen Klausur Sommersemester 2016 16. September 2016, 1:00 14:0 Uhr Name: Vorname: Matrikelnr.: Unterschrift: Aufgabe 1 2 4 5 6 Summe Punkte

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

min(a, b) H(a, b) G(a, b) A(a, b) Q(a, b) max(a, b), (1)

min(a, b) H(a, b) G(a, b) A(a, b) Q(a, b) max(a, b), (1) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 4 Aufgabe 15 Für zwei beliebige reelle Zahlen a > 0, b > 0 bezeichne A(a, b) := a+b, das arithmetische, G(a, b) := ab das geometrische,

Mehr

Über den Grössenvergleich von Mengen und die totale Ordnung auf der Klasse der Kardinalzahlen

Über den Grössenvergleich von Mengen und die totale Ordnung auf der Klasse der Kardinalzahlen Über den Grössenvergleich von Mengen und die totale Ordnung auf der Klasse der Kardinalzahlen Maturitätsarbeit HS 2015/16 von Daniel Peter Rutschmann 4a Betreut von Dr. Thomas Foertsch an der Kantonsschule

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

2 Lösungen zu Kapitel 2

2 Lösungen zu Kapitel 2 2 Lösungen zu Kapitel 2 2. Lösung. Die Funktion f ist nicht injektiv. So gibt es (unendlich) viele Paare (x, y) mit f(x, y) = 0, etwa (0, 0) und (/2, ). Die Funktion f ist surjektiv. Zum Beispiel gilt

Mehr

Vorkurs Mathematik. Prof. Dr. H. Brenner Osnabrück WS 2009/2010. Arbeitsblatt 4. auf Injektivität und Surjektivität.

Vorkurs Mathematik. Prof. Dr. H. Brenner Osnabrück WS 2009/2010. Arbeitsblatt 4. auf Injektivität und Surjektivität. Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Arbeitsblatt 4 Injektivität und Surjektivität Aufgabe 4.1. Eine Funktion f : R R, x f(x), heißt streng wachsend, wenn für alle x 1, x 2 R

Mehr

Injektiv, Surjektiv, Bijektiv

Injektiv, Surjektiv, Bijektiv Injektiv, Surjektiv, Bijektiv Aufgabe 1. Geben Sie einen ausführlichen Beweis für folgende Aussage: Wenn f A B surjektiv ist und R A A A eine reflexive Relation auf A ist, dann ist R B = {( f(x), f(y)

Mehr

Analysis I. Vorlesung 10. Mächtigkeiten

Analysis I. Vorlesung 10. Mächtigkeiten Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 10 Mächtigkeiten Zwei Kinder, die noch nicht zählen können, sitzen im Sandkasten und wollen wissen, wer von ihnen mehr Buddelsachen dabei

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/016 30.10.015 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 1. Übungsblatt

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

LA 1 WS 08/09 Zettel 1

LA 1 WS 08/09 Zettel 1 LA 1 WS 08/09 Zettel 1 Nils Mahrt 31. Oktober 2008 1. Aufgabe Sei f : X Y eine Abbildung. (a) Für A X ist zu zeigen, dass A f 1 (f(a)) ist. Sei also x A, dann ist zu zeigen, dass x f 1 (f(a)). Es gilt,

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017

Mehr

Mathematische Grundlagen der Computerlinguistik I. Relationen und Funktionen (Teil 2)

Mathematische Grundlagen der Computerlinguistik I. Relationen und Funktionen (Teil 2) Mathematische Grundlagen der Computerlinguistik I Relationen und Funktionen (Teil 2) Umkehrrelationen und Kompositionen Exzerpt aus dem Skript von Prof. Dr. Klaus U. Schulz Michaela Geierhos 14.11.2006

Mehr

Kapitel 2: Abbildungen und elementare Funktionen

Kapitel 2: Abbildungen und elementare Funktionen Kapitel 2: Abbildungen und elementare Funktionen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Abbildungen und elementare Funktionen 1 / 18 Gliederung

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch

Blatt 0: Mathematik I für Ingenieure (B) Abbildungen und Kompositionen. apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch Blatt 0: Mathematik I für Ingenieure (B) apl. Prof. Dr. Matthias Kunik/ Dr. Uwe Risch 10.10.016 Abbildungen und Kompositionen Allgemeine Erklärungen: Siehe Seite 1 zu Anmerkungen zu Mengen und Abbildungen!

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen 4. Funktionen und Relationen Nikolaus von Oresmes Richard Dedekind (1831-1916) René Descartes 1596-1650 Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 4: Funktionen und Relationen 4.1 Funktionen:

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 36 Andreas Gathmann 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will so kann es sinnvoll sein zunächst kleinere einfachere Mengen (bzw. Gruppen) zu betrachten

Mehr

$Id: funktion.tex,v /11/17 16:00:21 hk Exp $ $Id: komplex.tex,v /11/17 16:17:18 hk Exp $

$Id: funktion.tex,v /11/17 16:00:21 hk Exp $ $Id: komplex.tex,v /11/17 16:17:18 hk Exp $ $Id: funktion.tex,v 1.29 2017/11/17 16:00:21 hk Exp $ $Id: komplex.tex,v 1.23 2017/11/17 16:17:18 hk Exp $ 2 Funktionen Wir beschäftigen uns gerade mit dem Begriff der Umkehrfunktion einer Funktion f :

Mehr

1 Loesungen zu Analysis 1/ 1.Uebung

1 Loesungen zu Analysis 1/ 1.Uebung Loesungen ausgewaehlter Beispiele zu Analysis I, G. Bergauer, Seite 1 1 Loesungen zu Analysis 1/ 1.Uebung 1.1 Einleitung Gegeben Mengen X, A mit A X. Sei die Menge durch A = {a X : a erfuellt B} gegeben,

Mehr

Analysis I Marburg, Wintersemester 1999/2000

Analysis I Marburg, Wintersemester 1999/2000 Skript zur Vorlesung Analysis I Marburg, Wintersemester 1999/2000 Friedrich W. Knöller Literaturverzeichnis [1] Barner, Martin und Flohr, Friedrich: Analysis I. de Gruyter. 19XX [2] Forster, Otto: Analysis

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Lösung 2 Hinweise 1. Eine Möglichkeit ist, auf diese Forderungen massgeschneiderte Relationen explizit anzugeben. Dies ist aber nicht

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws13/14

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 1. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 2008/09 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. 1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge

Mehr

Anmerkungen zu Mengen und Abbildungen

Anmerkungen zu Mengen und Abbildungen Anmerkungen zu Mengen und Abbildungen Kartesisches Produkt von n Mengen und n-stellige Relationen Sind M 1, M,, M n nichtleere Mengen, so ist ihr kartesisches Produkt erklärt als Menge aller geordneter

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

Abbildungen, injektiv, surjektiv, bijektiv

Abbildungen, injektiv, surjektiv, bijektiv Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 4 vom 25.10.2012 Abbildungen, injektiv, surjektiv, bijektiv Abbildungen sind eindeutige Zuordnungen Denition 23 (Abbildung(Funktion))

Mehr

Mathematische Grundlagen der Computerlinguistik I. Mengen und Mengenoperationen (Teil 1)

Mathematische Grundlagen der Computerlinguistik I. Mengen und Mengenoperationen (Teil 1) Mathematische Grundlagen der Computerlinguistik I Mengen und Mengenoperationen (Teil 1) Exzerpt aus dem Skript von Prof. Dr. Klaus U. Schulz Michaela Geierhos M.A. Centrum für Informations- und Sprachverarbeitung

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Prof. Dr. Peter Becker Fachbereich Informatik Mathematische Grundlagen Klausur Wintersemester 2015/16 16. März 2015 Name: Vorname: Matrikelnr.: Aufgabe 1 2 4 5 6 Summe Punkte 10 10 10 10 10 10 60 erreicht

Mehr

Grundbegriffe der Mathematik - Blatt 1, bis zum

Grundbegriffe der Mathematik - Blatt 1, bis zum Grundbegriffe der Mathematik - Blatt 1 bis zum 9.3.01 1. I.) Formalisieren Sie die folgenden Aussagen a) bis c) wie im folgenden Beispiel: Sei K ein Teilmenge der reellen Zahlen. Aussage: K ist genau dann

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

i=1 j= 5 2. Verifizieren Sie die Gleichung indem Sie die Ausdrücke ohne Summenzeichen schreiben. j=0

i=1 j= 5 2. Verifizieren Sie die Gleichung indem Sie die Ausdrücke ohne Summenzeichen schreiben. j=0 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten WS 2017 1. Schreiben Sie die folgenden Ausdrücke ohne Verwendung von Summen- bzw. Produktzeichen: 7 2 3 5 k 2k+1, a k, 2

Mehr

Mathematik I. Vorlesung 2. Hintereinanderschaltung und Umkehrabbildung

Mathematik I. Vorlesung 2. Hintereinanderschaltung und Umkehrabbildung Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 2 Hintereinanderschaltung und Umkehrabbildung Lemma 2.1. Es seien L und M Mengen und es sei F :L M eine Abbildung. Dann sind folgende

Mehr

Kapitel IV. Endliche, abzählbare und überabzählbare Mengen. IV.1 Abzählbare Mengen

Kapitel IV. Endliche, abzählbare und überabzählbare Mengen. IV.1 Abzählbare Mengen Kapitel IV Endliche, abzählbare und überabzählbare Mengen Wir haben schon einige Mengen in den Kapiteln I und II kennengelernt, etwa die Zahlenmengen N, Z, Q und R. Jede dieser Zahlenmengen enthält unendlich

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Aufgabe 1.1 ( Punkte) Schreiben Sie die Definitionen von Injektivität und Surjektivität einer Funktion als prädikatenlogische Formeln auf. Lösung

Mehr

Mathematische Grundlagen der Computerlinguistik I. Mengen und Mengenoperationen (Teil 2)

Mathematische Grundlagen der Computerlinguistik I. Mengen und Mengenoperationen (Teil 2) Mathematische Grundlagen der Computerlinguistik I Mengen und Mengenoperationen (Teil 2) Exzerpt aus dem Skript von Prof. Dr. Klaus U. Schulz Michaela Geierhos M.A. Centrum für Informations- und Sprachverarbeitung

Mehr

Lösungen zur Übungsserie 1

Lösungen zur Übungsserie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag, 24. September Lösungen zur Übungsserie 1 Aufgaben 1, 3, 4, 5, 6, 8 Aufgabe 1. Sei X eine endliche Menge mit n Elementen, und sei Y eine endliche

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: N. Borg, S. Hagh Shenas Noshari, 3. Gruppenübung zur Vorlesung S. Nitsche, C. Rösinger, Höhere Mathematik 1 A. Thumm, D. Zimmermann Wintersemester 018/19 Lösungshinweise zu den Hausaufgaben: M. Stroppel

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

f ist sowohl injektiv als auch surjektiv.

f ist sowohl injektiv als auch surjektiv. Bemerkungen: Wir erinnern uns an folgende Definitionen: Eine Funktion f : U V heißt injektiv, wenn gilt: ( x, y U)[x y f(x) f(y)] Eine Funktion f : U V heißt surjektiv, wenn gilt: ( y V x U)[y = f(x)]

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 1. Übungsblatt Karlsruhe Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Dr. S.Wugalter WS 2017/18 Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge

Mehr

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Schulstoffbeispiele 1. Lineare Gleichungssysteme. Lösen Sie die folgenden linearen Gleichungssysteme.

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Modulare Arithmetik. 1. Betrachte für k 2 Z die Menge k + nz:

Modulare Arithmetik. 1. Betrachte für k 2 Z die Menge k + nz: Modulare Arithmetik Wir rechnen mit den sogenannten Restklassen: Es sei n 2 N, n 1. Betrachte für k 2 Z die Menge k + nz: k + nz = {...,k 2n, k n, k, k + n, k + 2n, k + 3n,...} Beachte: (k + nz) \ (` +

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 3 Aufgabe 1 Zu überpüfen sind jeweils folgende Eigenschaften: 1. Reflexivität: x R x x S 2. Symmetrie:

Mehr

Abschnitt 1.3. Funktionen

Abschnitt 1.3. Funktionen Abschnitt 1.3 Funktionen Arbeitsdefinition des Begriffs Funktion Bereits an Ende von Abschnitt 1.1 wurde definiert: Eine Funktion f ordnet Elementen x einer Menge D Elemente f (x) zu, die in der Menge

Mehr

Alternative Lösung. Analysis I (WS 08/09) Denk/Rheinländer Gruppe 1 (Sylvia Lange) Universität Konstanz FB Mathematik & Statistik.

Alternative Lösung. Analysis I (WS 08/09) Denk/Rheinländer Gruppe 1 (Sylvia Lange) Universität Konstanz FB Mathematik & Statistik. Gruppe 1 (Sylvia Lange) Alternative Lösung zur Aufgabe 2 Aufgabe: Seien X, X Mengen und f : X X ein Abbildung. Beweisen Sie, dass folgende Aussagen äquivalent sind: a) f injektiv b) f(a B) = f(a) f(b)

Mehr

2 Algebraische Grundstrukturen

2 Algebraische Grundstrukturen 30 2 Algebraische Grundstrukturen Definition. Eine Verknüpfung auf einer Menge G ist eine Abbildung : G G G (a, b) a b. Schreibweise. a b, a b, ab, a + b. Beispiele. (i) G = N : N N N (a, b) a + b. G =

Mehr

Homotopie von Abbildungen und Anwendungen

Homotopie von Abbildungen und Anwendungen Homotopie von Abbildungen und Anwendungen Proseminar Fundamentalgruppen und ihre Anwendungen Bearbeitung: Daniel Schliebner Herausgabe: 04. Juli 2007 Daniel Schliebner Homotopie von Abbildungen und Anwendungen

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14

Mathematik für Informatiker 1 Wintersemester 2013/14 Heimarbeitsblatt 14 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker Wintersemester 3/4 Heimarbeitsblatt 4 Die Lösungshinweise dienen

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.4 2010/05/31 08:41:53 hk Exp hk $ 3 Topologische Gruppen Nachdem wir jetzt gezeigt haben das Quotienten G/H topologischer Gruppen wieder topologische Gruppen sind, wollen wir das Ergebnis

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen

ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen ELEMENTARE DISKRETE MATHEMATIK Kapitel 4: Mächtigkeit von Mengen MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen

Mehr

Diskrete Strukturen. Vorlesung 7: Fixpunkte & Kardinalität. 27. November 2018

Diskrete Strukturen. Vorlesung 7: Fixpunkte & Kardinalität. 27. November 2018 Diskrete Strukturen Vorlesung 7: Fixpunkte & Kardinalität 27. November 2018 Nächste Termine Modul Diskrete Strukturen Hörsaalübung (Mo. 9:15) Vorlesung (Di. 17:15) 26.11. 27.11. Fixpunkte + Kardinalitäten

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv?

f(x) = x f 1 (x) = x. Aufgabe 2. Welche der folgenden Funktionen sind injektiv, surjektiv, bijektiv? Umkehrfunktionen Aufgabe 1. Sei A = {1, 2, 3, 4}. Definieren Sie eine bijektive Funktion f A A und geben Sie ihre Umkehrfunktion f 1 an. Lösung von Aufgabe 1. Zum Beispiel f, f 1 A A mit f(x) = x f 1 (x)

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 4 Injektive und surjektive Abbildungen Definition 4.1. Es seien L und M Mengen und es sei eine Abbildung. Dann heißt F F

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 2018/2019 18.10.2018 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 6. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 6. Vorlesung 1 / 36 Themen

Mehr

(P3 ) Ist M D mit d M und S(M) M, dann gilt M = D.

(P3 ) Ist M D mit d M und S(M) M, dann gilt M = D. Kapitel 2 Die natürlichen Zahlen 2.1 Peano-Systeme Definition 2.1. Ein Tripel (D, S, d) mit den Eigenschaften (P1) d D, (P2) S : D D, (P3) S(n) d für alle n D, (P4) S ist injektiv, (P5) Ist M D mit d M

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Algebraische Topologie WS 2016/17 Ausgewählte Lösungen der Woche 4

Algebraische Topologie WS 2016/17 Ausgewählte Lösungen der Woche 4 6.132 - Algebraische Topologie WS 2016/17 Ausgewählte Lösungen der Woche 4 Martin Frankland 17.11.2016 Aufgabe 1. Seien X und Y Räume. Zeigen Sie, dass Homotopie f g eine Äquivalenzrelation auf der Menge

Mehr

Mathematik III. Vorlesung 61. Abzählbare Mengen

Mathematik III. Vorlesung 61. Abzählbare Mengen Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 61 Abzählbare Mengen Wir erinnern daran, dass zwei Mengen M und N gleichmächtig heißen, wenn es eine bijektive Abbildung zwischen ihnen

Mehr

Funktionen, Mächtigkeit, Unendlichkeit

Funktionen, Mächtigkeit, Unendlichkeit Funktionen, Mächtigkeit, Unendlichkeit Nikolai Nowaczyk http://math.nikno.de, Lars Wallenborn http://www.wallenborn.net/ Frühjahrsakademie 12.04. - 14.04.2013 Inhaltsverzeichnis

Mehr