Teil X Business Intelligence Anwendungen

Größe: px
Ab Seite anzeigen:

Download "Teil X Business Intelligence Anwendungen"

Transkript

1 Teil X Business Intelligence Anwendungen

2 Business Intelligence Anwendungen 1 Begriffsklärung c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

3 Business Intelligence Anwendungen 1 Begriffsklärung 2 c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

4 Business Intelligence Anwendungen 1 Begriffsklärung 2 3 Report & BSC c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

5 Begriffsklärung Business Intelligence Vielfältige Begrifflichkeit: 1989 Begriff Business Intelligence geprägt [Dresner 1989] ab den 60er Jahren (seit der Datenverarbeitung): Management-Informations-Systeme Management-Support-Systeme Executive-Information-Systeme Unterscheidung: Im engeren Sinne Analyseorientiert Im weiteren Sinne c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

6 Begriffsklärung Intelligence Begrifflichkeit: Auffinden von Ordnungen, Regeln für Gemeinsamkeiten (Zusammentreffen), Regeln für Neben- und Nacheinanderauftreten von Ereignissen, Gezielte Sammlung und Weitergabe von Informationen, Informationslogik c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

7 Begriffsklärung Wissenspyramide Können Wissen Verbesserte Entscheidungsfindung Wissensbasierte Systeme 4. Stufe 3. Stufe Information klassische Management- Informations-Systeme 2. Stufe Daten Data Warehouse 1. Stufe c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

8 Begriffsklärung Business Intelligence Daten- und Informationsverarbeitung für die Unternehmensleitung Informationslogistik: Filterung von Informationen MIS: schnelle und flexible Auswertungen Frühwarnsystem im Unternehmen ( Alerting ) BI = Data Warehousing Informations- und Wissensspeicherung Prozess von Erhebung Diagnose Therapie Prognose Kontrolle [Mertens 2002] c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

9 Begriffsklärung Business Intelligence Business Intelligence bezeichnet den analytischen Prozess, der fragmentierte Unternehmens- und Wettbewerbsdaten in handlungsgerichtetes Wissen über die Fähigkeiten, Positionen, Handlungen und Ziele der betrachteten internen oder externen Handlungsfelder (Akteure und Prozesse) transformiert. [Grothe & Gensch 2000] Analytischer Prozess: Planen, Entscheiden und Steuern Allgegenwärtige Datenintegration und -bereitstellung Handlungsgerichtetes Wissen: Kommunikation + Information + Wissensdarstellung c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

10 Begriffsklärung Business Intelligence Portfolio Unternehmens-, Markt, und Wettbewerbsanalyse Ausprägung der quantitativ überwiegend qualitativ Datengrundlage: strukturiert semi-strukturiert Entdeckungsprozess: hypothesengestützt hypothesenfrei Bereitstellung Data-Warehouse-Systeme Internet (data delivery) Multidimensionale Modelle für: Agententechnologie Planung, Budgetierung, (ex- und) implizites Wissen Analyse, Reporting Entdeckung OLAP Analysen, Business-Simulatoren (knowledge discovery) Balanced Scorecards Früherkennungssysteme ABC-Analyse, Data Mining, Text Mining Abweichungsanalyse Fallbasiertes Schließen Kommunikation standardisiertes und Interessenprofile (knowledge sharing) ereignisgesteuertes Reporting Issue Management Informationssysteme traditionelles Wissensmanagement Pull und Push-Service Competitive Intelligence: Unternehmens-, Markt- und Wettbewerbsanalyse c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

11 Begriffsklärung Business Intelligence Prozess Datenanalyse Präsentation, Analyse Applikation OLAP Informationsmodellierung Multidimensionale Berechnungen Data Warehouse Datenspeicherung Administration ETL Selektion, Extraktion Transformation, Laden Operative Systeme Transaktionsabwicklung Anbindung externer Quellen c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

12 Begriffsklärung Data Warehouse und Business Intelligence Data Warehouse ist zentraler Informationsspeicher BI: Methoden zur Verbindung quantitativer, qualitativer, interner und externer Informationen Menge der DW-Daten muss geeignet gefiltert und aggregiert werden, um personalisierte Informationen / Wissen darzustellen Data Mart stellt Ausgangspunkt für domänenspezifische Analyse dar Hohes Datenaufkommen: Datenbestände im OLAP-Bereich wachsen ständig Überblick über Strukturen der Daten mittels explorativen Verfahren Data Mining und Mustererkennung c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

13 Begriffsklärung Knowledge Discovery Prozess Bewertung Wissen Datenbereinigung und -integration Data Warehouse Selektion und Transformation Data Marts Data Mining Muster Dok Dok Dok Datenquellen [Han & Kamber 2006] c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

14 Begriffsklärung Business Intelligence Business Intelligence ist die entscheidungsorientierte Sammlung, Aufbereitung und Darstellung geschäftsrelevanter Informationen. Entscheidungsgrundlagen verbessern, [Schrödl 2006] Datensammlung: heterogene Quellen und Anforderungen (z.b. Sicherheit) Rohdaten zu Informationen transformieren (z.b. mathematisch, regelbasiert) Informationsdarstellung für Anwender Konzentration auf Geschäftsrelevanz (Optimierung Nutzen & Aufwand) c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

15 Begriffsklärung BI-Zyklus 1 Quantifizieren und Qualifizieren von Unternehmensinformationen 2 Analyse der gewonnen Daten 3 Ableiten von Erkenntnissen, welche die geschäftlichen Vorgänge unterstützen 4 Bewerten der Erkenntnisse in Bezug auf die Ziele 5 Umsetzen der relevanten Erkenntnisse in konkrete Maßnahmen [Vitt et al. 2002] c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

16 Begriffsklärung Business Intelligence externe Datenquellen ERP-DB Planung Servicequalität: Monitoring + Steuerung Data Mining Data Warehouse Geschäftsoptimierung Problembehandlung + Riskomanagement Entscheidungsunterstützung Business Simulation c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

17 Typische DW Welche Kunden haben wir? Customer Relationship Management Wie entwickeln sich unsere Kosten? Supply Chain Management Wo existieren in unserem Produktsortiment weitere Potentiale? Warenkorbanalyse... c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

18 Typische Data Mining Verfahren Assoziationsregeln Was wurde gemeinsam in einem Warenkorb gekauft? Klassifikationsverfahren Welchen Kundengruppen sollen wir Aktionen vorschlagen? Clustering Welche Gemeinsamkeiten gibt es bei unseren Kunden / Lieferanten?... c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

19 Warenkorbanalyse Transaktionen an der Kasse (Transaktionsdatenbank): T1: {Müller-Thurgau, Riesling, Dornfelder} T2: {Riesling, Erfurter Bock, Ilmenauer Pils, Anhaltinisch Flüssig} T3: {Müller-Thurgau, Riesling, Erfurter Bock } Warenkorbanalyse: Welche Waren werden häufig miteinander gekauft? Ziele: Optimierung Laden-Layout Cross-Marketing Add-On Sales c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

20 Assoziationsregel Regeltyp: Rumpf Kopf [support, confidence] Beispiel: kauft(x, Rotwein ) kauft(x, Erfurter Bock ) [0.5%, 60%] 98% aller Kunden, die Müller-Thurgau und Riesling kaufen, bezahlen mit Kreditkarte. c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

21 Grundbegriffe nach [Agrawal und Srikant (1994)] Items I = {i 1, i 2,..., i m } Grundgesamtheit an Literalen Itemset X: X I Datenbank D Menge von Transaktionen X I X T Lexikografische Sortierung in T und X Länge k eines Itemsets: Anzahl der Elemente k-itemset: Itemset der Länge k c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

22 Grundbegriffe (2) Support der Menge X in D: Anteil der Transaktionen in D, die X enthalten: supp(x) = X D Assoziationsregel: A B, mit A I, B I und A B = Support s einer Assoziationsregel A B in D: s = supp(x Y) Konfidenz c einer Assoziationsregel A B in D: Anteil der Transaktionen, die B enthalten, wenn sie in A enthalten sind c = conf (B A) = supp(a B) supp(a) Problem: Bestimme alle Assoziationsregeln, die in D einen Support minsup und einen Konfidenz minconf besitzen. c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

23 Beispiel Assoziationsregeln minsup = 20 % TID Items 1 Erfurter Bock, MT, Riesling 2 Erfurter Bock, MT, Dornfelder 3 Ilmenauer Pils, MT 4 Anhaltinisch Flüssig, Dornfelder, Riesling 5 Berliner Bräu, Dornfelder, Riesling 6 Kölnische Weiße, MT 7 Anhaltinisch Flüssig, Dornfelder supp(mt) 57% supp(riesling) = supp(dornfelder) 43% supp(erfurter Bock) = supp(anhaltinisch Flüssig) 29% supp(ilmenauer Pils) = supp(berliner Bräu) = supp(köln. Weiße) 14%. potentielle Kandidaten: MT, Riesling, Dornfelder, Erfurter Bock, Anhaltinisch Flüssig c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

24 Beispiel Assoziationsregeln (2) mögliche Kombinationen aller Kandidaten: Itemset Support in % (Erfurter Bock, MT) 29 (Erfurter Bock, Riesling) 14 (Erfurter Bock, Dornfelder) 14 (Erfurter Bock, Anhaltinisch Flüssig) 0 (MT, Riesling) 14 (MT, Dornfelder) 14 (MT, Anhaltinisch Flüssig) 0 (Riesling, Dornfelder) 29 (Riesling, Anhaltinisch Flüssig) 0 (Dornfelder, Anhaltinisch Flüssig) 29 c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

25 Apriori Algorithmus Input I, D, minsup Output k L k C k : zu zählende Kandidaten-Itemsets der Länge k L k : Menge aller häufig vorkommenden Itemsets der Länge k initialisiere L 1 := 1-Itemsets aus I, k:= 2 WHILE L k 1 C k := AprioriKandidatenGenerierung(L k 1 ); FOR EACH Transaktion T D CT := Subset(C k, T) // alle Kandidaten aus C k, die in T enthalten FOR jeden Kandidat c CT c.count++ L k := {c C k (c.count/ D ) minsup} k++ c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

26 Effizienzsteigerung Apriori Algorithmus Zählen des Supports mittels Hashtabelle [Park, Chen, Yu 1995] Hashtabelle statt Hashbaum k-itemset, dessen Bucket einen Zähler kleiner den minimalen Support aufweist, kann nicht häufig auftreten effizienterer Zugriff auf Kandidaten, ungenauere Zählung Transaktionsreduktion [Agrawal & Srikant 1994] Transaktionen, die kein häufiges k-itemset aufweisen, werden nicht benötigt, d.h. können entfernt werden Datenbank-Scan effizienter, aber Schreibaufwand c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

27 Effizienzsteigerung Apriori Algorithmus (2) Partitionierung [Savasere, Omiecinski & Navathe 1995] Itemset nur häufig, wwenn es in einer Partition häufig ist Ausnutzung des Hauptspeichers (Partition) Partitionseffizient, aber Aufwand beim Zusammensetzen Sampling [Toivonen 1996] Anwendung Apriori auf Ausschnitt (Sample) Zählen der gefundenen Regeln auf Gesamtdatenbank c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

28 Clusterverfahren Identifikation einer endlichen Menge von Gruppen in Daten Suche nach Partitionierung Ähnlichkeit innerhalb Gruppe Möglichst Verschieden zwischen den Gruppen Auftretende Muster (Größe, Form, Dichte): c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

29 Distanzfunktionen Ähnlichkeitsmaß sim(objekt 1, objekt 2 ) Distanzfunktion dist(objekt 1, objekt 2 ) O O R + kleine Distanz ähnlich, große Distanz unähnlich dist(objekt1, objekt 2 ) = 0, genau dann wenn objekt 1 = objekt 2 Symmetrie: dist(objekt 1, objekt 2 ) = dist(objekt 2, objekt 1 ) Bei Metriken: dist(objekt 1, objekt 3 ) dist(objekt 1, objekt 2 ) + dist(objekt 2, objekt 3 ) c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

30 Partitionierendes Clustering ClusteringDurchVarianzMinimierung Input:Tupelmenge D, Klassenanzahl k Output: Cluster C Erzeuge eine Anfangs-Zerlegung von D in k Klassen Berechne Menge C = {C 1,..., C k } der Centroide für die k Klassen C := {} repeat C := C Partioniere: Bilde k Klassen durch Zuordnung jedes Punktes zum nächstliegenden Centroid aus C Berechne Centroide: Berechne die Menge C = {C1,..., C k } der Centroide für die neu bestimmten Klassen until C = C c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

31 Clusterverfahren: Illustration Berechnung der neuen Centroide Berechnung der neuen Centroide Zuordnung zum nächsten Centroid c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

32 Vor- und Nachteile Vorteile: linearer Aufwand pro Iteration, wenige Iterationen einfache Implementierung k-means [MacQueen 1967]: populärster Clusteralgorithmus Nachteile: Rauschen- und Ausreißeranfällig konvexe Form der Cluster Bestimmung Anzahl der Cluster Initialaufteilung wichtig für Laufzeit und Ergebnis c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

33 Klassifikation: Beispiel Schmeckt uns der Wein? Alkoholgehalt Lernalgorithmen TID Weinart Restsüße g/l Alkoholgehalt Class 1 Weiß Yes 2 Rot 20 9 Yes 3 Rose 22 9 No 4 Rose 15 8 No 5 Rot 30 5 Yes 6 Weiß Yes 7 Rot No 8 Weiß 45 5 Yes 9 Weiß Yes 10 Rot 8 10 No Trainings Set Induktion Lerne Modell Modell Modell Modell TID Weinart Restsüße g/l Class 11 Rot 23 10? 12 Rose 15 12? 13 Weiß 22 10? 14 Weiß 30 6? 15 Rot 12 14? Deduktion Wende Modell an Inferenz 17 Weiß 5 16? Test Set c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

34 Klassifikation Gegeben sind Menge von Objekten mit Attributen o = (x 1,..., x d ) und Zugehörigkeit zu Klassenmenge C Gesucht: Klassifikator K für neue Objekte K : Objekte neu C Klassenzugehörigkeit a-priori bekannt Abgrenzung zu Clusterverfahren Ähnlich zu Prognose (z.b. lineare Regression) c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

35 Klassifikationsergebnis TID Weinart Restsüße g/l Alkoholgehalt Ja/Nein 1 Rot Ja 2 Weiß Nein 3 Rose Ja 4 Weiß 30 6 Ja 5 Rot Nein <=15 Restsüße >15 Weinart Ja Weiß Rose Rot Nein Ja Nein c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

36 Klassifikationsgüte Vorhersage wahre Werte Klasse zugehörig Klasse nicht zugehörig Klasse zugehörig True Positive False Negative Klasse nicht zugehörig False Positive True Negative Accuracy: Precision: p = Recall: r = F-Measure: F = TP+TN TP+FN+FP+TN TP TP+FP TP TP+FN 2 TP 2 TP+FN+FP c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

37 Klassifikationsmethoden Entscheidungsbaum Regelbasiert Lineare Diskriminanz nach Fisher Kategorielle Regression, Log-Lineare Modelle Neuronale Netzwerke Naive Bayes und Bayesian Belief Networks Support-Vektor-Maschinen c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

38 Entscheidungsbaum Vorgehen: Splitting und Partitionieren Explizites Wissen wird gefunden Leicht verständlich Gut visualisierbar c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

39 Algorithmus für Entscheidungsbaum Input: Trainingsdatensätze Initialisierung: alle Datensätze gehören zum Wurzelknoten WHILE Splitattribut vorhanden OR Datensätze eines Knoten in unterschiedlichen Klassen Wähle Splitattribut (Splittingstrategie) Partitioniere Datensätze des Knoten anhand Attribut Rekursion für alle Partitionen c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

40 Entscheidungsbaum: Ergebnis E(z a 1 ) = (-2500) x (-2500) x ( ) = E(z a 2 ) = ( ) x x ( ) = p 1 z 1 (-2500) a 1 All p 2 p 1 z 2 (-2500) z 1 ( ) a 2 p 2 z 2 (0) c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

41 Prognose: Beispiel Monatlicher Tankbierabsatz einer Brauerei (khl) khl Jan Feb Mär Apr Mai Jun Jul Aug Sept Okt Nov Dez Monatlicher Bierabsatz Absatzentwicklung je Monat Januar khl khl Februar März April Mai Juni Juli August September Oktober November Dezember lfd. Monat c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

42 Zeitreihenmodelle Additiv: X t = G t + S t + e t Multiplikativ: X t = G t S t e t Gemischt: X t = G t S t + e t Komponenten: Konstant: dx t /ds t = 1 Niveauabhängig: dx t /ds t = G t X t : Ausprägung zum Zeitpunkt t G t : Trend, Wachstum S t : Saison, Konjunktur, Zyklen e t : Fehlerterm c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

43 Report & BSC Reporting Report Jahr 2011 Verkauf von Rotwein: 12,2 Mio. Verkauf von Weißwein: 9,4 Mio. Verkauf von Rosewein: 6,8 Mio. 1.Halbjahr Verkauf von Rotwein: 6,8 Mio. Verkauf von Weißwein: 6 Mio. Verkauf von Rosewein: 2,5 Mio. Umsatz: 10,3 Mio Gewinn: 2,1 Mio 2.Halbjahr Verkauf von Rotwein: 5,4 Mio. Verkauf von Weißwein: 3,4 Mio. Verkauf von Rosewein: 4,3 Mio. Weißwein Herstellung Rose Rotwein Mitarbeiterzufriedenheit Kundenzufriedenheit Marktentwicklung Vertrieb c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

44 Report & BSC Balanced Scorecard Finanzielle Perspektive Wie sollen wir gegenüber Teilhabern auftreten, um finanziellen Erfolg zu haben? Kundenperspektive Wie sollen wir gegenüber unseren Kunden auftreten, um unsere Visionen zu verwirklichen? Vision & Strategie Lern- und Entwicklungs- Perspektive Interne- (Geschäftsprozess) Perspektive In welchen Geschäftsprozessen müssen wir die Besten sein, um unsere Teilhaber und Kunden zu befriedigen? Wie können wir unsere Veränderungs- und Wachstumspotentiale fördern, um unsere Vision zu verwirklichen? c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

45 Report & BSC Wirkungszusammenhänge Ursache- Wirkungskette Return on Capital Employed Finanzielle Perspektive Kundentreue Kundenperspektive Interne Perspektive Pünktliche Lieferung Interne Perspektive Prozessqualität Prozessdurchlaufzeit Fachwissen der Mitarbeiter Lernperspektive c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

46 Report & BSC Entscheidungsunterstützung Realität Entscheidungsfeld Informationen Aktionen Informationssystem Entscheidungslogik Zielsystem Modellwelt c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung:

Teil X Business Intelligence Anwendungen

Teil X Business Intelligence Anwendungen Teil X Business Intelligence Anwendungen Business Intelligence Anwendungen 1 Begriffsklärung 2 3 Report & BSC c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung: 20.01.2012 10 1 Begriffsklärung

Mehr

Teil X Business Intelligence Anwendungen

Teil X Business Intelligence Anwendungen Teil X Business Intelligence Anwendungen Business Intelligence Anwendungen Begriffsklärung 1 Report & BSC c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung: 13.01.2015 10 1 Begriffsklärung

Mehr

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung Ermittlung von Assoziationsregeln aus großen Datenmengen Zielsetzung Entscheidungsträger verwenden heutzutage immer häufiger moderne Technologien zur Lösung betriebswirtschaftlicher Problemstellungen.

Mehr

Non-Profit-Organisationen: Vom Controlling zum Strategischen Management

Non-Profit-Organisationen: Vom Controlling zum Strategischen Management Non-Profit-Organisationen: Vom Controlling zum Strategischen Management Einordnung der Begriffe Business Intelligence Strategic Association Management Controlling and Data Warehousing Data Mining, Knowledge

Mehr

FernUniversität in Hagen. Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln. Thema 1.1.1 Der Apriori-Algorithmus

FernUniversität in Hagen. Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln. Thema 1.1.1 Der Apriori-Algorithmus FernUniversität in Hagen Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln Thema 1.1.1 Der Apriori-Algorithmus Referentin: Olga Riener Olga Riener. Thema 1.1.1. Der

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

6.6 Vorlesung: Von OLAP zu Mining

6.6 Vorlesung: Von OLAP zu Mining 6.6 Vorlesung: Von OLAP zu Mining Definition des Begriffs Data Mining. Wichtige Data Mining-Problemstellungen, Zusammenhang zu Data Warehousing,. OHO - 1 Definition Data Mining Menge von Techniken zum

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Präsentation zur Diplomprüfung. Thema der Diplomarbeit:

Präsentation zur Diplomprüfung. Thema der Diplomarbeit: Präsentation zur Diplomprüfung Thema der Diplomarbeit: Analyse der Einsatzmöglichkeiten von Data Mining- Verfahren innerhalb einer Unternehmens - Balanced Scorecard und Entwicklung eines Empfehlungskatalogs.

Mehr

4. Assoziationsregeln. 4.1 Einleitung. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation

4. Assoziationsregeln. 4.1 Einleitung. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation 4.1 Einleitung 4. Assoziationsregeln Inhalt dieses Kapitels Transaktionsdatenbanken, Warenkorbanalyse 4.2 Einfache Assoziationsregeln Grundbegriffe, Aufgabenstellung, Apriori-Algorithmus, Hashbäume, Interessantheit

Mehr

Business Intelligence. Business Intelligence Seminar, WS 2007/08

Business Intelligence. Business Intelligence Seminar, WS 2007/08 Business Intelligence Seminar, WS 2007/08 Prof. Dr. Knut Hinkelmann Fachhochschule Nordwestschweiz knut.hinkelmann@fhnw.ch Business Intelligence Entscheidungsorientierte Sammlung, Aufbereitung und Darstellung

Mehr

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation?

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation? 1. Konferenz der A Benutzer KFE in Forschung und Entwicklung Data Mining - Marketing-chlagwort oder ernstzunehmende Innovation? Hans-Peter Höschel,, Heidelberg 1. Konferenz der A Benutzer KFE in Forschung

Mehr

Folien zum Textbuch. Kapitel 6: Managementunterstützungssysteme. Teil 2: Textbuch-Seiten 794-825

Folien zum Textbuch. Kapitel 6: Managementunterstützungssysteme. Teil 2: Textbuch-Seiten 794-825 Folien zum Textbuch Kapitel 6: Managementunterstützungssysteme Teil 2: Managementunterstützung auf strategischer Ebene Datenverwaltung und -auswertung Textbuch-Seiten 794-825 WI 1 MUS MUS auf strategischer

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

4.1 Einleitung. 4. Assoziationsregeln. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation. Assoziationsregeln

4.1 Einleitung. 4. Assoziationsregeln. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation. Assoziationsregeln 4.1 Einleitung 4. Assoziationsregeln Inhalt dieses Kapitels Transaktionsdatenbanken, Warenkorbanalyse 4.2 Einfache Assoziationsregeln Grundbegriffe, Aufgabenstellung, Apriori-Algorithmus, Hashbäume, Interessantheit

Mehr

Entscheidungsunterstützungssysteme

Entscheidungsunterstützungssysteme Vorlesung WS 2013/2014 Christian Schieder Professur Wirtschaftsinformatik II cschie@tu-chemnitz.eu Literatur zur Vorlesung Gluchowski, P.; Gabriel, R.; Dittmar, C.: Management Support Systeme und Business

Mehr

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle ??? Zusammenfassung, Ergänzung, Querverbindungen, Beispiele A.Kaiser; WU-Wien MIS 188 Data Warehouse Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Mehr

RACE Reporting and Analysis of Communication Efficiency

RACE Reporting and Analysis of Communication Efficiency RACE Reporting and Analysis of Communication Efficiency Niedersächsischen PR Forum Lingen (Ems) / Fachhochschule Osnabrück 17. März 26 Frank Herkenhoff,, M.A. PLEON Kohtes Klewes München Sonnenstrasse

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Business Intelligence im Krankenhaus

Business Intelligence im Krankenhaus Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

Business Intelligence Entscheidungsinformationen für eine erfolgreiche Unternehmensentwicklung im Mittelstand

Business Intelligence Entscheidungsinformationen für eine erfolgreiche Unternehmensentwicklung im Mittelstand Business Intelligence Entscheidungsinformationen für eine erfolgreiche Unternehmensentwicklung im Mittelstand 2. Fachtagung Dynamisierung des Mittelstandes durch IT, 09.09.2008 Was ist Business Intelligence

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Industrial Data Intelligence. Datenbasierte Produktionsoptimierung

Industrial Data Intelligence. Datenbasierte Produktionsoptimierung !DI Industrial Data Intelligence Datenbasierte Produktionsoptimierung Industrial Data Intelligence Sammeln Analysieren Mit dem Industrial Data Intelligence-Angebot ermöglicht Softing Industrial die datenbasierte

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

Kapitel 12: Schnelles Bestimmen der Frequent Itemsets

Kapitel 12: Schnelles Bestimmen der Frequent Itemsets Einleitung In welchen Situationen ist Apriori teuer, und warum? Kapitel 12: Schnelles Bestimmen der Frequent Itemsets Data Warehousing und Mining 1 Data Warehousing und Mining 2 Schnelles Identifizieren

Mehr

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Data Warehouse Technologien

Data Warehouse Technologien mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de

Mehr

Intelligence (BI): Von der. Nürnberg, 29. November 2011

Intelligence (BI): Von der. Nürnberg, 29. November 2011 Modelle für Business Intelligence (BI): Von der Anforderung zum Würfel Nürnberg, 29. November 2011 Warum Modelle für Business Intelligence (BI)? Warum Modelle für Business Intelligence (BI)? Bis zur Auswertung

Mehr

Mala Bachmann September 2000

Mala Bachmann September 2000 Mala Bachmann September 2000 Wein-Shop (1) Umsatz pro Zeit und Produkt Umsatz Jan Feb Mrz Q1 Apr 2000 Merlot 33 55 56 144 18 760 Cabernet-S. 72 136 117 325 74 1338 Shiraz 85 128 99 312 92 1662 Rotweine

Mehr

Visual Business Intelligence Eine Forschungsperspektive

Visual Business Intelligence Eine Forschungsperspektive Visual Business Intelligence Eine Forschungsperspektive Dr. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung IGD Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155 646 Fax.: +49

Mehr

WEKA A Machine Learning Interface for Data Mining

WEKA A Machine Learning Interface for Data Mining WEKA A Machine Learning Interface for Data Mining Frank Eibe, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H. Witten Reinhard Klaus Losse Künstliche Intelligenz II WS 2009/2010

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Zeitgemäße Verfahren für ganzheitliche Auswertungen

Zeitgemäße Verfahren für ganzheitliche Auswertungen Intelligente Vernetzung von Unternehmensbereichen Zeitgemäße Verfahren für ganzheitliche Auswertungen Sächsische Industrie- und Technologiemesse Chemnitz, 27. Juni 2012, Markus Blum 2012 TIQ Solutions

Mehr

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML Data Mining Standards am Beispiel von PMML Allgemeine Definitionen im Data Mining Data Mining (DM) Ein Prozess, um interessante neue Muster, Korrelationen und Trends in großen Datenbeständen zu entdecken,

Mehr

Prozessorientierte Applikationsund Datenintegration mit SOA

Prozessorientierte Applikationsund Datenintegration mit SOA Prozessorientierte Applikationsund Datenintegration mit SOA Forum Business Integration 2008, Wiesbaden Dr. Wolfgang Martin unabhängiger Analyst und ibond Partner Business Integration 1998 2008 Agenda Business

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

Ihre PRAXIS Software AG. a t o s. - nalytisch. - aktisch. - perativ. - trategisch. Unser atos Konzept für Ihren Erfolg

Ihre PRAXIS Software AG. a t o s. - nalytisch. - aktisch. - perativ. - trategisch. Unser atos Konzept für Ihren Erfolg Ihre PRAXIS Software AG a t o s - nalytisch - aktisch - perativ - trategisch Unser atos Konzept für Ihren Erfolg Das atos Konzept macht geschäftskritische Daten und Abläufe transparent ermöglicht einfache

Mehr

Algorithms for Pattern Mining AprioriTID. Stefan George, Felix Leupold

Algorithms for Pattern Mining AprioriTID. Stefan George, Felix Leupold Algorithms for Pattern Mining AprioriTID Stefan George, Felix Leupold Gliederung 2 Einleitung Support / Confidence Apriori ApriorTID Implementierung Performance Erweiterung Zusammenfassung Einleitung 3

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Institut für Statistik LMU München Sommersemester 2013 Zielsetzung

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

Anwendung der Business Analytics

Anwendung der Business Analytics Anwendung der Business Analytics TDWI 2013 München Prof. Dr. Carsten Felden Dipl.-Wirt.-Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg (Sachsen) Institut für Wirtschaftsinformatik

Mehr

Historie der analyseorientierten Informationssysteme

Historie der analyseorientierten Informationssysteme Gliederung MSS 1. Einführung in die Management Support Systeme (MSS) 2. Data Warehouse als Basis-Konzept aktueller MSS 3. Business Intelligence (BI) als Weiterführung des DW-Ansatzes 1. Grundlagen zum

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Kapitel 11: Association Rules

Kapitel 11: Association Rules Kapitel 11: Association Association Einleitung Association : Eine wichtige Art von Mustern, an der man im Data-Mining Kontext interessiert ist. Muster mit einfacher Struktur. Ziel im folgenden: Finden

Mehr

Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld. München, 26. Januar 2010

Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld. München, 26. Januar 2010 Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld München, 26. Januar 2010 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen

Mehr

Management Support Systeme

Management Support Systeme Management Support Systeme WS 24-25 4.-6. Uhr PD Dr. Peter Gluchowski Folie Gliederung MSS WS 4/5. Einführung Management Support Systeme: Informationssysteme zur Unterstützung betrieblicher Fach- und Führungskräfte

Mehr

Dominik Pretzsch TU Chemnitz 2011

Dominik Pretzsch TU Chemnitz 2011 Dominik Pretzsch TU Chemnitz 2011 Wir leben im Informationszeitalter und merken es daran, dass wir uns vor Information nicht mehr retten können. Nicht der überwältigende Nutzen der Information, sondern

Mehr

5. Assoziationsregeln

5. Assoziationsregeln 5. Generieren von Assoziationsregeln Grundbegriffe 5. Assoziationsregeln Assoziationsregeln beschreiben gewisse Zusammenhänge und Regelmäßigkeiten zwischen verschiedenen Dingen, z.b. den Artikeln eines

Mehr

Data Warehouse und Data Mining

Data Warehouse und Data Mining Data Warehouse und Data Mining Marktführende Produkte im Vergleich von Dr. Heiko Schinzer, Carsten Bange und Holger Mertens 2., völlig überarbeitete und erweiterte Auflage -. - Verlag Franz Vahlen München

Mehr

Business Performance Management Next Generation Business Intelligence?

Business Performance Management Next Generation Business Intelligence? Business Performance Management Next Generation Business Intelligence? München, 23. Juni 2004 Jörg Narr Business Application Research Center Untersuchung von Business-Intelligence-Software am Lehrstuhl

Mehr

1. Einführung und Grundbegriffe

1. Einführung und Grundbegriffe 1. Einführung und Grundbegriffe Business Intelligence 1. Einführung und Grundbegriffe Lernziele: Wichtige Grundbegriffe verstehen, einordnen und erläutern können; Grundlegende Merkmale von Decision Support

Mehr

Masterarbeit. im Studiengang Informatik. Kombinationen von Data Mining-Verfahren: Analyse und Automatisierung. Ulf Mewe Matrikel.-Nr.

Masterarbeit. im Studiengang Informatik. Kombinationen von Data Mining-Verfahren: Analyse und Automatisierung. Ulf Mewe Matrikel.-Nr. LEIBNIZ UNIVERSITÄT HANNOVER FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIK INSTITUT FÜR PRAKTISCHE INFORMATIK FACHGEBIET DATENBANKEN UND INFORMATIONSSYSTEME Masterarbeit im Studiengang Informatik Kombinationen

Mehr

Virtual Roundtable: Business Intelligence - Trends

Virtual Roundtable: Business Intelligence - Trends Virtueller Roundtable Aktuelle Trends im Business Intelligence in Kooperation mit BARC und dem Institut für Business Intelligence (IBI) Teilnehmer: Prof. Dr. Rainer Bischoff Organisation: Fachbereich Wirtschaftsinformatik,

Mehr

1. Einführung und Grundbegriffe. Business Intelligence. Definitionsvielfalt

1. Einführung und Grundbegriffe. Business Intelligence. Definitionsvielfalt 1. Einführung und Grundbegriffe Lernziele: Wichtige Grundbegriffe verstehen, einordnen und erläutern können; Grundlegende Merkmale von Decision Support Systemen kennen; Arten von Wissen kennen und gegeneinander

Mehr

Früherkennung mit Business-Intelligence- Technologien

Früherkennung mit Business-Intelligence- Technologien Bernhard Gehra Früherkennung mit Business-Intelligence- Technologien Anwendung und Wirtschaftlichkeit der Nutzung operativer Datenbestände Mit einem Geleitwort von Prof. Dr. Thomas Hess Deutscher Universitäts-Verlag

Mehr

DBS5 Kap. 4. Data Mining

DBS5 Kap. 4. Data Mining DBS5 Kap. 4 Data Mining Klassifikationen und Cluster-Bildung: Auffinden von Regeln zur Partitionierung von Daten in disjunkte Teilmengen (Anwendungsbeispiel: Risikoabschätzung) bzw. Herstellen von Gruppierungen

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

6. Überblick zu Data Mining-Verfahren

6. Überblick zu Data Mining-Verfahren 6. Überblick zu Data Mining-Verfahren Einführung Clusteranalyse k-means-algorithmus Canopy Clustering Klassifikation Klassifikationsprozess Konstruktion eines Entscheidungsbaums Assoziationsregeln / Warenkorbanalyse

Mehr

Data Mining-Modelle und -Algorithmen

Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining ist ein Prozess, bei dem mehrere Komponenten i n- teragieren. Sie greifen auf Datenquellen, um diese zum Training,

Mehr

Datenbanken und Informationssysteme

Datenbanken und Informationssysteme Datenbanken und Informationssysteme Lehrangebot Stefan Conrad Heinrich-Heine-Universität Düsseldorf Institut für Informatik April 2012 Stefan Conrad (HHU) Datenbanken und Informationssysteme April 2012

Mehr

Inhaltsverzeichnis. Holger Schrödl. Business Intelligence mit Microsoft SQL Server 2008. BI-Projekte erfolgreich umsetzen ISBN: 978-3-446-41210-1

Inhaltsverzeichnis. Holger Schrödl. Business Intelligence mit Microsoft SQL Server 2008. BI-Projekte erfolgreich umsetzen ISBN: 978-3-446-41210-1 sverzeichnis Holger Schrödl Business Intelligence mit Microsoft SQL Server 2008 BI-Projekte erfolgreich umsetzen ISBN: 978-3-446-41210-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41210-1

Mehr

Datenbanktechnologie für Data-Warehouse-Systeme

Datenbanktechnologie für Data-Warehouse-Systeme Wolfgang Lehner Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden dpunkt.verlag 1 1.1 1.2 1.3 1.4 1. 5 2 2.1 2.2 2.3 Einleitung 1 Betriebswirtschaftlicher Ursprung des Data Warehousing...

Mehr

1 mysap Business Intelligence Entscheidungen im richtigen betriebswirtschaftlichen Kontext 1

1 mysap Business Intelligence Entscheidungen im richtigen betriebswirtschaftlichen Kontext 1 1 mysap Business Intelligence Entscheidungen im richtigen betriebswirtschaftlichen Kontext 1 1.1 Das Informationsdilemma Es besteht kein Zweifel darüber, dass heute und in Zukunft die Unternehmensstrategie

Mehr

Business Intelligenceein Überblick

Business Intelligenceein Überblick Exkurs Business Intelligenceein Überblick Folie 1 Januar 06 Literatur Kemper, Hans-Georg; Mehanna, Walid; Unger, Carsten (2004): Business Intelligence: Grundlagen und praktische Anwendungen Eine Einführung

Mehr

Schwerpunkte von SQL Server 2005

Schwerpunkte von SQL Server 2005 3K05 Business Intelligence mit SQL Server 2005 Steffen Krause Technologieberater Microsoft Deutschland GmbH http://blogs.technet.com/steffenk Schwerpunkte von SQL Server 2005 Mission Ready Developer Ready

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence

Mehr

Hannover, 20.03.2015 Halle 5 Stand A36

Hannover, 20.03.2015 Halle 5 Stand A36 Integrierte Unternehmensinformationen als Fundament für die digitale Transformation vor allem eine betriebswirtschaftliche Aufgabe Hannover, 20.03.2015 Halle 5 Stand A36 Business Application Research Center

Mehr

Von BI zu Analytik. bessere Entscheidungen basiert auf Fakten. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Von BI zu Analytik. bessere Entscheidungen basiert auf Fakten. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Von BI zu Analytik bessere Entscheidungen basiert auf Fakten Webinar Mai 2010 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Von Business Intelligence zu Analytik Die Bedeutung

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

Qualität ist, was der Kunde dafür hält - intern und extern!

Qualität ist, was der Kunde dafür hält - intern und extern! Qualität ist, was der Kunde dafür hält - intern und extern! Ein Diskussionsbeitrag von Mannesmann Mobilfunk Balanced Scorecards & Kennzahlen im Kundenmanagement, Management Circle 2000 MC 2.10.ppt -js-1-

Mehr

Business Intelligence für Controller

Business Intelligence für Controller Controllers Best Practice Fachbuch Business Intelligence für Controller Hermann Hebben und Dr. Markus Kottbauer Verlag für ControllingWissen ÄG, Freiburg und Wörthsee Ein Unternehmen der Haufe Mediengruppe

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

3. Integrationsdimensionen, u. a. Integrationsrichtungen (vgl. 1 und 2) 4. Vertikale und horizontale Integrationsrichtung (vgl.

3. Integrationsdimensionen, u. a. Integrationsrichtungen (vgl. 1 und 2) 4. Vertikale und horizontale Integrationsrichtung (vgl. Anwendungssysteme 1. Vertikal: unterstützte organisationale Ebene Informationsdichtegrad 2. Horizontal: unterstützter Funktionsbereich betriebliche Grundfunktion 3. Integrationsdimensionen, u. a. Integrationsrichtungen

Mehr

Mit Business Analytics zur ergebnis- und wirkungsorientierten. Copyright 2010, SAS Institute Inc. All rights reserved.

Mit Business Analytics zur ergebnis- und wirkungsorientierten. Copyright 2010, SAS Institute Inc. All rights reserved. Mit Business Analytics zur ergebnis- und wirkungsorientierten Steuerung Herausforderungen 1. Finanzkrise 2. Demografischer Wandel 3. Innovationsfähigkeit der öffentlichen Verwaltung 4. Leistungsorientierung

Mehr

Exploration und Klassifikation von BigData

Exploration und Klassifikation von BigData Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Business Analytics im E-Commerce

Business Analytics im E-Commerce Business Analytics im E-Commerce Kunde, Kontext und sein Verhalten verstehen für personalisierte Kundenansprache Janusz Michalewicz CEO Über die Firma Crehler Erstellung von Onlineshops Analyse von Transaktionsdaten

Mehr

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data Herausforderungen und Chancen für Controller ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Organisationen Beratung Strategie

Mehr

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Übersicht über Business Intelligence Josef Kolbitsch Manuela Reinisch Übersicht Beispiel: Pantara Holding Der Begriff Business Intelligence Übersicht über ein klassisches BI-System

Mehr

Datenintegration mit Informatica PowerCenter

Datenintegration mit Informatica PowerCenter Datenintegration mit Informatica PowerCenter Mein Weg vom Studenten zum Consultant Christoph Arnold 03.07.2013 1 Agenda Von der THM zu Infomotion Datenschieberei oder doch mehr? Die weite Welt von Informatica

Mehr

Open Source BI Trends. 11. Dezember 2009 Wien Konstantin Böhm

Open Source BI Trends. 11. Dezember 2009 Wien Konstantin Böhm Open Source BI Trends 11. Dezember 2009 Wien Konstantin Böhm Profil Folie 2 JAX 2009 11.12.2009 Gründung 2002, Nürnberg 50 Mitarbeiter Innovative Kunden Spezialisiert auf Open Source Integration Open Source

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

Mining über RDBMSe. von. Christian Widmer. Wie gut lässt sich Mining mit SQL realisieren?

Mining über RDBMSe. von. Christian Widmer. Wie gut lässt sich Mining mit SQL realisieren? Mining über RDBMSe von Christian Widmer Wie gut lässt sich Mining mit SQL realisieren? Müssen neue Konstrukte zur Verfügung gestellt werden, wenn ja welche? Vortragsüberblick Association Rules Apriori

Mehr

Balanced Scorecard. Die Unternehmung in ihrer Umwelt. Strategie Technologien. Management. Soll-Wert. Ist-Wert. Markt/ Wettbwerb.

Balanced Scorecard. Die Unternehmung in ihrer Umwelt. Strategie Technologien. Management. Soll-Wert. Ist-Wert. Markt/ Wettbwerb. Balanced Scorecard Knut Hinkelmann Fachhochschule Nordwestschweiz 4600 Olten knut.hinkelmann@fhnw.ch Die Unternehmung in ihrer Umwelt Markt/ Wettbwerb Strategie Technologien Soll-Wert Management Ist-Wert

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

Klausur Querschnittsfunktionen im Dienstleistungsmanagement

Klausur Querschnittsfunktionen im Dienstleistungsmanagement Klausur Querschnittsfunktionen im Dienstleistungsmanagement Klausurkolloquium WS 2011/2012 (Klausur vom 13. September 2011) Hagen, 11.01.2012 Univ.-Prof. Dr. Sabine Fließ Dipl.-Ök. Jens Nesper Aufgabe

Mehr

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374 DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN Nr. 374 Eignung von Verfahren der Mustererkennung im Process Mining Sabrina Kohne

Mehr