Formelsammlung Mathematik 7 I) Zuordnungen ) Proportionale Zuordnungen ) Eigenschaften von proportionalen Zuordnungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7."

Transkript

1 I) Zuordnungen ) Proportionale Zuordnungen ) Eigenschaften von proportionalen Zuordnungen ) Rechnen mit proportionalen Zuordnungen ) Die antiproportionale Zuordnung ) Eigenschaften von antiproportionalen Zuordnungen ) Rechnen mit antiproportionalen Zuordnungen... 3 II) Prozentrechnung ) Der Prozentbegriff ) Berechnung des Prozentwertes ) Berechnung des Grundwertes ) Berechnung des Prozentsatzes ) Diagramme ) Zinsrechnung... 5 III) Rationale Zahlen ) Rationale Zahlen ) Die Anordnung der rationalen Zahlen ) Der Betrag rationaler Zahlen ) Addieren rationaler Zahlen ) Subtrahieren rationaler Zahlen ) Rechnen mit Gegenzahlen ) Rechengesetze der Addition ) Klammerregeln ) Multiplizieren rationaler Zahlen ) Dividieren rationaler Zahlen ) Das Distributivgesetz... 9 IV) Achsenspiegelungen, Drehungen, Verschiebungen ) Achsenspiegelungen ) Drehungen ) Punktspiegelungen ) Verschiebungen ) Eigenschaften von Kongruenzabbildungen: ) Verkettung von Achsenspiegelungen ) Mittelsenkrechte ) Winkelhalbierende ) Achsensymmetrische Dreiecke ) Achsensymmetrische Vierecke ) Kreis und Gerade

2 I) Zuordnungen 7.1) Proportionale Zuordnungen Gehört bei einer Zuordnung zum Doppelten, zum Halben,..., zum n-fachen der 1. Größe das Doppelte, die Hälfte,..., das n-fache der 2. Größe, so heißt die Zuordnung eine proportionale Zuordnung. 7.2) Eigenschaften von proportionalen Zuordnungen Quotientengleichheit: Bei einer proportionalen Zuordnung sind die Quotienten 2.Größe zugeordneter Größen gleich. Der Quotient heißt Proportionalitätsfaktor. 1.Größe Die Zuordnungsvorschrift mit dem Proportionalitätsfaktor q lautet (bzw. y = q x ) x a q x Graph einer proportionalen Zuordnung: Die Punkte, die zum Graphen einer proportionalen Zuordnung gehören, liegen auf einer Halbgeraden durch den Ursprung (0/0) des Achsenkreuzes. Bsp: g Wurst kosten 1, ) Rechnen mit proportionalen Zuordnungen Beispiel: 3 kg Spargel kosten 18. Wie viel kosten 11 kg? Lösung mit dem Dreisatz: Lösen mit Hilfe der Zuordnungsvorschrift 3 kg a 18 y = 6 x y: Preis in 1 kg a = 66 x: Menge in kg 11 kg a 66 Preis pro kg: 6 7.4) Die antiproportionale Zuordnung Gehört bei einer Zuordnung zum Doppelten, zum Halben,..., zum n-fachen der 1. Größe die Hälfte, das Doppelte,..., der n-te Teil der 2. Größe, so heißt die Zuordnung eine antiproportionale Zuordnung. 2

3 7.5) Eigenschaften von antiproportionalen Zuordnungen Produktgleichheit: Bei einer antiproportionalen Zuordnung sind die Produkte ( p = 1.Größe 2. Größe ) zugeordneter Größen gleich. p p Die Zuordnungsvorschrift mit dem Produkt p lautet x a (bzw. y = ) x x Graph einer antiproportionalen Zuordnung: Die Punkte, die zum Graphen einer antiproportionalen Zuordnung gehören, liegen auf einer gekrümmten Linie. Diese bezeichnet man als Hyperbel. Beispiel: Für eine Strecke von 120 km benötigt man bei einer Durchschnittsgeschwindigkeit von 20km/h 6Stunden. Fahrtzeit t für 120 km (in h) durchschnittliche Geschw indigket v (in km/h) 7.6) Rechnen mit antiproportionalen Zuordnungen Beispiel: Für 2 Ponys reicht ein Futtervorrat 30 Tage. Wie lange reicht er für 5 Ponys? Lösung mit dem Dreisatz: Lösen mit Hilfe der Zuordnungsvorschrift 2 Ponys a Tage y = x y: Anzahl der Tage 1 Pony a 60 Tage 60 y = = 12 5 x: Anzahl der Ponys 5 Ponys a 12 Tage 3

4 II) Prozentrechnung 7.7) Der Prozentbegriff Prozent bedeutet von Hundert oder Hundertstel. 1 p % = p % = 60% = = = 0, 6 5 Berechnet man z.b. 15 % von 1800, so erhält man 270. Hierbei nennt man 15 % den Prozentsatz (p%) 1800 den Grundwert (G) 270 den Prozentwert (P) 7.8) Berechnung des Prozentwertes Beispiel: Wie viel sind 13 % von 300 m? Gegeben: G = 300m, p% = 13% Gesucht: P Lösung mit dem Dreisatz: Lösung mit der Formel: % a 300 m Prozentwert = Grundwert Pr ozentsatz 1 % a 3 m p P = G = G p% 13 % a 39 m p P = 300 m 13% = 300m = 39m 7.9) Berechnung des Grundwertes Beispiel: Bei der Klassensprecherwahl stimmten 56,25 % der SchülerInnen für den Klassensprecher, das waren 18 Personen. Wie viele SchülerInnen sind in der Klasse? Gegeben: P=18, p%=56,25% Gesucht: G Lösung mit dem Dreisatz: Lösung mit der Formel: 56,25 % a Pr ozentwert 18 Schüler Grundwert = Pr ozentsatz 1 % a 0,32 Schüler P P G = = p% p % a 32 Schüler G = = = 32 56,25% 56,25 4

5 7.10) Berechnung des Prozentsatzes Beispiel: Von den 80 SchülerInnen der 7. Klassen nahmen 44 am Mathematikwettbewerb teil. Wie viel Prozent sind das? Gegeben: G = 80, P = 44 Gesucht: p% Lösung mit dem Dreisatz: Lösung mit der Formel: 80 Schüler a Pr ozentwert % Pr ozentsatz = Grundwert 1 Schüler a P 1,25 % p % = G 44 Schüler a % p % = = 0,55 = 55% ) Diagramme Um Anteile auf den ersten Blick abschätzen und vergleichen zu können, verwendet man Diagramme. a) Das Kreisdiagramm Bei einem Kreisdiagramm werden die Anteile durch entsprechende Winkel am Kreismittelpunkt angegeben. Dabei gilt: % a % a 3,6 p % a p 3, 6 b) Das Streifendiagramm Bei einem Streifendiagramm werden Anteile durch entsprechende Streifenlängen dargestellt. 7.12) Zinsrechnung Jahreszinsen Die Zinsrechnung ist eine Anwendung der Prozentrechnung. Wichtige Begriffe bei der Zinsrechnung: Kapital, Darlehen K - Grundwert G Zinssatz p% - Prozentsatz p% Jahreszinsen Z - Prozentwert P Die Berechnungen der Jahreszinsen, des Kapitals bzw. des Zinssatzes erfolgen analog zur Prozentrechnung. Tageszinsen Zinsen für ein Sparbuch werden tageweise berechnet. Dabei setzt man: 1 Jahr = 360 Zinstage 1 Monat = 30 Zinstage Man spricht von Tageszinsen Zt, die Zeitdauer nennt man Laufzeit t (in Tagen). 5

6 Beispiel: Wie hoch sind die Tageszinsen bei einem Kapital von für einen Zinssatz von 8 % und eine Laufzeit von Tagen? Gegeben: K = 12000, p% = 8%, t = Lösung mit dem Dreisatz: Gesucht: Zinsen Z Lösung mit der Formel: 1. Schritt: Berechne die Jahreszinsen: Z t = K % a Also: 1 % a Z t = = 266, % a Schritt: Berechne die Zinsen für t = Tage: 360 Tage a Tag a Tage a 266, 67 Zinseszins Häufig wird ein Kapital über mehrere Jahre mit demselben Zinssatz verzinst. Am Jahresende werden die Zinsen zu dem Kapital addiert: Kapital + Zinsen neues Kapital. Im folgenden Jahr werden dann das Kapital und die Zinsen des Vorjahres verzinst. Man spricht vom Zinseszins. Wird ein Kapital mit p % verzinst, dann wächst das Kapital in einem Jahr um den p Zinsfaktor q = 1 +. p t 360 Beträgt der Zinssatz z. B. 5 %, so beträgt nach einem Jahr das Kapital mit Zinsen 105 % des ursprünglichen Kapitals, also gerade das 1,05fache. 5 (Zinsfaktor q = 1+ = 1, 05 ) Beispiel: Ein Kapital von 2500 wird mit einem Zinssatz von 5 % verzinst. Auf welchen Betrag wächst es in 4 Jahren mit Zinsen und Zinseszinsen an? ,05 1,05 1,05 1,05 = 3038,77 4 gleiche Zinsfaktoren 6

7 III) Rationale Zahlen 7.13) Rationale Zahlen Wir erweitern den Zahlenstrahl zu einer Zahlengeraden, indem wir den Zahlenstrahl an der Null spiegeln. Zu den positiven Zahlen kommen die negativen Zahlen. Wie bei den Temperaturen schreibt man in der Mathematik die negativen Zahlen mit einem (minus). Zur deutlicheren Unterscheidung von 3 und 3 kann man statt 3 auch +3 schreiben. + und nennt man Vorzeichen von +3 und 3. Zu jeder Zahl gibt es eine Gegenzahl. Beispiele: Die Gegenzahl von 4 ist 4, die Gegenzahl 7,5 ist 7,5. Fügt man den zu den natürlichen Zahlen ihre Gegenzahlen hinzu, so erhält man die Menge der ganzen Zahlen: Z = {...; -3; -2; -1; 0; 1; 2; 3;... } Fügt man zu den Bruchzahlen ihre Gegenzahlen hinzu, so erhält man die Menge der p rationalen Zahlen: Q = p Z;q N. q 7.14) Die Anordnung der rationalen Zahlen Beim Zahlenstrahl gilt: Die kleinere von zwei Zahlen steht weiter links. Diese Anordnung ist auch für rationale Zahlen sinnvoll. 7.15) Der Betrag rationaler Zahlen Der Abstand einer rationalen Zahl a von der Zahl 0 heißt der Betrag von a. Für den Betrag von schreibt man a (lies: Betrag von a). Beispiele: +3 = 3 =3; -3 = 3; -7,5 = 7,5 7

8 7.16) Addieren rationaler Zahlen Addieren einer positiven Zahl an der Zahlengeraden: Gehe um ihren Betrag nach rechts. Addieren einer negativen Zahl an der Zahlengeraden: Gehe um ihren Betrag nach links. 7.17) Subtrahieren rationaler Zahlen Subtrahieren einer positiven Zahl an der Zahlengeraden: Gehe um ihren Betrag nach links. Subtrahieren einer negativen Zahl an der Zahlengeraden: Gehe um ihren Betrag nach rechts. Subtrahieren einer rationalen Zahl bedeutet dasselbe wie Addieren ihrer Gegenzahl. Beispiele: (+2) (+6) = (+2) + (-6) =2-6 = -4 (-4) (-6) = (-4) + (+6) = = ) Rechnen mit Gegenzahlen Für das Rechnen mit Gegenzahlen gilt: a + ( a) = 0 ( a) = a a + ( b) = a b a ( b) = a + b 7.19) Rechengesetze der Addition Kommutativgesetz der Addition Für alle rationalen Zahlen a, b gilt: a + b = b + a Assoziativgesetz der Addition Für alle rationalen Zahlen a, b, c, gilt: a + (b + c) = (a + b) + c 8

9 7.20) Klammerregeln a + (b c) = a + b c a (b + c) = a b c a (b c) = a b + c Steht ein + vor der Klammer, so kann man die Klammer weg lassen. Steht ein - vor der Klammer, so müssen alle Vor- bzw. Rechenzeichen in der Klammer umgedreht werden. 7.21) Multiplizieren rationaler Zahlen Rechenregel für 2 Faktoren: Multipliziere die Beträge. Bei gleichen Vorzeichen gib diesem Produkt das Vorzeichen +, bei verschiedenen Vorzeichen gib dem Produkt das Vorzeichen. Bsp: 3 ( 4) = 3 4 = 12 (-3) (-4) = 3 4 = 12 Ferner ist für alle rationalen Zahlen a: a 0 = 0 a = 0. Kommutativgesetz der Multiplikation: Assoziativgesetz der Multiplikation: Für alle rationalen Zahlen a, b gilt: Für alle rationalen Zahlen a, b, c gilt: a b = b a a (b c) = (a b) c 7.22) Dividieren rationaler Zahlen Rechenregel: Dividiere die Beträge. Bei gleichen Vorzeichen gib dem Quotienten das Vorzeichen +, bei verschiedenen Vorzeichen gib dem Quotienten das Vorzeichen. Bsp: ( 12) : 3 = 4 12 : ( 3) = 4 ( 12) : ( 3) = ) Das Distributivgesetz Für alle rationalen Zahlen a, b, c gilt: a (b + c) = a b + a c. Beim Multiplizieren einer Summe mit einer Zahl wird jeder Summand mit der Zahl multipliziert und die Produkte addiert. Rechenvorteile durch Ausmultiplizieren: = 6 6 = 3 4 = Rechenvorteile durch Ausklammern: = 18 + = 18 1 =

10 IV) Achsenspiegelungen, Drehungen, Verschiebungen 7.24) Achsenspiegelungen Bei einer Achsenspiegelung wird jedem Punkt P ein Bildpunkt P zugeordnet. Dabei gilt: 1. PP ist senkrecht zur Spiegelachse a. 2. P und P haben denselben Abstand zu a. Die Punkte auf der Spiegelachse werden auf sich selbst abgebildet. Man nennt sie daher auch Fixpunkte. Geraden, die auf sich selbst abgebildet werden, nennt man Fixgeraden. Alle zur Achse senkrechten Geraden und die Achse selbst sind Fixgeraden. 7.25) Drehungen Bei einer Drehung wird jedem Punkt P ein Bildpunkt P zugeordnet. Dabei gilt: 1. Der Punkt P und sein Bildpunkt P liegen auf einem Kreis um das Drehzentrum Z. 2. Alle Punkte P und ihre Bildpunkte P bilden mit Z denselben Drehwinkel. Das Drehzentrum Z ist der einzige Fixpunkt der Drehung. 7.26) Punktspiegelungen Eine Drehung um einen Punkt Z um 180 wird Halbdrehung um Z oder Punktspiegelung an Z genannt. Durch sie wird jedem Punkt P ein Bildpunkt P zugeordnet. Dabei gilt: 1. Ein Punkt P und sein Bildpunkt P liegen auf einer Geraden durch Z. 2. P und P haben denselben Abstand zu Z. Der Punkt Z ist der einzige Fixpunkt der Punktspiegelung. Jede Gerade durch Z ist Fixgerade. 7.27) Verschiebungen Bei einer Verschiebung wird jedem der Punkte P, Q,... ein Bildpunkt P, Q,... zugeordnet. Dabei gilt: 1. Die Pfeile von P nach P, von Q nach Q usw. sind parallel. 2. Die Pfeile haben die gleiche Richtung und sind gleich lang. Man bezeichnet sie auch als Verschiebungspfeile oder Vektoren. Eine Verschiebung hat keinen Fixpunkt. Jede Gerade parallel zum Verschiebungspfeil ist Fixgerade. 10

11 7.28) Eigenschaften von Kongruenzabbildungen: 1. Eine Strecke und ihre Bildstrecke sind gleich lang. 2. Ein Winkel und sein Bildwinkel sind gleich groß. 3. Der Umlaufsinn von Figuren bleibt erhalten. Bei der Achsenspiegelung ändert sich der Umlaufsinn. 7.29) Verkettung von Achsenspiegelungen Verkettet man zwei Achsenspiegelungen, so gibt es zwei Möglichkeiten: Sind die Achsen a und b zueinander parallel, dann ist die Verkettung eine Verschiebung. Ihr Verschiebungspfeil ist senkrecht zu den Achsen, er ist doppelt so lang wie der Abstand der Achsen. Schneiden sich die Achsen, dann ist die Verkettung eine Drehung um den Schnittpunkt S der Achsen. Der Drehwinkel ist doppelt so groß wie der Schnittwinkel der Achsen. Umgekehrt findet man zu jeder Verschiebung und zu jeder Drehung zwei Geraden a und b, so dass die Verkettung der Achsenspiegelungen an a und b gerade die gegebene Verschiebung bzw. Drehung ist. 7.30) Mittelsenkrechte Alle Punkte, die von zwei Punkten A und B den gleichen Abstand besitzen liegen auf der Mittelsenkrechten der Strecke AB. Die Mittelsenkrechte ist die Symmetrieachse der Strecke AB. 7.31) Winkelhalbierende Alle Punkte, die von den beiden Schenkeln eines Winkels den gleichen Abstand besitzen, liegen auf der Winkelhalbierenden dieses Winkels. Die Winkelhalbierende ist die Symmetrieachse des Winkels. 7.32) Achsensymmetrische Dreiecke Ein achsensymmetrisches Dreieck besitzt mindestens zwei gleich lange Seiten. Ein Dreieck mit mindestens zwei gleich langen Seiten heißt gleichschenkliges Dreieck. Die beiden gleichlangen Seiten heißen Schenkel. Die Basiswinkel sind gleich groß. Die Symmetrieachse ist gleichzeitig die Mittelsenkrechte der Basis und die Winkelhalbierende des Winkels an der Spitze. 11

12 Ein Dreieck mit drei gleich langen Seiten heißt gleichseitiges Dreieck. Gleichseitige Dreiecke besitzen drei Symmetrieachsen. Deshalb sind in einem gleichseitigen Dreieck alle Winkel gleich groß. 7.33) Achsensymmetrische Vierecke 4 Symmetrieachsen 2 Symmetrieachsen 1 Symmetrieachse keine Symmetrieachse 7.34) Kreis und Gerade Eine Sekante schneidet den Kreis in zwei Punkten. Eine Tangente hat mit dem Kreis genau einen Punkt gemeinsam, den Berührpunkt. Eine Passante hat mit dem Kreis keinen Punkt gemeinsam. Die Teilstrecke einer Sekante im Kreis heißt Sehne. Verläuft die Sehne durch den Kreismittelpunkt, nennt man sie Durchmesser. Sekante Tangente Sehne Passante 90 12

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann. Dreisatz Der Dreisatz ist ein Rechenverfahren, das man bei proportionalen Zuordnungen anwenden kann. 3 Tafeln Schokolade wiegen 5 g. Wie viel Gramm wiegen 5 Tafeln? 1. Satz: 3 Tafeln wiegen 5 g.. Satz:

Mehr

Grundwissen Klasse 7

Grundwissen Klasse 7 Grundwissen Klasse 7 Zahlenmengen = {1; 2; 3; 4; 5; 6;... } Die Menge der natürlichen Zahlen. = {... 3; 2; 1; 0; + 1; + 2; + 3;...} Die Menge der ganzen Zahlen. Die Menge der rationalen Zahlen. Multiplikation

Mehr

I. Rationale Zahlen (Seite 1)

I. Rationale Zahlen (Seite 1) I. Rationale Zahlen (Seite 1) Negative Zahlen: Der Zahlenstrahl wird zu einer Zahlengeraden erweitert. Die neu hinzu kommenden Zahlen nennt man negative Zahlen, die bisherigen (außer 0) positive Zahlen.

Mehr

Grundwissen Klasse 6

Grundwissen Klasse 6 Zahlenmengen = {; 2; ; 4; ; 6;... } Die Menge der natürlichen Zahlen. = {... ; 2; ; 0; ; 2; ;...} Die Menge der ganzen Zahlen. 0 Die Menge der positiven rationalen Zahlen mit Null. ddition und Subtraktion

Mehr

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q Variable und Terme A 7_01 Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z B x IN; y ; a Q Jede sinnvolle Zusammenstellung aus Zahlen und Variablen mit Hilfe von Rechenzeichen

Mehr

Teste dein Grundwissen

Teste dein Grundwissen Teste dein Grundwissen Was bedeutet addieren Plusrechnen Minusrechnen Malnehmen Teilen Was bedeutet Plusrechnen Minusrechnen Malnehmen Teilen subtrahieren Was bedeutet Plusrechnen Minusrechnen Malnehmen

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Grundwissen 7. Klasse

Grundwissen 7. Klasse Grundwissen 7. Klasse I. Symmetrie 1. Achsensymmetrie Die Punkte P und P sind achsensymmetrisch bzgl. der Symmetrieachse a. Sind Figuren zueinander achsensymmetrisch, so kannst du folgende Eigenschaften

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: 1; 2; 3; 4; Nimmt man auch die 0 hinzu, schreibt man: 0; 1; 2; 3; 4; Zahlenstrahl Je weiter rechts eine Zahl

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

7.1 Algebra Rechnen mit rationalen Zahlen und Termen

7.1 Algebra Rechnen mit rationalen Zahlen und Termen Gymnasium bei St. Anna, Augsburg Seite 1 Grundwissen 7. Klasse 7.1 Algebra 7.1.1 Rechnen mit rationalen Zahlen und Termen WH: Siehe dazu..3 Vorrangregeln und.. K-, A-, D-Gesetze sowie 6. Rechengesetze

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK 7.Jahrgangstufe ALGEBRA Seite 1 1. Terme 3a ist ein Term; a ist eine Variable; 3 heißt Koeffizient. Termberechnung: Es können nur gleichartige Terme ( = Terme mit gleichen Variablen) zusammengefasst, d.h.

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7 Themen verschiedener Darstellungsmöglichkeiten von Proportionaler, ihre Darstellung in Koordinatensystemen und Berechnungen mit Hilfe des Dreisatz antiproportionaler, ihre Darstellung im Koordinatensystem

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen)

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen) 4 Inhalt 1 Teiler und Teilbarkeitsregeln 6 2 Primzahlen und Primfaktorzerlegung 8 3 ggt und kgv 10 4 Bruchzahlen und gemischte Zahlen 12 5 Erweitern und Kürzen 14 6 Addition und Subtraktion von Bruchzahlen

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8) Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen

Mehr

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken]

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken] GRUNDWISSEN Inhalt 5.Gleichungen... 2 5.1. Gleichungen und Lösungen... 2 5.2. Äquivalente Gleichungsumformungen... 2 5.3. Systematisches Lösen einer Gleichungen... 2 5.4. Lineare Gleichungen in Anwendungsaufgaben...

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

OvTG Gauting, Grundwissen Mathematik 7. Klasse

OvTG Gauting, Grundwissen Mathematik 7. Klasse 1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

7. Klasse. Algebra. 2.1 Kommutativgesetz (KG) der Addition und Multiplikation Für alle rationalen Zahlen a und b gilt: a+b = b+a a b = b a

7. Klasse. Algebra. 2.1 Kommutativgesetz (KG) der Addition und Multiplikation Für alle rationalen Zahlen a und b gilt: a+b = b+a a b = b a Algebra 1. Termen mit Variablen Ein Term ist ein Rechenausdruck, der aus Zahlen, Variablen und Rechenzeichen bestehen kann. Variablen sind Platzhalter für Zahlen oder für Größen. Eine Variable steht immer

Mehr

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a Bruchrechnung 1. Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a b Kürzen heißt Zähler und Nenner eines Bruches durch dieselbe Zahl dividieren.

Mehr

Grundwissen Mathematik 7II-III/1

Grundwissen Mathematik 7II-III/1 Grundwissen athematik 7II-III/ ultiplikation und Division in QI Rechenregeln a c a c a c a d : b d b d b d b c Vorzeichenregeln + ++ + + + + : ++ : + : + + : Potenzgesetze. Potenzgesetz n m n m a a a +

Mehr

Grundwissen Mathematik 7. Klasse

Grundwissen Mathematik 7. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 7. Klasse Wissen Aufgaben/Beispiele Lösungen Achsenspiegelung Eigenschaften der Achsenspiegelung: - Die Verbindungsstrecke von Punkt P und Bildpunkt P

Mehr

I. Brüche (Seite 1) = =

I. Brüche (Seite 1) = = I. Brüche (Seite 1) Darstellung eines Bruches: Der Nenner eines Bruches gibt an, in wie viele gleich große Teile das Ganze zerlegt wird. Der Zähler gibt an, wie viele solcher Teile dann genommen werden.

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

Grundwissen Mathematik 7.Klasse Gymnasium SOB

Grundwissen Mathematik 7.Klasse Gymnasium SOB 1 Grundwissen Mathematik 7.Klasse Gymnasium SOB 1.Figurengeometrie 1.1.Achsensymmetrie Sind zwei Punkte P und P achsensymmetrisch bezüglich der Achse a, dann gilt [PP ] a und a halbiert [PP ]. a Jeder

Mehr

Band 7. Inhalt Neue Wege 7 Kompetenzen Inhalte Rahmenlehrplan Kapitel 1 Beschreiben von Zuordnungen in Graphen, Tabellen und Termen

Band 7. Inhalt Neue Wege 7 Kompetenzen Inhalte Rahmenlehrplan Kapitel 1 Beschreiben von Zuordnungen in Graphen, Tabellen und Termen MATHEMATIK NEUE WEGE 7/8 AUSGABE RHEINLAND-PFALZ Vergleich mit dem Rahmenlehrplan Mathematik Rheinland-Pfalz (Klassenstufen 5-9/10) Der Rahmenlehrplan Mathematik konkretisiert die bundesweit geltenden

Mehr

Mathematik Klasse 7 Lehrbuch: Lambacher Schweizer Mathematik für Gymnasien 7, Ernst Klett Verlag, 1. Auflage, 2011

Mathematik Klasse 7 Lehrbuch: Lambacher Schweizer Mathematik für Gymnasien 7, Ernst Klett Verlag, 1. Auflage, 2011 Das Lehrbuch enthält zu jedem innerhalb der Übungsaufgaben Bist du sicher? -, außerdem gibt es zu jedem Lerngebiet eine Zusammenfassung Rückblick und einen Lernerfolgstest Training, deren Lösungen du auf

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

Basiswissen 7. Klasse

Basiswissen 7. Klasse Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie Zueinander symmetrische Punkte können durch Kongruenzabbildungen (= Abbildungen, bei denen Form und Größe von Figuren gleich bleiben) aufeinander abgebildet

Mehr

1.Wichtige geometrische Eigenschaften

1.Wichtige geometrische Eigenschaften 1.Wichtige geometrische Eigenschaften 1.Achsensymmetrie Die Punkte P und P* sind achsensymmetrisch bzgl. der Symmetrieachse a. Es gilt: a)[pp*] wird von a rechtwinklig halbiert. a ist Mittelsenkrechte

Mehr

Stoffverteilungsplan Mathematik Klasse 7 Lambacher Schweizer 7 ISBN

Stoffverteilungsplan Mathematik Klasse 7 Lambacher Schweizer 7 ISBN Stoffverteilungsplan Mathematik Klasse 7 Lambacher Schweizer 7 ISN 978-3-12-733671-9 3 Stoffverteilungsplan Mathematik Klasse 7 Lambacher Schweizer 7 ISN 978-3-12-733671-9 1 Stoffverteilungsplan Mathematik

Mehr

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Wissen / Können 1. Symmetrie Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Definitionen und Beispiele Achsensymmetrie Eine Figur heißt achsensymmetrisch, wenn sie durch Umklappen um eine Gerade

Mehr

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a Grundwissen 6 / Formveränderung von Brüchen Bruchrechnung Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a b Kürzen heißt Zähler und Nenner eines Bruches durch dieselbe

Mehr

Mathematik üben mit Erfolg

Mathematik üben mit Erfolg Beuthan/Nordmeier Mathematik üben mit Erfolg 7. Schuljahr Gymnasium MANZ VERLAG Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung in anderen als den gesetzlich zugelassenen Fällen

Mehr

Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen

Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen Arbeitsblatt 01: Teiler und Teilbarkeitsregeln a) durch 2: 1247, 33654, 149, 512, 6418 b) durch 3: 538, 1236, 8142, 972, 44780 c) durch 4: 4711,

Mehr

Arbeitsplan für das Fach Mathematik in der Jahrgangsstufe 7 im Schuljahr 2011/ 12

Arbeitsplan für das Fach Mathematik in der Jahrgangsstufe 7 im Schuljahr 2011/ 12 Arbeitsplan für das Fach Mathematik in der Jahrgangsstufe 7 im Schuljahr 2011/ 12 Lehrbuch : Mathematik 7, Westermann 1. Rationale Zahlen L1 Zahl und Zahlbereiche Inhaltsbezogene mathematische Kompetenzen

Mehr

Stoffverteilungsplan EdM 7RhPf. Umgang mit Bruchzahlen im Zusammenhang wieder aufgegriffen

Stoffverteilungsplan EdM 7RhPf. Umgang mit Bruchzahlen im Zusammenhang wieder aufgegriffen Stoffverteilungsplan EdM 7RhPf Abfolge in EdM 7 Bleib fit im Umgang mit Bruchzahlen Kompetenzen und Inhalte Verschiedene Kompetenzen werden beim Umgang mit Bruchzahlen im Zusammenhang 1. Zuordnungen Dreisatz

Mehr

Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen

Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen Daten und Zufall Sammeln und Auswerten von Daten Strichliste Absolute Häufigkeit Säulendiagramm Daten erfassen (Strichlisten, Tabellen). gesammelte Daten auswerten. Daten mithilfe von Diagrammen darstellen.

Mehr

Stoffverteilungsplan Klasse 7

Stoffverteilungsplan Klasse 7 Stoffverteilungsplan Klasse 7 Rahmenlehrplan Im Blickpunkt: Mathematische Kompetenzen 6 Viel Erfolg im neuen Schuljahr 1 Zahlen und Operationen 30 Basiswissen: Brüche und Dezimalzahlen Kapitel 1: Rationale

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Teilbarkeit natürlicher Zahlen: Teilbarkeitsregeln, Teiler, Vielfaches, ggt, kgv, Primzahl. Rechnen mit Bruchzahlen, Kopfrechenübungen, Sachaufgaben

Teilbarkeit natürlicher Zahlen: Teilbarkeitsregeln, Teiler, Vielfaches, ggt, kgv, Primzahl. Rechnen mit Bruchzahlen, Kopfrechenübungen, Sachaufgaben Vernetztes Anwenden Primzahlen und Teiler/ größte Teiler und gemeinsame Vielfache Teilbarkeit natürlicher Zahlen: Teilbarkeitsregeln, Teiler, Vielfaches, ggt, kgv, Primzahl. die Teilbarkeitsregeln [durch

Mehr

Umsetzung des Kerncurriculums G9 Lehrwerk: Lambacher Schweizer

Umsetzung des Kerncurriculums G9 Lehrwerk: Lambacher Schweizer Die des LS 7 sind in der angegebenen Reihenfolge der Lernbereiche zu bearbeiten. 1. Lernbereich Proportionale und antiproportionale Zuordnungen 5 Wochen I Zuordnungen II Prozente und Zinsen Zuordnungen

Mehr

Grundwissen Seite 1 von 11 Klasse5

Grundwissen Seite 1 von 11 Klasse5 Grundwissen Seite 1 von 11 Klasse5 IN = {1; 2; 3; 4; 5; 6; } Menge der natürlichen Zahlen Beispiele: 5 ist eine natürliche Zahl kurz: 5 IN 5 ist ein Element von IN Natürliche Zahlen -2 ist keine natürliche

Mehr

Inhaltsverzeichnis. 1 Rationale Zahlen 2. 2 Zuordnungen 3. 3 Geometrie 5. 4 Prozentrechnung 9. 5 Zinsrechnung 12. 6 Terme/Gleichungen 13

Inhaltsverzeichnis. 1 Rationale Zahlen 2. 2 Zuordnungen 3. 3 Geometrie 5. 4 Prozentrechnung 9. 5 Zinsrechnung 12. 6 Terme/Gleichungen 13 Inhaltsverzeichnis Rationale Zahlen Zuordnungen Geometrie 5 4 Prozentrechnung 9 5 Zinsrechnung 6 Terme/Gleichungen 7 Wahrscheinlichkeitsrechnung 5 Rationale Zahlen ddition/ Subtraktion negativer Zahlen

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Das Kapital (Grundwert) entspricht immer 100% ist das Kapital. 100% entsprechen also 1600.

Das Kapital (Grundwert) entspricht immer 100% ist das Kapital. 100% entsprechen also 1600. Berechnung der Jahreszinsen (Prozentwert) Ein Sparbuch mit 1600 wird mit % verzinst. Wie viel Zinsen erhält man im Jahr? Geg.: K = 1600 p% = % ges.: Z % 1600 Das Kapital (Grundwert) entspricht immer %.

Mehr

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen Grundwissen Klasse 6 I. Bruchzahlen 1. Sicheres Umgehen mit Bruchzahlen - Brüche als Anteil verstehen - Brüche am Zahlenstrahl darstellen - Brüche erweitern / kürzen können (Mathehelfer1: S.16/17) Aufgabe

Mehr

Digitaler Mathe-Adventskalender Lehrplan Mathematik. Sekundarstufe I. Geschwister-Scholl-Gymnasium Pulheim, August 2001.

Digitaler Mathe-Adventskalender Lehrplan Mathematik. Sekundarstufe I. Geschwister-Scholl-Gymnasium Pulheim, August 2001. Digitaler Mathe-Adventskalender 2006 Lehrplan Mathematik Sekundarstufe I Geschwister-Scholl-Gymnasium Pulheim, August 2001 Klasse 5 Klasse 8 Klasse 6 Klasse 9 Klasse 7 Klasse 10 Klasse 5 Natürliche Zahlen

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6

Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6 Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6 M7 - Algebra: Standardaufgaben Grundwissen M7 Beispielaufgaben mit Lösung 1. Vereinfache so weit wie möglich! Verwende Rechenregeln/-gesetze,

Mehr

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen.

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen. Grundwissen Klasse 6 - Lösungen I. Bruchzahlen. Sicheres Umgehen mit Bruchzahlen Brüche als Anteil verstehen Brüche am Zahlenstrahl darstellen Brüche erweitern / kürzen können (Mathehelfer: S.6/7) Aufgabe

Mehr

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I . Rationale Zahlen Brüche Brüche haben die Form nz mit z I N 0, n I N. z heißt der Zähler, n der Nenner des Bruches. Unechte Brüche kann man in gemischte Zahlen umwandeln. Bruchzahlen: Zu jeder Bruchzahl

Mehr

I. Zahlen. Zahlensysteme 2035= Zahlenmengen 2035=5 407= Teilbarkeitsregeln. Runden Z H T

I. Zahlen. Zahlensysteme 2035= Zahlenmengen 2035=5 407= Teilbarkeitsregeln. Runden Z H T I. Zahlen Zahlensysteme Unser Zahlensystem besteht aus den Ziffern 0 bis 9 (Dezimalsystem) und ist ein Stellenwertsystem; die Stelle einer Ziffer bestimmt ihren Wert in der Zahl. Das römische Zahlensystem

Mehr

DEMO für Verkettung von Kongruenzabbildungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL.

DEMO für  Verkettung von Kongruenzabbildungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Abbildungen Verkettung von Kongruenzabbildungen Für Interessenten. Datei Nr. 11059 Stand: 3. Oktober 2013 DEMO für FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 11059 Verkettung von Kongruenzabbildungen

Mehr

1. Daten und Diagramme Beispiele / Veranschaulichung

1. Daten und Diagramme Beispiele / Veranschaulichung 1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb

Mehr

b) richtig, da und c) falsch, da d) Westermann Seite 52 Aufgabe 4

b) richtig, da und c) falsch, da d) Westermann Seite 52 Aufgabe 4 Westermann Seite 52 Aufgabe 2 b) richtig, da und c) falsch, da d) Westermann Seite 52 Aufgabe 4 Nach dem Einzeichnen des Urdreiecks und des Punktes A erkennt man: Der Vektor verschiebt den Punkt A um 3

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Grundwissen JS 5 Algebra

Grundwissen JS 5 Algebra GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009

Mehr

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen.

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen. MAT 07-01 Zuordnungen 14 DS Leitidee: Funktionaler Zusammenhang Thema im Buch: Unterwegs Werte aus Schaubildern ablesen und ihre Bedeutung erklären. entscheiden und begründen, ob es sich um eine nicht

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

Marie Kilders. Grundwissen Klasse 5

Marie Kilders. Grundwissen Klasse 5 Grundwissen Klasse 5 1 Inhaltsverzeichnis 1. Natürliche und ganze Zahlen... 3 1.1 Dezimalsystem (Zehnersystem)... 4 1.2 Rechnen mit natürlichen Zahlen... 5 1.3 Diagramme... 8 1.4 Primfaktorzerlegung und

Mehr

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Geometrie Symmetrie und Spiegelung PRÜFUNG 03 Name: Klasse: Datum: : Note: Ausgabe: 7. März 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8

Inhaltsverzeichnis. 1 Flächen 2. 2 Klammern auflösen 4. 3 Prozentrechnung 6. 4 Zinsrechnung 7. 5 Funktionen 8 Inhaltsverzeichnis 1 Flächen Klammern auflösen 4 3 Prozentrechnung 6 4 Zinsrechnung 7 5 Funktionen 8 1 Flächen Quadrat Alle Seiten sind gleich lang und alle Winkel sind rechte Winkel. - 4 Symmentriachsen

Mehr

Natürliche Zahlen, besondere Zahlenmengen

Natürliche Zahlen, besondere Zahlenmengen Natürliche Zahlen, besondere Zahlenmengen A5_01 Menge der natürlichen Zahlen N = {1, 2, 3,...} Menge der natürlichen Zahlen mit der Null N 0 = {0, 1, 2,...} Primzahlen: Eine Primzahl hat genau zwei Teiler,

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter BMS Bern, Aufnahmeprüfung 004 Technische Richtung Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz

Auch der Prozentsatz kann mit dem Dreisatzschema berechnet werden: gegebener Prozentwert gesuchter Prozentsatz 20 8 Prozentsatz Wird der Preis einer Ware von 350 auf 200 reduziert, so stellt man die Frage nach dem prozentualen Rabatt. Dieser Prozentsatz ist zu berechnen, Grundwert und Prozentwert sind gegeben.

Mehr

Schriftlich rechnen, Ergebnisse kontrollieren, Zahlen runden Größen umrechnen Quadrate, Rechtecke, Würfel, Quader berechnen...

Schriftlich rechnen, Ergebnisse kontrollieren, Zahlen runden Größen umrechnen Quadrate, Rechtecke, Würfel, Quader berechnen... Inhaltsverzeichnis 1 Fit in Mathe ein klares Ziel... 8 Kannst du das?... 10 Schriftlich rechnen, Ergebnisse kontrollieren, Zahlen runden... 10 Größen umrechnen... 12 Quadrate, Rechtecke, Würfel, Quader

Mehr

Grundwissen Mathematik 7I/1

Grundwissen Mathematik 7I/1 Grundwissen athematik 7I/ ultiplikation und Division in QI Rechenregeln a c a c a c a d : b d b d b d b c Vorzeichenregeln + ++ + + + + : ++ : + : + + : otenzgesetze. otenzgesetz n m n m a a a + 7 eispiel:

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält.

= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält. GRUNDWISSEN MATHEMATIK. JAHRGANGSSTUFE a b. Bruchzahlen: mit a, b N. a heißt Zähler, b heißt Nenner. a) Ein Bruch wird mit einer natürlichen Zahl erweitert (gekürzt), indem man Zähler und Nenner mit dieser

Mehr

1 Zahlen. 1.1 Zahlenmengen. Grundwissen Mathematik 5

1 Zahlen. 1.1 Zahlenmengen. Grundwissen Mathematik 5 1 Zahlen 1.1 Zahlenmengen I N= { 1, 2, 3,...} Menge der natürlichen Zahlen I N 0 = { 0, 1, 2,...} Menge der natürlichen Zahlen mit Null Z = {...-3; -2; -1; 0; 1; 2; 3;...} Menge der ganzen Zahlen V 12

Mehr