1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I"

Transkript

1 . Rationale Zahlen Brüche Brüche haben die Form nz mit z I N 0, n I N. z heißt der Zähler, n der Nenner des Bruches. Unechte Brüche kann man in gemischte Zahlen umwandeln. Bruchzahlen: Zu jeder Bruchzahl gehören unendlich viele verschiedene Brüche. I = Menge der Bruchzahlen. B 0 Es gilt: IN 0 I B 0 Der Wert des Quotienten zweier natürlicher Zahlen a und b ist die Bruchzahl ba. Formänderung von Brüchen: a) Erweitern eines Bruches bedeutet: Zähler und Nenner werden mit derselben natürlichen Zahl multipliziert. b) Kürzen eines Bruches bedeutet: Zähler und Nenner werden durch einen gemeinsamen Teiler dividiert. Anordnung der Bruchzahlen: Von zwei Brüchen mit gleichem Nenner ist derjenige der kleinere, der den kleineren Zähler hat. Von zwei Brüchen mit gleichem Zähler ist derjenige der kleinere, der den größeren Nenner hat. Brüche mit verschiedenen Nennern bringt man vor dem Vergleichen auf den Hauptnenner (= kgv aller Nenner). Addieren und Subtrahieren: Brüche mit gleichem Nenner werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält. Brüche mit verschiedenen Nennern erweitert man zuerst auf den Hauptnenner. Multiplizieren: Brüche werden multipliziert, indem man zuerst soweit wie möglich kürzt, und dann Zähler mit Zähler und Nenner mit Nenner multipliziert. Gemischte Zahlen müssen vor dem Multiplizieren in unechte Brüche verwandelt werden. Dividieren: Durch einen Bruch wird dividiert, indem man mit dem Kehrbruch multipliziert. Bruchteil eines Bruches: Bruchteil von ist Bruchteil mal Beispiele: (echter Bruch: Zähler < Nenner) (unechter Bruch: Zähler > Nenner) (Stammbruch: Zähler = ) = = = =... 6 : = = = : = = : < < + =, = + = + = 6 = = = = = 0 6 = : = = 6 von kg = kg = kg kg 0 =

2 Rationale Zahlen: Die Bruchzahlen und ihre Gegenzahlen bilden zusammen die Menge der rationalen Zahlen. Q = Menge der rationalen Zahlen Es gilt: Æ Q Der Wert des Quotienten zweier ganzer Zahlen a und b ist die Bruchzahl ba ( b Der Betrag einer rationalen Zahl ist ihr Abstand von der Zahl 0. Rechnen mit rationalen Zahlen Für das Rechnen mit rationalen Zahlen gelten die gleichen Regeln wie für das Rechnen mit ganzen Zahlen åq, 6 = å Q, = = =, = 0 = = ( ) ( ) = = ( ) = = Dezimalbrüche Zahlen wie,6 heißen Dezimalbrüche. Dabei bedeutet die. (.,.,...) Stelle hinter dem Komma Zehntel (Hundertstel, Tausendstel,...).Die Ziffern hinter dem Komma heißen Dezimalen. Runden von Dezimalbrüchen: Ist die erste wegzulassende Ziffer 0,,,,, so wird abgerundet, ist sie, 6,,,, so wird aufgerundet. Addieren und Subtrahieren von Dezimalbrüchen: Es werden die Stellen gleichen Wertes addiert (subtrahiert). Multiplikation und Division mit Stufenzahlen: Verschiebe des Kommas um so viele Stellen nach rechts (links), wie die Stufenzahl Nullen hat. Multiplikation von Dezimalbrüchen: Die Kommas bleiben beim Multiplizieren zunächst unberücksichtigt. Das Ergebnis erhält so viele Dezimalen, wie die Faktoren zusammen haben. Division durch eine natürliche Zahl: Vor dem Herabholen der. Ziffer hinter dem Komma wird im Ergebnis das Komma gesetzt. Division durch einen Dezimalbruch: Der Quotient zweier Zahlen ändert sich nicht, wenn man bei beiden Zahlen das Komma um gleich viele Stellen in gleicher Richtung verschiebt (=gleichsinnige Kommaverschiebung). Das Komma wird beim Dividend und Divisor so weit verschoben, bis der Dividend eine natürliche Zahl ist. 0,0 = = 00,= = Runden auf: Dez. Dez. Dez.,6,,6,6,6 +, =,0 (, 6) + (, ) =, 0 (, 6) (, ) = (, 6) +, =,, 6 = 0, 6,0 000 = 00, : 00 = 0,,6 0, 0, : =,,00,6 :,6 =,6: 6 =,6 ( 6, ) 0, = 00, ( 6, ) ( 0, ) = 00,

3 Umformen gewöhnlicher Brüche in Dezimalbrüche: = 0 6, 0 = 0,... = 0, z = z:n = ergibt einen n endlichen Dezimalbruch, wenn der Nenner des vollständig gekürzten Bruchs nur die Primfaktoren oder enthält. unendlichen periodischen Dezimalbruch sonst. Die sich wiederholende Ziffernfolge heißt Periode. Prozentrechnung Prozent = Hundertstel 00 Bsp.: % = = 0, = % = 0, Prozentsatz, Grundwert, Prozentwert: Anteile werden häufig in Prozent angegeben. p p% = 00 Es gilt: p% von G = P p% = Prozentsatz, G = Grundwert, P = Prozentwert Dem Grundwert werden immer 00% Zinsrechnung: Zins Z = Leihgebühr in Kapital K = ausgeliehener Geldbetrag Zinssatz p% = Leihgebühr in % t p Zinsformel: Z = K Zinsjahr = 60 Tage, Zinsmonat = 0 Tage Beispiele: Eine Ware kostet 0,00 und wird um 6% verteuert. 6 % von 0, = 6% 0, = 6, 0, =, Eine Ware kostet,00 und wird um 6% verbilligt. % von, = %, = 0,, =, Eine Ware wir von 0 auf verteuert. 0 Prozentuale Erhöhung = 00% = 6% 0 Ein Kapital von 000 wird 60 Tage zu einem Zinssatz von,% verzinst. 60, Zins Z= 0 =, Rauminhalte Volumeneinheiten: l = cm h =, cm Hat ein Würfel die Kantenlänge so ist sein Volumen mm mm cm dm cm = ml dm = l m m Umrechnungen: mm cm dm m Umrechnungszahl mm = cm 000 cm = dm 000 dm = m, m = 00 dm = cm

4 b = cm Volumen des Quaders: Das Volumen eines Quaders der Länge l, der Breite b und der Höhe h beträgt: V Q = l b h V Q = cm cm, cm = cm s = 0, cm Volumen des Würfels: Das Volumen des Würfels der Kantenlänge s beträgt: V W = s V W = (0, cm) = 0, cm = mm. Der Winkel Dreht man eine Halbgerade um ihren Anfangspunkt S entgegen dem Uhrzeigersinn bis zur Halbgeraden h, so wird ein Gebiet überstrichen, das wir den Winkel zwischen g und h nennen. Bezeichnungen: (g, h) oder ASB Winkeleinheiten: = 60 (Winkelminuten) = 60 Winkelsekunden) Winkelarten: Gradzahl α = 0 0 <α <0 α=0 0 <α <0 α = 0 0 <α <60 Bezeichnung Nullwinkel spitzer Winkel rechter Winkel stumpfer Winkel gestreckter Winkel überstumpfer Winkel α= 60 Vollwinkel

5 . Zuordnungen Bei einer Zuordnung wird jeder Zahl (aus einer Menge von Zahlen) eine weitere Zahl Beschreibungsmöglichkeiten: Tabelle, Graph, Vorschrift Direkte Proportionalität: Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe, das doppelte, dreifache,... der anderen Größe Graph: Eine vom Nullpunkt ausgehende Halbgerade. Besondere Eigenschaft: Zusammengehörende Wertepaare sind quotientengleich. Der gemeinsame Quotientenwert y : x heißt Proportionalitätsfaktor. Indirekte Proportionalität: Bei einer indirekten Proportionalität wird dem doppelten, dreifachen,... Wert der einen Größe die Hälfte, der dritte Teil,... der anderen Größe Graph: Hyperbel Besondere Eigenschaft: Zusammengehörende Wertepaare sind produktgleich.

Gemischte Zahlen Unechte Brüche können als gemischte Zahlen geschrieben werden und umgekehrt: Bruchzahlen A 6_02

Gemischte Zahlen Unechte Brüche können als gemischte Zahlen geschrieben werden und umgekehrt: Bruchzahlen A 6_02 Brüche A6_01 Brüche haben die Form z n mit z I, n IN. z N 0 heißt der Zähler, n der Nenner des Bruches. Zerlegt man ein Ganzes z. B. in vier gleich große Teile und fasst dann drei dieser Teile zusammen,

Mehr

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0

Mehr

= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält.

= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält. GRUNDWISSEN MATHEMATIK. JAHRGANGSSTUFE a b. Bruchzahlen: mit a, b N. a heißt Zähler, b heißt Nenner. a) Ein Bruch wird mit einer natürlichen Zahl erweitert (gekürzt), indem man Zähler und Nenner mit dieser

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010)

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010) M 6.1 Brüche Brüche beschreiben Bruchteile. Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Erweitern und Kürzen Durch Erweitern und Kürzen ändert sich der Wert des Bruches

Mehr

sfg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil

sfg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6. Brüche Brüche beschreiben Bruchteile bzw. Anteile 3 4 von 00kg = 4 von 00kg 3 = (00kg 4) 3 = kg 3 = 7kg (s. auch 6.0) Die Schokoladentafel hat 4 Stückchen, d.h. ein Stückchen entspricht dem Anteil

Mehr

Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an?

Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an? 1 6/1 Gib die richtigen Fachbegriffe an. 2 6/1 Welche Information gibt der Nenner eines Bruches an? 3 6/1 Welcher Bruchteil ist markiert? 4 6/1 Welcher Bruchteil ist markiert? 5 6/1 Welcher Bruchteil ist

Mehr

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.1 Brüche Brüche beschreiben Bruchteile bzw. Anteile (s. auch 6.10) Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Prozentschreibweise Anteile werden häufig in Prozent

Mehr

Grundwissen Mathematik 6. Klasse

Grundwissen Mathematik 6. Klasse Themen Brüche Eigenschaften Besonderheiten - Beispiele Ein Bruchteil ist stets ein Teil eines Ganzen, zum Beispiel eine Hälfte, ein Drittel oder drei Viertel. Bruchteile stellt man mithilfe von Brüchen

Mehr

Brüche. Prozentschreibweise

Brüche. Prozentschreibweise M 6. Brüche Brüche beschreiben Bruchteile. 4 00 = 00 = (00 4) = = 7 4 Die Schokoladentafel hat 4 Stückchen, d.h. ein Stückchen entspricht dem Anteil 4 M 6. Prozentschreibweise Anteile werden häufig in

Mehr

Brüche. Brüche beschreiben Bruchteile. M = = =25 3=75

Brüche. Brüche beschreiben Bruchteile. M = = =25 3=75 M 6.1 Brüche Brüche beschreiben Bruchteile. 3 4 100=1 100 3=100 4 3=5 3=75 4 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil 1 14 M 6. Prozentschreibweise Anteile werden

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen Grundwissen Mathematik 6.Klasse Gymnasium SOB.Weiterentwicklung der Zahlvorstellung..Bruchteile und Bruchzahlen 3 des Kreises ist rot, des Kreises ist blau gefärbt. Über dem Bruchstrich steht der Zähler,

Mehr

Grundwissen. Flächen- und Rauminhalt

Grundwissen. Flächen- und Rauminhalt Grundwissen Kopiere die folgenden Seiten auf dünnen Karton und zerschneide diesen in,,lernkarten. Baue damit eine Lernkartei auf: Wenn im Unterricht ein neuer Lehrstoff behandelt wurde, nimmst du die zugehörigen

Mehr

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b.

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1 Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1, 1, 1 usw. Diese Brüche bezeichnet man als Stammbrüche. 2 2 Der Stammbruch

Mehr

MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM

MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM Dieses Heft gehört: I. RATIONALE ZAHLEN 1. Brüche, Bruchteile 1.1. Bruchteile von Größen Der Bruchteil z n eines Ganzen bedeutet: Teile das Ganze

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

M 6. Inhaltsverzeichnis Grundwissen M Brüche. z eines Ganzen bedeutet: Teile das Ganze in n gleiche Teile. Der Bruchteil n

M 6. Inhaltsverzeichnis Grundwissen M Brüche. z eines Ganzen bedeutet: Teile das Ganze in n gleiche Teile. Der Bruchteil n M M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. Inhaltsverzeichnis Grundwissen Brüche Erweitern und Kürzen von Brüchen Prozentschreibweise Rationale Zahlen Dezimalschreibweise

Mehr

Grundwissen Klasse 6

Grundwissen Klasse 6 Zahlenmengen = {; 2; ; 4; ; 6;... } Die Menge der natürlichen Zahlen. = {... ; 2; ; 0; ; 2; ;...} Die Menge der ganzen Zahlen. 0 Die Menge der positiven rationalen Zahlen mit Null. ddition und Subtraktion

Mehr

6.1 Bruchzahlen Drei Standardaufgaben mit Bruchteilen Brüche und die Menge der rationalen Zahlen Erweitern und Kürzen

6.1 Bruchzahlen Drei Standardaufgaben mit Bruchteilen Brüche und die Menge der rationalen Zahlen Erweitern und Kürzen Gymnasium bei St. Anna, Augsburg Seite Grundwissen 6. Klasse 6. Bruchzahlen 6.. Brüche und die Menge der rationalen Zahlen Def.:. Zeichen der Art,,, 6,..., n z nennt man Brüche. Teilt man eine Größe in

Mehr

Grundwissen JS 6: Allgemeine Bruchrechnung

Grundwissen JS 6: Allgemeine Bruchrechnung GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48 FAX 0924/2564 Grundwissen JS 6: Allgemeine Bruchrechnung Was verstehst du

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen (). Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0.1.1 Formveränderungen von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit derselben Zahl multiplizieren. a

Mehr

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Erweitern und Kürzen Wie erweitert man einen

Mehr

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was bedeutet Prozent?

Mehr

kurs Crash Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf

kurs Crash Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf * Rechnen und Mathematik Crash kurs Ein Übungsbuch für Ausbildung und Beruf Duden Crashkurs Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf Dudenverlag Mannheim Leipzig Wien Zürich Bibliografische

Mehr

Grundwissen Jahrgangsstufe 6

Grundwissen Jahrgangsstufe 6 GM. Brüche Grundwissen Jahrgangsstufe Brüche: Zerlegt man ein Ganzes z.b. in gleich große Teile und fasst dann dieser Teile zusammen, so erhält man des Ganzen. Im Bruch ist der Nenner und der Zähler. Stammbrüche

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a Bruchrechnung 1. Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a b Kürzen heißt Zähler und Nenner eines Bruches durch dieselbe Zahl dividieren.

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Zahlen. Grundwissenskatalog G8-Lehrplanstandard

Zahlen. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Zahlen Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S -

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen () 6. Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Grundwissen Mathematik 6/1 1

Grundwissen Mathematik 6/1 1 Grundwissen Mathematik 6/ Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a ac = b bc Kürzen heißt Zähler und Nenner eines Bruches durch

Mehr

Einführung in die Bruchrechnung

Einführung in die Bruchrechnung - Seite 1 Einführung in die Bruchrechnung 1. Der Bruchbegriff Die Tafel unter drei Kindern aufteilen! Die Schokoladentafel wird zer"brochen" Jedes Kind erhält einen "Bruchteil". Wenn die Tafel aus 15 Stücken

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http//brinkmann-du.de Seite 1 09.02.2013 SEK I Lösungen zu rechnen mit Brüchen I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Bruchrechnung I Einfache Bruchaufgaben zur Vorbereitung

Mehr

1. Definition von Dezimalzahlen

1. Definition von Dezimalzahlen . Definition von Dezimalzahlen Definition: Dezimalzahlen sind Zahlen mit einem Komma, wobei die Ziffern nach dem Komma die Zehntel, Hundertstel, Tausendstel, usw. entsprechend dem -er Zahlensystem anzeigen.

Mehr

Dezimal. Dezimal. 6 Dezimalzahlen multiplizieren 7 8 Periodische Dezimalzahlen 9. Addition. Multiplikation. Algebra

Dezimal. Dezimal. 6 Dezimalzahlen multiplizieren 7 8 Periodische Dezimalzahlen 9. Addition. Multiplikation. Algebra Brüche und zahlen zahlen vergleichen zahlen runden 4 Addieren & subtrahieren Multiplizieren & dividieren mit Zehnerzahlen zahlen multiplizieren 7 8 Periodische zahlen 9 + Addition Z E z h t 4,4 9,9 4,4

Mehr

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen Grundwissen Klasse 6 I. Bruchzahlen 1. Sicheres Umgehen mit Bruchzahlen - Brüche als Anteil verstehen - Brüche am Zahlenstrahl darstellen - Brüche erweitern / kürzen können (Mathehelfer1: S.16/17) Aufgabe

Mehr

Grundwissen JS 5 Algebra

Grundwissen JS 5 Algebra GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009

Mehr

GRUNDWISSEN MATHEMATIK KLASSENSTUFEN 5 UND 6 1. ZAHLEN. 1.1 Zahlenmengen. 1.2 Teiler und Vielfache. 1.3 Teilbarkeitsregeln

GRUNDWISSEN MATHEMATIK KLASSENSTUFEN 5 UND 6 1. ZAHLEN. 1.1 Zahlenmengen. 1.2 Teiler und Vielfache. 1.3 Teilbarkeitsregeln 1.1 Zahlenmengen 1. ZAHLEN { } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen 1.2 Teiler und Vielfache Teiler: 4 32, also 4 ist Teiler von 32, d. h.

Mehr

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander.

Natürliche Zahlen. Natürliche Zahlen addieren und subtrahieren. Addiere die Ziffern stellengerecht untereinander. Grundwissen Natürliche Zahlen 1 Zeichne eine Zahlenhalbgerade und markiere. 8; 4; ; 11; 2; 6; 9 ; 1; 0; 4; 10; 60 2 Welches ist die größte (kleinste) natürliche Zahl, die man aus den Ziffern 8, 1,, und

Mehr

Bruchzahlen Herbert Paukert Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ]

Bruchzahlen Herbert Paukert Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ] Bruchzahlen Herbert Paukert 1 DIE BRUCHZAHLEN Version 2.0 Herbert Paukert 1. Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ] 4. Multiplizieren und Dividieren [

Mehr

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 LÖSUNGEN. Gib die Primfaktorzerlegung der Zahlen 0 und an. 0 0 7 7 7. Erkläre, wie man zwei ganze Zahlen addiert bzw. multipliziert. Bei gleichem

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK GRUNDWISSEN MATHEMATIK 5 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen.

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen. Grundwissen Klasse 6 - Lösungen I. Bruchzahlen. Sicheres Umgehen mit Bruchzahlen Brüche als Anteil verstehen Brüche am Zahlenstrahl darstellen Brüche erweitern / kürzen können (Mathehelfer: S.6/7) Aufgabe

Mehr

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen)

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen) 4 Inhalt 1 Teiler und Teilbarkeitsregeln 6 2 Primzahlen und Primfaktorzerlegung 8 3 ggt und kgv 10 4 Bruchzahlen und gemischte Zahlen 12 5 Erweitern und Kürzen 14 6 Addition und Subtraktion von Bruchzahlen

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

Rationale Zahlen. Umwandlung der verschiedenen Schreibweisen Erweitern auf eine Stufenzahl im Nenner: Relative Häufigkeit

Rationale Zahlen. Umwandlung der verschiedenen Schreibweisen Erweitern auf eine Stufenzahl im Nenner: Relative Häufigkeit Es gibt drei verschiedene Darstellungen: Zähler Nenner Brüche kann man kürzen und erweitern, hne dass sich der Wert ändert. Kürzen: Zähler und Nenner werden durch die selbe Zahl geteilt. Erweitern: Zähler

Mehr

Inhaltsbezogene Kompetenzbereiche: Kernkompetenzen / Erwartungen (Schwerpunkte) Längen, Flächeninhalt und Volumina unterscheiden

Inhaltsbezogene Kompetenzbereiche: Kernkompetenzen / Erwartungen (Schwerpunkte) Längen, Flächeninhalt und Volumina unterscheiden 1 (ca. 4 n, 16 h) Stellen zu Sachsituationen Fragen, suchen nach nutzen Lösungsstrategien (Schätzen, Probieren) und hinterfragen diese Größen und Messen: Längen, Flächeninhalt und Volumina unterscheiden

Mehr

A Bruchzahlen B Rechnen mit Dezimalzahlen C Winkel und Abbildungen D Flächen- und Rauminhalte

A Bruchzahlen B Rechnen mit Dezimalzahlen C Winkel und Abbildungen D Flächen- und Rauminhalte Inhalt A B C D Bruchzahlen Bruchteile 6 Bruchteile von Größen Kürzen und Erweitern von Brüchen 0 Verhältnisse und Maßstäbe Bruchzahlen 6 Brüche und Dezimalbrüche Prozentzahlen Addition und Subtraktion

Mehr

Grundwissen Seite 1 von 17 Klasse6

Grundwissen Seite 1 von 17 Klasse6 Grundwissen Seite 1 von 17 Klasse6 IN = {1; 2; 3; 4; 5; 6; } Menge der natürlichen Zahlen 5 ist eine natürliche Zahl kurz: 5 IN 5 ist ein Element von IN Natürliche Zahlen -2 ist keine natürliche Zahl kurz:

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: 1; 2; 3; 4; Nimmt man auch die 0 hinzu, schreibt man: 0; 1; 2; 3; 4; Zahlenstrahl Je weiter rechts eine Zahl

Mehr

Bruchteile. Anteile gibt man in Bruchschreibweise an. Anteil : 1 8. Bruchteil : 1 cm 2. Bruchteil : 0,5 cm 2. Anteil : 3 8. Bruchteil : 3 cm 2

Bruchteile. Anteile gibt man in Bruchschreibweise an. Anteil : 1 8. Bruchteil : 1 cm 2. Bruchteil : 0,5 cm 2. Anteil : 3 8. Bruchteil : 3 cm 2 Bruchteile Anteile gibt man in Bruchschreibweise an. Anteil : 8 Bruchteil : cm Anteil : 8 Bruchteil : 0, cm Anteil : 8 Bruchteil : cm Anteil : 8 Bruchteil :, cm 8 nennt man einen Bruch. 8 heißt Nenner

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3. 5 5.1 Einführung Die Gleichung 3x 9 hat die Lösung 3. 3x 9 3Z 9 x 3 3 Die Gleichung 3x 1 hat die Lösung 1 3. 3x 1 1 3 Z 1 x 3 Definition Die Gleichung bx a, mit a, b Z und b 0, hat die Lösung: b x a a

Mehr

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158 Grundwissen Mathematik G8 5. Klasse 1 Zahlen 1.1 Zahlenmengen IN = {1; 2; 3; } Menge der natürlichen Zahlen IN o = {0; 1; 2; 3; } Menge der natürlichen Zahlen mit Null Z = { ; -3; -2; -1; 0; 1; 2; 3; }

Mehr

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a Grundwissen 6 / Formveränderung von Brüchen Bruchrechnung Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a b Kürzen heißt Zähler und Nenner eines Bruches durch dieselbe

Mehr

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl

fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,

Mehr

Basiswissen 5. Klasse

Basiswissen 5. Klasse Basiswissen 5. Klasse 1. Daten Zur Darstellung von Daten werden oft Strichlisten, Figurendiagramme oder Säulen- und Strichdiagramme verwendet. Strichliste: Alter Strichliste Anzahl 5-10 Jahre 3 10-15 Jahre

Mehr

Langenscheidt Training plus, Mathe 6. Klasse

Langenscheidt Training plus, Mathe 6. Klasse Langenscheidt Training plus - Mathe Langenscheidt Training plus, Mathe 6. Klasse Bearbeitet von Uwe Fricke 1. Auflage 13. Taschenbuch. ca. 128 S. Paperback ISBN 978 3 68 60073 9 Format (B x L): 17,1 x

Mehr

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7. I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.3) Rechnen mit proportionalen Zuordnungen... 2 7.4) Die antiproportionale Zuordnung... 2

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Fit in Test und Klassenarbeit - Mathe 5./6.

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Fit in Test und Klassenarbeit - Mathe 5./6. Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Fit in Test und Klassenarbeit - Mathe 5./6. Klasse Gymnasium Das komplette Material finden Sie hier: School-Scout.de Christine Kestler

Mehr

Skript Bruchrechnung. Erstellt: 2014/15 Von:

Skript Bruchrechnung. Erstellt: 2014/15 Von: Skript Bruchrechnung Erstellt: 2014/15 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Erweitern / Kürzen... 5 3. Gemischte Brüche... 8 4. Multiplikation von Brüchen...

Mehr

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2 Addieren und Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen; Zähler subtrahieren. Füllen Sie die

Mehr

Mathematik üben mit Erfolg

Mathematik üben mit Erfolg Steffen Beuthan /Günter Nordmeier Mathematik üben mit Erfolg 7. Schuljahr Realschule MANZ VERLAG Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung in anderen als den gesetzlich zugelassenen

Mehr

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26

Größere Zahl minus kleinerer Zahl anschreiben. Komma unter Komma schreiben. 33,8 : 1,3 = 33,8 : 13 = 26 E1 E E3 E4 E5 E6 E7 Lösungen 1 Mein Wissen aus der 1. Klasse z. B., 1 F angemalt im Plan Da sie in unterschiedlichen Abteilungen des Flugzeugs saßen (Business-Class + Economy-Class), konnten sie einander

Mehr

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.

Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen

Mehr

1. Wiederholung und Vertiefung

1. Wiederholung und Vertiefung . Wiederholung und Vertiefung.. Definition: In der Mathematik bezeichnet man das Ganze mit. Um Teile eines Ganzen angeben zu können verwendet man Brüche. Zerlegt man ein Ganzes in... 0 gleich große Teile

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN 1. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler. Der Nenner gibt an, Nenner in wie

Mehr

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987

Mehr

Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: Lehrbuch: Sekundo 5, Schroedel

Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: Lehrbuch: Sekundo 5, Schroedel Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: 30.12.2014 Lehrbuch: Sekundo 5, Schroedel Inhalt / inhaltsbezogene Kompetenzen UE: Zahlen und Daten Strichlisten und Diagramme

Mehr

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen.

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. ruchrechnen 2 2.1 Teilbarkeit von Zahlen Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. Das kleinste gemeinsame Vielfache (kgv) mehrerer Zahlen ist die

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn Deutsch Deutsch Plural a hoch 3 a zum Quadrat acht achtzig Addition, die Ar, das Basis, die Betrag von a, der Binom, das Bruch, der Bruchstrich, der Deckfläche, die Dekagramm, das Deltoid, das Dezimalbruch,

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Proportionaliätsfaktor

Mehr

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn

Direkte Proportionalität. Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Quotientengleichheit

Mehr

BRUCHRECHNEN. Erweitern und Kürzen:

BRUCHRECHNEN. Erweitern und Kürzen: BRUCHRECHNEN Jede Bruchzahl läßt sich als Dezimalzahl darstellen 5 5:8 0.65 endlicher Dezimalbruch 8 0,6 unendlicher Dezimalbruch Nachfolgend werden die wesentlichen Zusammenhänge der Bruchrechnung angeführt.

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

Aufgabensammlung Bruchrechnen

Aufgabensammlung Bruchrechnen Aufgabensammlung Bruchrechnen Inhaltsverzeichnis Bruchrechnung. Kürzen und Erweitern.................................. 4. Addition von Brüchen................................... Multiplikation von Brüchen...............................

Mehr

Bruchrechnen in Kurzform

Bruchrechnen in Kurzform Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

Grundwissen. Mathematik 6. Klasse 3,78 4,1. Autor: Franz Schlagbauer

Grundwissen. Mathematik 6. Klasse 3,78 4,1. Autor: Franz Schlagbauer Grundwissen Mathematik 6. Klasse,78, 7 Autor: Franz Schlagbauer Grundwissen Mathematik 6. Klasse Bruchteile und Bruchzahlen. Bruchteile und ihre Veranschaulichung. Kürzen und Erweitern von Brüchen. Prozentschreibweise

Mehr

Teste dein Grundwissen

Teste dein Grundwissen Teste dein Grundwissen Was bedeutet addieren Plusrechnen Minusrechnen Malnehmen Teilen Was bedeutet Plusrechnen Minusrechnen Malnehmen Teilen subtrahieren Was bedeutet Plusrechnen Minusrechnen Malnehmen

Mehr

Rationale Zahlen Kurzfragen. 26. Juni 2012

Rationale Zahlen Kurzfragen. 26. Juni 2012 Rationale Zahlen Kurzfragen 26. Juni 2012 Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... ) in einer Menge M abgeschlossen? Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... )

Mehr

BLICKPUNKT MATHEMATIK 2

BLICKPUNKT MATHEMATIK 2 BLICKPUNKT MATHEMATIK 2 (Ausgabe Rovina / Schmid) Stand: Jänner 2011 BLICKPUNKT Mathematik 2 Seite 1 von 24 Z Zurück aus den Ferien Blatt Buch Addieren und Subtrahieren natürlicher Zahlen 1 A 8 Addieren

Mehr

Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen

Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen Lösungen Kapitel 1: Teilbarkeit und Rechnen mit Brüchen Arbeitsblatt 01: Teiler und Teilbarkeitsregeln a) durch 2: 1247, 33654, 149, 512, 6418 b) durch 3: 538, 1236, 8142, 972, 44780 c) durch 4: 4711,

Mehr

Aufgaben zu Lambacher Schweizer 6 Hessen

Aufgaben zu Lambacher Schweizer 6 Hessen Aufgaben zu Kapitel I Erweitern und Kürzen Erweitere im Kopf. a) mit ; 6; b) å mit ; 6; 7 c) mit ; ; d) å mit ; ; e) mit ; ; 7 f) mit ; ; Erweitere auf den angegebenen Nenner. a) 0: ; ; ; 0 ; 0 ; 0 b)

Mehr