GRUNDWISSEN MATHEMATIK

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "GRUNDWISSEN MATHEMATIK"

Transkript

1 7.Jahrgangstufe ALGEBRA Seite 1 1. Terme 3a ist ein Term; a ist eine Variable; 3 heißt Koeffizient. Termberechnung: Es können nur gleichartige Terme ( = Terme mit gleichen Variablen) zusammengefasst, d.h. addiert bzw. subtrahiert, werden. Beispiel: 5m² + 7m + 3 geht nicht ax² + 3ax + 5ax² = 6ax² +3ax Fachausdrücke der Termgliederung : Term Bezeichnung a heißt b heißt a+b Summe 1. Summand 2. Summand a-b Differenz Minuend Subtrahend a*b Produkt 1. Faktor 2. Faktor a:b Quotient Dividend Divisor a Bruch Zähler Nenner b a b Potenz Basis Exponent 2. Der Betrag einer Zahl Unter dem Betrag einer Zahl versteht man die stets positive Maßzahl ihrer Entfernung vom Nullpunkt. Beispiel: 2 = 2; 2 = 2; x, wenn x 0 Es gilt: x = -x, wenn x < 0 { 3. Regeln für die Addition und Subtraktion rationaler Zahlen Zwei rationale Zahlen mit gleichen Vorzeichen werden addiert, indem man ihre Beträge addiert und das gemeinsame Vorzeichen voranstellt. Zwei rationale Zahlen mit verschiedenen Vorzeichen werden addiert, indem man die kleinere von der größeren Zahl subtrahiert und als Vorzeichen das der dem Betrage nach größeren Zahl wählt. Beispiele: = (+32) + (+45) = +( ) = = (-32) + (-45) = - ( ) = = (+45) + (-32) = +(45 32) = = (+32) + (-45) = -(45 32) = Klammerregeln Regeln für das Auflösen von Klammern: - Steht ein + vor der Klammer, so kann die Klammer einfach weggelassen werden. - Steht ein - vor der Klammer, so müssen beim Weglassen der Klammer alle Rechenzeichen in der Klammer geändert werden. - Beispiele: a + ( b + c - 2d) = a + b + c 2d a ( b + c 2d) = a b c + 2d Regeln für das Setzen von Klammern: - Setzt man vor die Klammer ein +, so bleiben die Glieder innerhalb der Klammer unverändert.

2 7.Jahrgangstufe ALGEBRA Seite 2 - Setzt man vor die Klammer ein ``, so ändern alle Glieder innerhalb der Klammer ihr Rechenzeichen. - Beispiele: a + b + 2c d = a + ( b + 2c d) a b + 2c d = a ( b 2c + d) 5. Zeichenregeln bei der Multiplikation und Division - Bei gleichem Vorzeichen wird das Ergebnis positiv. - Bei verschiedenen Vorzeichen wird das Ergebnis negativ. 6. Das Lösen von Gleichungen - Eine Gleichung ist eine Aussageform mit einem =. - Die Grundmenge G ist die Menge der Zahlen, die für die unbekannte Variable eingesetzt werden dürfen. - Die Lösungsmenge L ist die Menge der Zahlen aus der Grundmenge, die die Gleichung erfüllen. Stets gilt L G. - Äquivalenzumformungen sind Umformungen, bei denen sich die Lösungsmenge nicht ändert, also darf man - auf beiden Seiten gleiche Zahlen oder gleiche Vielfache von Variablen addieren bzw. subtrahieren und - beide Seiten mit gleichen Zahlen ( 0) multiplizieren bzw. durch gleiche Zahlen ( 0) dividieren. - Beispiel: G = Q 5x 5 = 2x 23 / -2x 5x 2x 5 = -23 / +5 3x = -18 / :3 x = -6 G L = { -6} 7. Das Lösen von Ungleichungen Die Lösungsmethode entspricht der bei Gleichungen mit folgendem Unterschied: Bei der Multiplikation oder Division mit einer negativen Zahl muss das Ungleichheitszeichen umgedreht werden. Beispiel G = Q -3x < 18 / : (-3) x > -6 L = ]-6; + [ 8. Multiplikationsregeln von Summen Summen werden miteinander multipliziert, indem man jedes Glied der ersten Klammer mit jedem Glied der zweiten Klammer unter Beachtung der Zeichenregel multipliziert. Beispiel: ( 3x + 4) * ( 2x 1) = 6x² - 3x + 8x 4 = 6x² + 5x 4 9. Die binomischen Formeln 1. (a + b)² = a² + 2ab + b² 2. (a b)² = a² - 2ab + b² 3.( a + b)*( a b)= a² - b² 4. (a + b)³ = a³ + 3a²b + 3ab² + b³ 5. ( a b)³ = a³ - 3a²b + 3ab² - b³

3 7.Jahrgangstufe GEOMETRIE Seite 3 1. Wichtige Symbole und Schreibweisen a. Strecken und Geraden A A B B [AB] ist die Strecke g = AB ist die Gerade [AB ist die Halbgerade mit den Endpunkten A und B durch die Punkte A und B oder der Strahl von A nach B Unterscheide: AB ist die Länge der Strecke [AB]. g h bedeutet: g und h stehen aufeinander senkrecht g h bedeutet: g und h sind zueinander parallel b. für Kreise Die Kreislinie k bilden alle Punkte, deren Abstand von M gleich dem Radius r ist: k = {P/ PM = r} A Das Kreisinnere k i bilden alle Punkte S, deren Abstand von M kleiner als der Radius r ist: k i = {S/ SM < r} Das Kreisäußere k a bilden alle Punkte Q, deren Abstand Von M größer als der Radius r ist: k a = {Q/QM > r} B 2. Winkelsätze a. an Geradenkreuzungen b. In Dreiecken und Vierecken α und γ heißen Scheitelwinkel Scheitelwinkel sind gleich groß: α = γ und β = δ α und β heißen Nebenwinkel. Nebenwinkel ergänzen sich zu 180 : α + β = 180 ; β + γ = 180 ; γ + δ = 180 ; δ + α = 180 Winkelsummensatz im Dreieck In einem Dreieck beträgt die Summe der Innenwinkel 180. α + β + γ = 180 Außenwinkelsatz im Dreieck In einem Dreieck ist ein Außenwinkel so groß wie die * Summe der nichtanliegenden Innenwinkel. z.b. α + β = γ Winkelsummensatz im Viereck: In einem Viereck beträgt die Summe der Innenwinkel 360.

4 7.Jahrgangstufe GEOMETRIE Seite 4 c. an Doppelkreuzungen mit parallelen Geraden An Doppelkreuzungen treten folgende Winkelpaare auf: Z-Winkel oder Wechselwinkel z.b. α und β F-Winkel oder Stufenwinkel z.b. γ und δ Winkelgesetz an Parallelen: An einer Doppelkreuzung mit parallelen Geraden sind Stufenwinkel bzw. Wechselwinkel paarweise gleich groß. Erkennungsmerkmal für Parallelen: An einer Doppelkreuzung mit gleichgroßen Stufen- und Wechselwinkeln sind zwei Geraden parallel. 3. Wichtige Grundkonstruktionen ( Teil1) a. Die Winkelübertragung Ein Winkel der Größe ϕ soll so übertragen werden, dass der neue Scheitel der Punkt P g ist und der 1. Schenkel mit g zusammenfällt.( siehe a) Konstruktion und Konstruktionsbeschreibung: 1.Zeichne 2 Kreise mit gleichem Radius um S und P ( siehe b). Der Kreis um S schneidet die Schenkel des Winkels ϕ in den Punkten Q und R, der Kreis um P schneidet die Gerade g im Punkt Q. 2. Nimm die Sehnenlänge QR in den Zirkel und übertrage sie von Q aus auf den Kreis mit Mittelpunkt P. Du erhältst R.( siehe c) 3. Die Halbgerade [PR ist der 2. Schenkel des Winkels ϕ. Da in gleichgroßen Kreisen zu gleich langen Sehnen gleich große Mittelpunktswinkel gehören, gilt ϕ = ϕ. ( siehe d)

5 7.Jahrgangstufe GEOMETRIE Seite 5 b. Die Konstruktion paralleler Geraden Zu einer Geraden g soll durch einen Punkt P außerhalb von g die Parallele konstruiert werden ( siehe a). Konstruktion und Konstruktionsbeschreibung: 1. Zeichne eine Gerade h durch P, die g in S unter dem Winkel ϕ schneidet ( siehe b). 2. Übertrage den Winkel ϕ als Wechselwinkel in P an h. 4.Kongruenzabbildungen a. Die Achsenspiegelung Die Achsenspiegelung an einer Symmetrieachse a ist folgendermaßen festgelegt: -Jeder Punkt der Achse ist Fixpunkt der Abbildung. A a A -Jeder Punkt außerhalb der Achse bestimmt mit seinem Bildpunkt eine Strecke, die Lot zur Achse ist und von dieser halbiert wird. B a B und C a C Eigenschaften der Achsenspiegelung: -Geradentreue: Geraden werden wieder auf Geraden abgebildet. Zur Achse senkrechte Geraden werden auf sich selbst abgebildet ( Fixgeraden). -Längentreue: Zueinander symmetrische Strecken haben die gleiche Länge. -Winkeltreue: Zueinander symmetrische Winkel sind gleich groß mit verschiedenem Drehsinn. - Kreistreue: Kreise werden wieder auf gleich große Kreise abgebildet. b. Die Punktspiegelung Die Punktspiegelung am Symmetriezentrum S ist folgendermaßen festgelegt: - Jeder vom Zentrum verschiedene Punkt bestimmt mit seinem Bildpunkt eine Strecke, die vom Zentrum halbiert wird. AS = SA

6 7.Jahrgangstufe GEOMETRIE Seite 6 Eigenschaften der Punktspiegelung: - Die Punktspiegelung ist eine Drehung um S um ϕ = Sie lässt sich durch zwei Achsenspiegelungen ersetzen. Die Achsen schneiden sich dabei senkrecht im Punkt S. - Sie hat die gleichen Treueeigenschaften wie die Achsenspiegelung. Geraden, die S enthalten, werden auf sich selbst abgebildet ( Fixgeraden). Zueinander symmetrische Winkel sind gleich groß und haben den selben Drehsinn. c. Die Drehung Die Drehung um den Drehpunkt D mit dem Drehwinkel ϕ ist folgendermaßen festgelegt: - Punkt A und Bildpunkt A sind vom Drehpunkt D gleich weit entfernt. - Der Winkel ADA ist gleich dem Drehwinkel ϕ. Eigenschaften der Drehung - Die Drehung lässt sich durch zwei Achsenspiegelungen ersetzen. Die beiden Achsen schneiden sich unter 2 ϕ im Drehpunkt D. - Sie hat die gleiche Treueeigenschaften wie die Achsenspiegelung. Winkel behalten ihren Drehsinn. d. Die Verschiebung Die Verschiebung mit dem Verschiebungspfeil v ist folgendermaßen festgelegt: - Alle Punkt-Bildpunkt-Strecken sind gleich lang und zueinander parallel. Eigenschaften der Verschiebung: - Die Verschiebung lässt sich durch zwei Achsenspiegelungen ersetzen. Die beiden Achsen sind zueinander parallel und stehen auf dem Verschiebungspfeil senkrecht. Die Reihenfolge der Ausführung der Achsenspiegelungen ist durch die Richtung des Verschiebungspfeils festgelegt. Ihr Abstand voneinander ist halb so groß wie die Länge des Verschiebungspfeils. - Sie hat die gleichen Treueeigenschaften wie die Achsenspiegelung. Geraden, die zum Verschiebungspfeil parallel sind, werden auf sich selbst abgebildet ( Fixgeraden). Der Drehsinn der Winkel ändert sich nicht. - Der Verschiebungspfeil ist ein Vektor. Er ist durch seinen Anfang ( Fuß) und sein Ende ( Spitze ) festgelegt. Im Koordinatensystem kann er durch folgende Schreibweise gegeben sein: v = bedeutet: Verschiebe um +3 nach rechts und um 2 nach unten

7 7.Jahrgangstufe GEOMETRIE Seite 7 5. Wichtige Grundkonstruktionen ( Teil 2) a. Das Spiegeln eines Punktes an der Achse Der Punkt A soll an der gegebenen Achse a gespiegelt werden. - Lege zwei voneinander verschiedene Punkte R und S auf der Achse a fest - Zeichne die beiden Kreise k 1 (S; r 1 = SA ) und k 2 ( R; r 2 = RA ) - Die beiden Kreise schneiden sich einmal in A. Der 2. Schnitt- Punkt ist der Spiegelpunkt A. b. Das Halbieren der Strecke Die Strecke [ AB ] soll halbiert werden. - Zeichne zwei Kreise um A und B mit gleichem Radius, der aber größer als 2 1 AB sein muss. - Die beiden Kreise schneiden sich in R und S - RS ist die Symmetrieachse der Strecke [AB]. Sie steht Damit senkrecht auf dieser und halbiert sie. c. Das Halbieren eines Winkels Der Winkel α mit Scheitel A soll halbiert werden. - Zeichne einen Kreis um A. Dieser Kreis schneidet Die beiden Schenkel in R und S - Konstruiere die Symmetrieachse zu [RS]. Diese ist die Winkelhalbierende d. Das Errichten eines Lotes In einem Punkt P g soll ein Lot errichtet werden. - Zeichne einen Kreis um P. Dieser schneidet g in A und B. - Konstruiere die Symmetrieachse zu [AB]. e. Das Fällen eines Lotes Von P g soll ein Lot auf g gefällt werden. - Konstruiere P - PP ist ein Lot zu g 6. Dreieckslehre a. Erkennungsmerkmale für Kongruente Dreiecke Dreiecke sind schon kongruent, wenn sie I in drei Seiten ( SSS) II in zwei Seiten und dem Zwischenwinkel ( SWS) III in einer Seite und zwei Winkeln ( WSW, SWW) IV in zwei Seiten und dem Gegenwinkel der größeren Seite ( SsW) übereinstimmen.

8 7.Jahrgangstufe GEOMETRIE Seite 8 b. Besondere Linien (Transversalen) im Dreieck Die Höhen Die Höhe ist das Lot von einer Ecke auf die gegenüberliegende Seite. Bezeichnungen: h a, h b, h c. Vorsicht: Die Höhe liegt bei stumpfwinkligen Dreiecken außerhalb des Dreiecks. Die Seitenhalbierenden Die Seitenhalbierende ist die Verbindungsstrecke eines Eckpunkts mit dem Mittelpunkt der gegenüberliegenden Seite. Bezeichnungen: s a, s b, s c Die drei Seitenhalbierenden schneiden sich in einem Punkt, dem Schwerpunkt des Dreiecks. Die Winkelhalbierenden Die Winkelhalbierende ist die Halbierende eines Innenwinkels des Dreiecks. Bezeichnungen: w α, w ß, w γ Die drei Winkelhalbierenden schneiden sich im Inkreismittelpunkt. Die Mittelsenkrechten Die Mittelsenkrechte ist die Symmetrieachse einer Seite. Bezeichnungen: m a, m b, m c Die drei Mittelsenkrechten schneiden sich im Umkreismittelpunkt.c. Das gleichschenklige Dreieck Ein Dreieck mit zwei gleich langen Seiten heißt gleichschenklig. Die beiden gleich langen Seiten heißen Schenkel. Die dritte Seite heißt Basis. Die Höhe h c ist auch Symmetrieachse des Dreiecks. Sie ist damit Mittelsenkrechte der Basis und Winkelhalbierende des Winkels an der Spitze. Die Basiswinkel sind gleich groß. d. Das gleichseitige Dreieck Ein Dreieck mit drei gleich langen Seiten heißt gleichseitig. Hier fallen alle vier Transversalen zusammen. Das Dreieck hat drei Symmetrieachsen, die gleichzeitig auch Höhe, Seitenhalbierende und Winkelhalbierende sind. Der gemeinsame Schnittpunkt ist Schwerpunkt, Umkreis- und Inkreismittelpunkt zugleich. Jeder Winkel hat 60. e. Das rechtwinklige Dreieck Ein Dreieck mit einem rechten Winkel heißt rechtwinklig. Die am rechten Winkel anliegenden Seiten heißen Katheten, die dem rechten Winkel gegenüberliegende Seite heißt Hypothenuse. Satz des Thales: Dreiecke deren Ecken so auf einem Kreis liegen, dass eine Seite Kreisdurchmesser ist, sind rechtwinklig.

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 7 1. chsen- und unktspiegelung a) chsensymmetrie Die chse halbiert die Strecke [ ] senkrecht. lle chsenpunkte sind von

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

7.1 Algebra Rechnen mit rationalen Zahlen und Termen

7.1 Algebra Rechnen mit rationalen Zahlen und Termen Gymnasium bei St. Anna, Augsburg Seite 1 Grundwissen 7. Klasse 7.1 Algebra 7.1.1 Rechnen mit rationalen Zahlen und Termen WH: Siehe dazu..3 Vorrangregeln und.. K-, A-, D-Gesetze sowie 6. Rechengesetze

Mehr

Grundwissen Mathematik 7. Klasse

Grundwissen Mathematik 7. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 7. Klasse Wissen Aufgaben/Beispiele Lösungen Achsenspiegelung Eigenschaften der Achsenspiegelung: - Die Verbindungsstrecke von Punkt P und Bildpunkt P

Mehr

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q Variable und Terme A 7_01 Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z B x IN; y ; a Q Jede sinnvolle Zusammenstellung aus Zahlen und Variablen mit Hilfe von Rechenzeichen

Mehr

Grundlagen Mathematik 7. Jahrgangsstufe

Grundlagen Mathematik 7. Jahrgangsstufe ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

OvTG Gauting, Grundwissen Mathematik 7. Klasse

OvTG Gauting, Grundwissen Mathematik 7. Klasse 1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

1.Wichtige geometrische Eigenschaften

1.Wichtige geometrische Eigenschaften 1.Wichtige geometrische Eigenschaften 1.Achsensymmetrie Die Punkte P und P* sind achsensymmetrisch bzgl. der Symmetrieachse a. Es gilt: a)[pp*] wird von a rechtwinklig halbiert. a ist Mittelsenkrechte

Mehr

Grundlagen der Geometrie

Grundlagen der Geometrie Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist 7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d

Mehr

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Wissen / Können 1. Symmetrie Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Definitionen und Beispiele Achsensymmetrie Eine Figur heißt achsensymmetrisch, wenn sie durch Umklappen um eine Gerade

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8) Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

Grundwissen 7. Klasse

Grundwissen 7. Klasse Grundwissen 7. Klasse I. Symmetrie 1. Achsensymmetrie Die Punkte P und P sind achsensymmetrisch bzgl. der Symmetrieachse a. Sind Figuren zueinander achsensymmetrisch, so kannst du folgende Eigenschaften

Mehr

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.

Formelsammlung Mathematik 7 I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7. I) Zuordnungen... 2 7.1) Proportionale Zuordnungen... 2 7.2) Eigenschaften von proportionalen Zuordnungen... 2 7.3) Rechnen mit proportionalen Zuordnungen... 2 7.4) Die antiproportionale Zuordnung... 2

Mehr

Grundwissen Mathematik 7.Klasse Gymnasium SOB

Grundwissen Mathematik 7.Klasse Gymnasium SOB 1 Grundwissen Mathematik 7.Klasse Gymnasium SOB 1.Figurengeometrie 1.1.Achsensymmetrie Sind zwei Punkte P und P achsensymmetrisch bezüglich der Achse a, dann gilt [PP ] a und a halbiert [PP ]. a Jeder

Mehr

Basiswissen 7. Klasse

Basiswissen 7. Klasse Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie Zueinander symmetrische Punkte können durch Kongruenzabbildungen (= Abbildungen, bei denen Form und Größe von Figuren gleich bleiben) aufeinander abgebildet

Mehr

Grundwissen. Achsenspiegelung. Die Verbindungsstrecke von einem Punkt P und seinem Bildpunkt P' wird von der Symmetrieachse

Grundwissen. Achsenspiegelung. Die Verbindungsstrecke von einem Punkt P und seinem Bildpunkt P' wird von der Symmetrieachse 170 10 Grundwissen Grundwissen Kopiere die folgenden Seiten auf dünnen Karton und zerschneide diesen in,,lernkarten. aue damit eine Lernkartei auf: Wenn im Unterricht ein neuer Lehrstoff behandeltwurde,nimmstdudiezugehörigenkartenindeinekarteiauf.

Mehr

Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6

Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6 Dietrich-Bonhoeffer-Gymnasium Oberasbach - Mathematik 7. Klasse Seite 1 von 6 M7 - Algebra: Standardaufgaben Grundwissen M7 Beispielaufgaben mit Lösung 1. Vereinfache so weit wie möglich! Verwende Rechenregeln/-gesetze,

Mehr

1. Daten und Diagramme Beispiele / Veranschaulichung

1. Daten und Diagramme Beispiele / Veranschaulichung 1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb

Mehr

7. Klasse. Algebra. 2.1 Kommutativgesetz (KG) der Addition und Multiplikation Für alle rationalen Zahlen a und b gilt: a+b = b+a a b = b a

7. Klasse. Algebra. 2.1 Kommutativgesetz (KG) der Addition und Multiplikation Für alle rationalen Zahlen a und b gilt: a+b = b+a a b = b a Algebra 1. Termen mit Variablen Ein Term ist ein Rechenausdruck, der aus Zahlen, Variablen und Rechenzeichen bestehen kann. Variablen sind Platzhalter für Zahlen oder für Größen. Eine Variable steht immer

Mehr

I. Symmetrie... 2. A. Achsensymmetrie... 2 B. Punktsymmetrie... 3 C. Symmetrische Vierecke... 3. II. Winkelbetrachtungen... 13. III. Terme...

I. Symmetrie... 2. A. Achsensymmetrie... 2 B. Punktsymmetrie... 3 C. Symmetrische Vierecke... 3. II. Winkelbetrachtungen... 13. III. Terme... Mathe 7 I. Symmetrie... 2 A. Achsensymmetrie... 2 B. Punktsymmetrie... 3 C. Symmetrische Vierecke... 3 II. Winkelbetrachtungen... 13 III. Terme... 14 IV. Termumformungen... 16 V. Gleichungen... 18 VI.

Mehr

Grundwissen Klasse 6

Grundwissen Klasse 6 Zahlenmengen = {; 2; ; 4; ; 6;... } Die Menge der natürlichen Zahlen. = {... ; 2; ; 0; ; 2; ;...} Die Menge der ganzen Zahlen. 0 Die Menge der positiven rationalen Zahlen mit Null. ddition und Subtraktion

Mehr

Grundwissen Mathematik - 7. Jahrgangsstufe

Grundwissen Mathematik - 7. Jahrgangsstufe Stichworte Termbegriff äquivalente Terme Rechenregeln Grundwissen Mathematik - 7. Jahrgangsstufe 1. Terme Terme sind Rechnungen, die Zahlen und Variable enthalten dürfen. Alle aus der 5. Klasse bekannten

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt

MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt Definitionen: 1. Kongruenz: Zwei Figuren, die sich beim Aufeinanderlegen decken, heißen deckungsgleich oder kongruent. 2. Kongruenzabbildung: Eine Abbildung,

Mehr

Grundwissen 8II/11. Terme

Grundwissen 8II/11. Terme Grundwissen 8II/11 Termumformungen 1. Vereinfachung von Produkten Terme Halte dich an folgende Reihenfolge: Klammern bei Potenzen auflösen Vorzeichen des Produkts bestimmen Ordnen: Zahlen zuerst, dann

Mehr

Grundwissen 7. Klasse

Grundwissen 7. Klasse Grundwissen Mathematik 7. Klasse /6 Grundwissen 7. Klasse lgebra.terme mit Variablen a) llgemeines Treten in einem Term (Rechenausdruck) verschiedene Variablen auf, dann dürfen diese mit verschiedenen

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

MATHEMATIK GRUNDWISSEN 7. KLASSE LESSING-GYMNASIUM NEU-ULM

MATHEMATIK GRUNDWISSEN 7. KLASSE LESSING-GYMNASIUM NEU-ULM MATHEMATIK GRUNDWISSEN 7. KLASSE LESSING-GYMNASIUM NEU-ULM Dieses Heft gehört: I. ALGEBRA 1. Terme 1.1 Begriff Terme sind sinnvolle Zusammenstellungen aus Zahlen, Platzhaltern (= Variablen), Rechenzeichen

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Achsensymmetrie. Punktsymmetrie M 7.1. Eigenschaften: Grundkonstruktionen M 7.2 B` A` Eigenschaften: C Z C` A B. Grundkonstruktionen

Achsensymmetrie. Punktsymmetrie M 7.1. Eigenschaften: Grundkonstruktionen M 7.2 B` A` Eigenschaften: C Z C` A B. Grundkonstruktionen M 7. chsensymmetrie Eigenschaften: - [`] steht senkrecht auf der Symmetrieachse - [`] wird von der Symmetrieachse halbiert - Liegt ein unkt auf der Symmetrieachse, dann stimmt ` mit überein - Zueinander

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a

Bruchrechnung. Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a Grundwissen 6 / Formveränderung von Brüchen Bruchrechnung Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a b Kürzen heißt Zähler und Nenner eines Bruches durch dieselbe

Mehr

MB1 LU 20, 21,23,24 Kongruenzabbildungen

MB1 LU 20, 21,23,24 Kongruenzabbildungen MB1 LU 20, 21,23,24 Kongruenzabbildungen Definitionen: 1. Kongruenz: Zwei Figuren, die sich beim Aufeinanderlegen decken, heißen deckungsgleich oder kongruent. 2. Kongruenzabbildung: Eine Abbildung, die

Mehr

GW Mathematik 5. Klasse

GW Mathematik 5. Klasse Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.

Mehr

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken]

GRUNDWISSEN Seitenhalbierende Konstruktion von Vierecken [nach Lambacher Schweizer 7] [eigene Grafiken] GRUNDWISSEN Inhalt 5.Gleichungen... 2 5.1. Gleichungen und Lösungen... 2 5.2. Äquivalente Gleichungsumformungen... 2 5.3. Systematisches Lösen einer Gleichungen... 2 5.4. Lineare Gleichungen in Anwendungsaufgaben...

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014 Examen Kurzfragen (sortiert) VI. Dreiecke 24. Juni 2014 VI. Dreiecke Frage 1 Wie werden im rechtwinkligen Dreieck die beiden Seiten genannt, die dem rechten Winkel anliegen? VI. Dreiecke Frage 1 Wie werden

Mehr

Natürliche Zahlen und. Zahlenstrahl

Natürliche Zahlen und. Zahlenstrahl M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt, desto größer

Mehr

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM NEU-ULM Lessing-Gymnasium Neu-Ulm 2/17 I. ZAHLEN 1. Natürliche und ganze Zahlen 1.1 Zahlenmengen Natürliche Zahlen N = { 1, 2, 3, 4,...} Natürliche Zahlen

Mehr

Schullehrplan in der Geometrie der Vorlehre

Schullehrplan in der Geometrie der Vorlehre Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für

Mehr

Grundwissen Mathematik 7II-III/1

Grundwissen Mathematik 7II-III/1 Grundwissen athematik 7II-III/ ultiplikation und Division in QI Rechenregeln a c a c a c a d : b d b d b d b c Vorzeichenregeln + ++ + + + + : ++ : + : + + : Potenzgesetze. Potenzgesetz n m n m a a a +

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

Natürliche Zahlen, besondere Zahlenmengen

Natürliche Zahlen, besondere Zahlenmengen Natürliche Zahlen, besondere Zahlenmengen A5_01 Menge der natürlichen Zahlen N = {1, 2, 3,...} Menge der natürlichen Zahlen mit der Null N 0 = {0, 1, 2,...} Primzahlen: Eine Primzahl hat genau zwei Teiler,

Mehr

Kongruenz und Symmetrie

Kongruenz und Symmetrie Kongruenz und Symmetrie Kongruente Figuren Wenn Figuren genau deckungsgleich sind, nennt man sie kongruent. Sie haben gleiche Form und gleiche Größe. Es entsteht eine 1:1 Kopie. Figuren, die zwar die gleiche

Mehr

Grundwissen 8I/11. Terme

Grundwissen 8I/11. Terme Grundwissen 8I/ Termumformungen. Vereinfachung von Produkten Terme Halte dich an folgende Reihenfolge: Klammern bei Potenzen auflösen Vorzeichen des Produkts bestimmen Ordnen: Zahlen zuerst, dann Variablen

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile Geometrie I (Sommersemester 006, Dr. Christian Werge, chwerge@web.de) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7

I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7 Grundwissen Mathematik Klasse 7 I. lgebra 1. ufstellen, Interpretieren und Veranschaulichen von Termen (Mathehelfer : S.6) ufgabe: us n aneinandergeklebten Würfeln ist ein Turm gebaut worden. Stelle einen

Mehr

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen. Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen

Mehr

2 Kongruenzabbildungen - Bewegungen

2 Kongruenzabbildungen - Bewegungen 16 2 Kongruenzabbildungen - Bewegungen 2.1 Die Gruppe der Bewegungen Bei der Untersuchung der Geradenspiegelungen hat sich ergeben, daß eine Geradenspiegelung, zweimal ausgeführt, die identische Abbildung

Mehr

2.6. Aufgaben zu Kongruenzabbildungen

2.6. Aufgaben zu Kongruenzabbildungen Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Geometrie 4.1. Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie

Geometrie 4.1. Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Grundwissen Klasse 7

Grundwissen Klasse 7 Grundwissen Klasse 7 Zahlenmengen = {1; 2; 3; 4; 5; 6;... } Die Menge der natürlichen Zahlen. = {... 3; 2; 1; 0; + 1; + 2; + 3;...} Die Menge der ganzen Zahlen. Die Menge der rationalen Zahlen. Multiplikation

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

b) richtig, da und c) falsch, da d) Westermann Seite 52 Aufgabe 4

b) richtig, da und c) falsch, da d) Westermann Seite 52 Aufgabe 4 Westermann Seite 52 Aufgabe 2 b) richtig, da und c) falsch, da d) Westermann Seite 52 Aufgabe 4 Nach dem Einzeichnen des Urdreiecks und des Punktes A erkennt man: Der Vektor verschiebt den Punkt A um 3

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

WF Mathematik: 1. Grundbegriffe der Geometrie

WF Mathematik: 1. Grundbegriffe der Geometrie WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

37 II.1. Abbildungen

37 II.1. Abbildungen 37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin

Mehr

positive Zahlen (z.b. 216 / 1,2 / 3 4 5 ) negative Zahlen (z.b. 216 / 1,2 / 3 4 5 )

positive Zahlen (z.b. 216 / 1,2 / 3 4 5 ) negative Zahlen (z.b. 216 / 1,2 / 3 4 5 ) 3.1. Zahlengerade (1.1.) Seite 9 Mit dem Zahlenstrahl können wir die positiven Zahlen darstellen. Die Zahlengerade ermöglicht uns, auch die negativen Zahlen darzustellen. Auf dieser Zahlengeraden gibt

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

Dreiecke Kurzfragen. 30. Juni 2012

Dreiecke Kurzfragen. 30. Juni 2012 Dreiecke Kurzfragen 30. Juni 2012 Dreiecke Kurzfrage 1 Wie werden die Ecken, Seiten und Winkel eines Dreiecks angeschrieben? Dreiecke Kurzfrage 1 Wie werden die Ecken, Seiten und Winkel eines Dreiecks

Mehr

Begriffe zur Gliederung von Termen, Potenzen 5

Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend

Mehr

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7 Themen verschiedener Darstellungsmöglichkeiten von Proportionaler, ihre Darstellung in Koordinatensystemen und Berechnungen mit Hilfe des Dreisatz antiproportionaler, ihre Darstellung im Koordinatensystem

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

MATHEMATIK GRUNDWISSEN 8. KLASSE LESSING-GYMNASIUM

MATHEMATIK GRUNDWISSEN 8. KLASSE LESSING-GYMNASIUM MATHEMATIK GRUNDWISSEN 8. KLASSE LESSING-GYMNASIUM NEU-ULM Lessing-Gmnasium Neu-Ulm Seite von I. Funktionen. Direkt proportionale Zuordnungen und sind direkt proportional, wenn, zum n-fachen Wert für der

Mehr

Vorwort: Farbe statt Formeln 7

Vorwort: Farbe statt Formeln 7 Inhaltsverzeichnis Vorwort: Farbe statt Formeln 7 1 Die Grundlagen 11 1.1 Vom Geodreieck zum Axiomensystem................ 11 1.2 Erste Folgerungen aus den Axiomen................. 24 1.3 Winkel.................................

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Wirsberg-Gymnasium Grundwissen Mathematik 7. Jahrgangsstufe

Wirsberg-Gymnasium Grundwissen Mathematik 7. Jahrgangsstufe Wirsber-Gymnasium Grundwissen Mathematik 7. Jahransstufe Lerninhalte Fakten-Reeln-eispiele Symmetrie Eienschaften der chsensymmetrie: - Zueinander symmetrische Strecken sind leich lan. - Zueinander symmetrische

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

Grundwissen Mathematik 7I/1

Grundwissen Mathematik 7I/1 Grundwissen athematik 7I/ ultiplikation und Division in QI Rechenregeln a c a c a c a d : b d b d b d b c Vorzeichenregeln + ++ + + + + : ++ : + : + + : otenzgesetze. otenzgesetz n m n m a a a + 7 eispiel:

Mehr