I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7

Größe: px
Ab Seite anzeigen:

Download "I. Algebra. Erdbeere 25% 90 Vanille 30% 108 Banane 10% 36. Grundwissen Mathematik Klasse 7"

Transkript

1 Grundwissen Mathematik Klasse 7 I. lgebra 1. ufstellen, Interpretieren und Veranschaulichen von Termen (Mathehelfer : S.6) ufgabe: us n aneinandergeklebten Würfeln ist ein Turm gebaut worden. Stelle einen Term auf, der die nzahl der zusammengeklebten Würfelflächen angibt. Veranschauliche den Term in einem Koordinatensystem. T ( n ) = ( n 1 ). Umformen von Termen (Mathehelfer : S.7 9) 1 3 ufgabe: Vereinfache ( t s )( t + s ) s t + s + t : t 1 3 t + st s st 3. Lösen von Gleichungen (Mathehelfer : S.0 ) ufgabe: 7 ( + 1 ) = ( ) 1 = 17 oder 3, Daten und Diagramme auswerten; Prozentrechnung (Mathehelfer 1: S.4 44) 1. ufgabe: Das Sortiment eines Eisverkäufers umfasst 4 Geschmacksrichtungen. Sein durchschnittlicher Umsatz ist im Diagramm dargestellt. erechne den prozentualen nteil jeder Sorte und berechne den jeweiligen Mittelpunktswinkel zur Darstellung in einem Kreisdiagramm. Schoko 35% 16 Erdbeere 5% 90 Vanille 30% 108 anane 10% 36 K ugeln pr o Tag Schokolade Erdbeere Vanille anane Eissor te Siebold Gymnasium Würzburg 1 Grundwissen Mathematik Klasse 7

2 . ufgabe: In einer Porzellanfabrik rechnet man mit 0% usschuss, d.h. 0% der Produktion sind durchschnittlich defekt. Wie viele Teller müssen gefertigt werden, um einen uftrag von 1000 Stück erfüllen zu können? 80% von = 1000 => = 150 II. Geometrie 1. chsensymmetrie: Konstruieren von Spiegelpunkt und chse; Punktsymmetrie: Konstruieren von Spiegelpunkt und Zentrum (Mathehelfer 3: S.11 1) 1. ufgabe: Konstruiere die chse a, so dass der Spiegelpunkt von ist.. ufgabe: Spiegle das Dreieck am Zentrum Z. ' ' Z Z ' Siebold Gymnasium Würzburg Grundwissen Mathematik Klasse 7

3 . Konstruktion von Mittelsenkrechte, Winkelhalbierende, Lot; Höhen und Umkreis eines Dreiecks (Mathehelfer 3: S.8 9; 16 17) Konstruktionen: Mittelsenkrechte Winkelhalbierende Lot Höhen ufgabe: Gegeben ist das Dreieck mit (/1), (7/3) und (1/5). Konstruiere den Umkreis. y m M m Siebold Gymnasium Würzburg 3 Grundwissen Mathematik Klasse 7

4 3. Eigenschaften der symmetrischen Vierecke kennen (Mathehelfer 3: S.7 30) ufgabe: Zähle alle symmetrischen Vierecke auf und nenne ihre wichtigsten Eigenschaften. Quadrat (ps, as) alle Seiten sind gleich lang alle Winkel sind 90 Rechteck (ps, as) je zwei gegenüberl. Seiten sind parallel und gleich lang alle Winkel sind 90 gleichschenkliges Trapez (as) zwei Seiten sind parallel Winkel an der Grundseite sind gleich groß Raute (ps, as) alle Seiten sind gleich lang je zwei gegenüberliegende Seiten sind parallel Drachenviereck (as) je zwei benachbarte Seiten sind gleich lang Parallelogramm (ps) je zwei gegenüberliegende Seiten sind parallel und gleich lang 4. Winkelarten an Geraden bzw. Doppelkreuzungen erkennen; Innenwinkelsumme beim Dreieck und Viereck (Mathehelfer 3: S.6 7; 15; 6 7) ufgabe: erechne die fehlenden Winkel: α = 5 ( Nebenwinke l zu 155 ) η = 155 ( Scheitelwi nkel zu 155 ) ν = 155 ( Stufenwink el zu η ) λ = 5 ( Nebenwinke l zu ν ) ω = 138 ( Nebenwinke l zu 4 ) ε = 138 ( Scheitelwi nkel zu ω ) δ = 138 ( Wechselwin kel zu ε ) β = 138 ( Scheitelwi nkel zu δ ) γ = 4 ( Nebenwinke l zu β ) 5. Kongruenz und Kongruenzsätze (Mathehelfer 3: S.19 ) Es gilt: In jedem gleichschenklig rechtwinkligen Dreieck zerlegt die Mittelsenkrechte der asis das Dreieck in zwei kongruente Teildreiecke. Welche der folgenden rgumentationen sind richtig: Die zwei Teildreiecke sind kongruent,... 1)...weil die Mittelsenkrechte Symmetrieachse des gleichschenklig rechtwinkligen Dreiecks ist. )...weil man zeigen kann, dass die Teildreiecke in allen drei Winkeln übereinstimmen und Dreiecke, die in allen drei Winkeln übereinstimmen, immer kongruent sind. 3)...weil man zeigen kann, dass die Teildreiecke in allen drei Seiten übereinstimmen und Dreiecke, die in allen drei Seiten übereinstimmen, immer kongruent sind. 4)...weil man zeigen kann, dass die Flächeninhalte der Teildreiecke gleich groß sind und Dreiecke, die den gleichen Flächeninhalt besitzen, immer kongruent sind. Siebold Gymnasium Würzburg 4 Grundwissen Mathematik Klasse 7

5 6. Konstruktionen von besonderen Dreiecken (gleichschenklige, seitige) und Vierecken (Mathehelfer 3: S.18 19) ufgabe: Konstruiere ein gleichschenkliges Dreieck mit b = 4cm und γ = Konstruktionen zum rechtwinkligen Dreieck und zum Satz des Thales (Mathehelfer 3: S.35 36) ufgabe: Konstruiere ein rechtwinkliges Dreieck mit dem rechten Winkel bei γ, h c = 3cm und c = 8cm. Ist die Lösung eindeutig? Es gibt zwei mögliche Lösungen (beide Dreiecke 1 bzw. sind jedoch kongruent). Siebold Gymnasium Würzburg 5 Grundwissen Mathematik Klasse 7

Aufgaben zum Basiswissen 7. Klasse

Aufgaben zum Basiswissen 7. Klasse Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenburg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 7 1. chsen- und unktspiegelung a) chsensymmetrie Die chse halbiert die Strecke [ ] senkrecht. lle chsenpunkte sind von

Mehr

Grundwissen Mathematik 7. Klasse

Grundwissen Mathematik 7. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 7. Klasse Wissen Aufgaben/Beispiele Lösungen Achsenspiegelung Eigenschaften der Achsenspiegelung: - Die Verbindungsstrecke von Punkt P und Bildpunkt P

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Grundwissen 7 Bereich 1: Terme Termwerte 1.1 S1 Berechne für den Term T (x) = 3 (x 2) 2 + x 2 die Termwerte T (1), T (2) und T ( 3 2 ). 1.2 S1 Gegeben ist der Term A(m) = 2 2m 5 m Ergänze die folgende

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A 1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten

Mehr

Geometrie-Dossier Vierecke

Geometrie-Dossier Vierecke Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK 7 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S - N E P

Mehr

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile

Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile Geometrie I (Sommersemester 006, Dr. Christian Werge, chwerge@web.de) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Sicheres Wissen und Können zu Dreiecken 1

Sicheres Wissen und Können zu Dreiecken 1 Sicheres Wissen und Können zu Dreiecken 1 Die Schüler verwenden den egriff Figur für beliebige geradlinig oder krummlinig begrenzte ebene Figuren. Die Namen der Figuren sind im Denken der Schüler sowohl

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Schullehrplan in der Geometrie der Vorlehre

Schullehrplan in der Geometrie der Vorlehre Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

Bezeichnungen am Dreieck

Bezeichnungen am Dreieck ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.

Mehr

OvTG Gauting, Grundwissen Mathematik 7. Klasse

OvTG Gauting, Grundwissen Mathematik 7. Klasse 1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

Basiswissen 7. Klasse

Basiswissen 7. Klasse Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie Zueinander symmetrische Punkte können durch Kongruenzabbildungen (= Abbildungen, bei denen Form und Größe von Figuren gleich bleiben) aufeinander abgebildet

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie. Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Kopiervorlagen. zur Aufgabensammlung GEOMETRIE 1. 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik

Kopiervorlagen. zur Aufgabensammlung GEOMETRIE 1. 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik Kopiervorlagen zur ufgabensammlung GEOMETRIE 1 2009 (korrigiert 2012) Kantonsschule Rychenberg Winterthur, Fachschaft Mathematik utoren: ownload: Michael Graf, Heinz Klemenz www.geosoft.ch/buecher Inhaltsverzeichnis

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Monat Inhalt und Lernziele laut Lehrplan Bemerkung September

Monat Inhalt und Lernziele laut Lehrplan Bemerkung September September Oktober 1. Die Teilbarkeit natürlicher Zahlen wichtige Teilbarkeitsregeln kennen und anwenden können größten gemeinsamen Teiler berechnen können kleinstes gemeinsames Vielfaches berechnen können

Mehr

Grundlagen der Geometrie

Grundlagen der Geometrie Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode

Mehr

GRUNDWISSEN MATHEMATIK

GRUNDWISSEN MATHEMATIK 7.Jahrgangstufe ALGEBRA Seite 1 1. Terme 3a ist ein Term; a ist eine Variable; 3 heißt Koeffizient. Termberechnung: Es können nur gleichartige Terme ( = Terme mit gleichen Variablen) zusammengefasst, d.h.

Mehr

1. Daten und Diagramme Beispiele / Veranschaulichung

1. Daten und Diagramme Beispiele / Veranschaulichung 1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe

Mehr

Leistungsbeurteilung mit der 4.0 Skala Mathematik 6. Schulstufe

Leistungsbeurteilung mit der 4.0 Skala Mathematik 6. Schulstufe Leistungsbeurteilung mit der 4.0 Skala Mathematik 6. Schulstufe Nach Jahresplanung: 1.) Mein Wissen aus der 1. Klasse (Zahlen und Maße, Variable und funktionale Abhängigkeiten, Geometrische Figuren und

Mehr

Grundwissen Mathematik 5

Grundwissen Mathematik 5 Grundwissen Mathematik 5 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1.1 Zahlenmengen 1.2 Besondere Zahlen 1.3 Stellenwertsystem 1.4 Runden 1.5 Darstellen von Zahlen in Tabellen

Mehr

Flächenberechnung im Trapez

Flächenberechnung im Trapez Flächenberechnung im Trapez Das Trapez im Lehrplan Jahrgangsstufe 6 M 6.8 Achsenspiegelung (ca. 15 Std) Fundamentalsätze (umkehrbar eindeutige Zuordnungen, Geradentreue, Winkeltreue, Kreistreue), Abbildungsvorschrift

Mehr

1.Wichtige geometrische Eigenschaften

1.Wichtige geometrische Eigenschaften 1.Wichtige geometrische Eigenschaften 1.Achsensymmetrie Die Punkte P und P* sind achsensymmetrisch bzgl. der Symmetrieachse a. Es gilt: a)[pp*] wird von a rechtwinklig halbiert. a ist Mittelsenkrechte

Mehr

Grundwissen 7. Klasse

Grundwissen 7. Klasse Grundwissen Mathematik 7. Klasse /6 Grundwissen 7. Klasse lgebra.terme mit Variablen a) llgemeines Treten in einem Term (Rechenausdruck) verschiedene Variablen auf, dann dürfen diese mit verschiedenen

Mehr

M9 Geometrielehrgang. M9 Geometrielehrgang 1

M9 Geometrielehrgang. M9 Geometrielehrgang 1 M9 Geometrielehrgang Inhalt: 1 Geometrische Grundbegriffe 2 1.1 Punkte 2 1.2 Linien und deren Lagebeziehungen: 2 1.3 Flächen und Körper. Ordne die Begriffe durch nummerieren zu! 3 2 Dreiecke 4 2.1 Dreieckfläche

Mehr

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 1. Kongruenz: 1. Satz: Stimmen zwei Dreiecke ΔABC und ΔA B C in bestimmten Kombinationen einzelner Winkel und Längen überein, dann sind die Dreiecke

Mehr

Interpretieren Graphen von Zuordnungen und Termen linearer funktionaler Zusammenhänge interpretieren. Anwenden. Anwenden.

Interpretieren Graphen von Zuordnungen und Termen linearer funktionaler Zusammenhänge interpretieren. Anwenden. Anwenden. Schulcurriculum Mathematik Städtisches Gymnasium Eschweiler Klasse 7 (G8) Arithmetik / Algebra / Funktionen: Prozent- Zinsrechnung Funktionen mit eigenen Worten, Wertetabellen, als Graphen und in Termen

Mehr

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7

Ganze und rationale Zahlen Ganze und rationale im Alltag: Temperaturen sowie Höhen- und Tiefenangaben. Stoffverteilungsplan Mathematik Klasse 7 Themen verschiedener Darstellungsmöglichkeiten von Proportionaler, ihre Darstellung in Koordinatensystemen und Berechnungen mit Hilfe des Dreisatz antiproportionaler, ihre Darstellung im Koordinatensystem

Mehr

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen.

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen. Grundwissen Klasse 6 - Lösungen I. Bruchzahlen. Sicheres Umgehen mit Bruchzahlen Brüche als Anteil verstehen Brüche am Zahlenstrahl darstellen Brüche erweitern / kürzen können (Mathehelfer: S.6/7) Aufgabe

Mehr

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

I. Symmetrie... 2. A. Achsensymmetrie... 2 B. Punktsymmetrie... 3 C. Symmetrische Vierecke... 3. II. Winkelbetrachtungen... 13. III. Terme...

I. Symmetrie... 2. A. Achsensymmetrie... 2 B. Punktsymmetrie... 3 C. Symmetrische Vierecke... 3. II. Winkelbetrachtungen... 13. III. Terme... Mathe 7 I. Symmetrie... 2 A. Achsensymmetrie... 2 B. Punktsymmetrie... 3 C. Symmetrische Vierecke... 3 II. Winkelbetrachtungen... 13 III. Terme... 14 IV. Termumformungen... 16 V. Gleichungen... 18 VI.

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr

Rechtwinklige Dreiecke

Rechtwinklige Dreiecke Rechtwinklige Dreiecke 1. a) Verschiebe die Ecke C 1, bis du den grünen Winkel bei C 1 auf 90 schätzt. b) Verschiebe die Ecken C 2 bis C 9 ebenso, bis du die Winkel auf 90 schätzt. c) Kontrolliere deine

Mehr

I. Lehrplanauszug. Beispielaufgaben. Grundwissen Mathematik 6. Jahrgangsstufe. In der Jahrgangsstufe 6 erwerben die Schüler folgendes Grundwissen:

I. Lehrplanauszug. Beispielaufgaben. Grundwissen Mathematik 6. Jahrgangsstufe. In der Jahrgangsstufe 6 erwerben die Schüler folgendes Grundwissen: Grundwissen Mathematik 6. Jahrgangsstufe I. Lehrplanauszug In der Jahrgangsstufe 6 erwerben die Schüler folgendes Grundwissen: Sie können rationale Zahlen in verschiedenen Schreibweisen darstellen. Sie

Mehr

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen Grundwissen Klasse 6 I. Bruchzahlen 1. Sicheres Umgehen mit Bruchzahlen - Brüche als Anteil verstehen - Brüche am Zahlenstrahl darstellen - Brüche erweitern / kürzen können (Mathehelfer1: S.16/17) Aufgabe

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am 13.02.2013 haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am 13.02.2013 haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende Version

Mehr

Grundwissen Jahrgangsstufe 7

Grundwissen Jahrgangsstufe 7 GM 7.1 chsensymmetrie Grundwissen Jhrgngsstufe 7 Definition Zwei unkte liegen symmetrisch bezüglich einer chse, wenn ihre Verbindungsstrecke von der chse senkrecht hlbiert wird. M und liegen symmetrisch

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.

Mehr

Musteraufgaben Jahrgang 10 Hauptschule

Musteraufgaben Jahrgang 10 Hauptschule Mathematik Musteraufgaben für Jahrgang 0 (Hauptschule) 23 Musteraufgaben Jahrgang 0 Hauptschule Die Musteraufgaben Mathematik für die Jahrgangstufe 0 beziehen sich auf die Inhalte, die im Rahmenplan des

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2011 Kurzgymnasium (Neues Lehrmittel) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil gilt folgende

Mehr

Grundwissen Mathematik 7.Klasse Gymnasium SOB

Grundwissen Mathematik 7.Klasse Gymnasium SOB 1 Grundwissen Mathematik 7.Klasse Gymnasium SOB 1.Figurengeometrie 1.1.Achsensymmetrie Sind zwei Punkte P und P achsensymmetrisch bezüglich der Achse a, dann gilt [PP ] a und a halbiert [PP ]. a Jeder

Mehr

Grundwissen 8II/11. Terme

Grundwissen 8II/11. Terme Grundwissen 8II/11 Termumformungen 1. Vereinfachung von Produkten Terme Halte dich an folgende Reihenfolge: Klammern bei Potenzen auflösen Vorzeichen des Produkts bestimmen Ordnen: Zahlen zuerst, dann

Mehr

MATHEMATIK-WETTBEWERB 2000/2001 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2000/2001 DES LANDES HESSEN MTHEMTIK-WETTEWER 2000/2001 ES LNES HESSEN UFGEN ER GRUPPE PFLIHTUFGEN P1. Von 11000 Schülern sind 070 Mitglied in einem Verein. Wie viel Prozent sind das? P2. Ein -Player kostete bisher 80 M. ei einem

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen

Mehr

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 5 2 (oder 2,5) (= 6 5 3) b) 6 5 ( = 1 3 3 1 6 5 ) ( c) 3 2 (oder 1,5) (= 56 3) 1 3 = 5 2 1) P2.

Mehr

Sehnenlänge. Aufgabenstellung

Sehnenlänge. Aufgabenstellung Sehnenlänge 1. Drehe die Gerade a um den Punkt A und beachte den grünen Text: a) Wann ist die Gerade eine Sekante, wann ist sie eine Tangente? Wann ist sie weder das eine noch das andere? b) Wie viele

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke 1 10 Dreiecke 401 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke 3 und 4 sind gleichschenklig. 4 3 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A 3 = A 4 =

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.

Mehr

Lernbereiche (Stunden) Inhalt Seite Inhalt Seite. Im Blickpunkt: Aus Texten und Tabellen Informationen entnehmen. Kapitel 1: Gebrochene Zahlen

Lernbereiche (Stunden) Inhalt Seite Inhalt Seite. Im Blickpunkt: Aus Texten und Tabellen Informationen entnehmen. Kapitel 1: Gebrochene Zahlen Lehrplan Mittelschule Mathematik heute (ISBN 978-3-507-81009-9) Im Blickpunkt: Aus Texten und Tabellen Informationen entnehmen 6 Lernbereich 1: Gebrochene Zahlen (35) Kapitel 1: Gebrochene Zahlen 8 Kapitel

Mehr

WF Mathematik: 1. Grundbegriffe der Geometrie

WF Mathematik: 1. Grundbegriffe der Geometrie WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken

Trigonometrie - Funktionale Abhängigkeiten an Dreiecken 1.0 Die Basis [AB] eines gleichschenkligen Dreiecks ABC hat die Länge 10 cm. 1.1 Berechne den Flächeninhalt A des Dreiecks in Abhängigkeit von α. (Ergebnis: A(α) = 5 tanα cm ) 1. Berechne den Umfang des

Mehr

Berechnung von Strecken und Winkeln. Hier alle Beispiele aus Teil 5 und 6. als Aufgabensammlung. Datei Nr. 64120. Stand 22.

Berechnung von Strecken und Winkeln. Hier alle Beispiele aus Teil 5 und 6. als Aufgabensammlung. Datei Nr. 64120. Stand 22. Vektorgeometrie ganz einfach Aufgabensammlung Berechnung von Strecken und Winkeln Hier alle Beispiele aus Teil 5 und 6 als Aufgabensammlung. Datei Nr. 640 Stand. März 0 INTERNETBIBLITHEK FÜR SCHULMATHEMATIK

Mehr

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM

MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM MATHEMATIK GRUNDWISSEN 5. KLASSE LESSING GYMNASIUM NEU-ULM Lessing-Gymnasium Neu-Ulm 2/17 I. ZAHLEN 1. Natürliche und ganze Zahlen 1.1 Zahlenmengen Natürliche Zahlen N = { 1, 2, 3, 4,...} Natürliche Zahlen

Mehr

BLICKPUNKT MATHEMATIK 2

BLICKPUNKT MATHEMATIK 2 BLICKPUNKT MATHEMATIK 2 (Ausgabe Rovina / Schmid) Stand: Jänner 2011 BLICKPUNKT Mathematik 2 Seite 1 von 24 Z Zurück aus den Ferien Blatt Buch Addieren und Subtrahieren natürlicher Zahlen 1 A 8 Addieren

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: Lehrbuch: Sekundo 5, Schroedel

Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: Lehrbuch: Sekundo 5, Schroedel Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: 30.12.2014 Lehrbuch: Sekundo 5, Schroedel Inhalt / inhaltsbezogene Kompetenzen UE: Zahlen und Daten Strichlisten und Diagramme

Mehr

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) SCHULCURRICULUM IM FACH MATHEMATIK BILDUNGSGANG HAUPTSCHULE Fachcurriculum Klasse 7H Mathematik Schwerpunkte Kompetenzen Inhalte Mathematische

Mehr

MATHEMATIK 7. Schulstufe Schularbeiten

MATHEMATIK 7. Schulstufe Schularbeiten MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)

Mehr

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Geometrie Symmetrie und Spiegelung PRÜFUNG 03. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Geometrie Symmetrie und Spiegelung PRÜFUNG 03 Name: Klasse: Datum: : Note: Ausgabe: 7. März 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Kongruenz und Symmetrie

Kongruenz und Symmetrie Kongruenz und Symmetrie Kongruente Figuren Wenn Figuren genau deckungsgleich sind, nennt man sie kongruent. Sie haben gleiche Form und gleiche Größe. Es entsteht eine 1:1 Kopie. Figuren, die zwar die gleiche

Mehr

Kreis und Gerade oder:... Wozu benötigt man rechte Winkel?

Kreis und Gerade oder:... Wozu benötigt man rechte Winkel? Es gibt drei wesentlich verschiedene Fälle von Geraden, bezogen auf einen gegebenen Kreis: Die Gerade ist eine ekante, d. h. die chnittmenge von Gerade und Kreis besteht aus zwei Punkten A und B (AB heißt

Mehr

1. Grundlegendes in der Geometrie

1. Grundlegendes in der Geometrie 1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden

Mehr

Mathematiklehrplan GYMNASIUM VOGELSANG SOLINGEN Städtisches Gymnasium für Jungen und Mädchen mit Sekundarstufen I und II

Mathematiklehrplan GYMNASIUM VOGELSANG SOLINGEN Städtisches Gymnasium für Jungen und Mädchen mit Sekundarstufen I und II Klasse : 5 3 Wochen 1. Zahlen und Größen Große Zahlen, Dezimalsystem, Potenzen, Runden, Größen, (optional: Einfache Bruchteile von Größen), Messen und schätzen, Diagramme Projekt Weltraum 2. Die vier Grundrechenarten

Mehr

AH II (3. korr. Auflage) S. 10 / 2.1 Recycling-Symbol die Weissräume tilgen

AH II (3. korr. Auflage) S. 10 / 2.1 Recycling-Symbol die Weissräume tilgen Korrekturliste Mathematik 1 Sekundarstufe I Stand:, Lösungen und : 2. korr. Auflage 2012,,, II und III: 3. korr. Auflage 2012 Stand 17.12.2012 Kapitel 1 Kongruenzabbildungen 1b Die Drehsymmetrie S. 10/

Mehr

Reelle Zahlen 1 777555333111 1 2 : 3 ) 100 = 1

Reelle Zahlen 1 777555333111 1 2 : 3 ) 100 = 1 Reelle Zahlen 1. Vereinfache jeweils den Term so weit wie möglich ohne mit dem Taschenrechner zu runden. Es muss ein logischer Rechenweg zum Ergebnis führen. (1000+ ) ( ) (a) 999 1000 999 (b) ( 3 3 ) (

Mehr

Jahresplanung 2.Klasse 100% Mathematik

Jahresplanung 2.Klasse 100% Mathematik Jahresplanung 2.Klasse 100% Mathematik Unterrichtswoche Schuljahr 2015/2016 Kapitel Seitentitel Schulbuchseiten 1 - Wiederholung von Lerninhalten der 5. Schulstufe 2 1 Eigenschaften 3 1 Eigenschaften 4

Mehr

Mathematikarbeit Klasse 8 03.06.03

Mathematikarbeit Klasse 8 03.06.03 Mathematikarbeit Klasse 8 0.06.0 Name: A. Aufgabe Bestimme bei der folgenden Gleichung die Definitionsmenge und die Lösungsmenge in. z z = 4 z z. Aufgabe In dieser Aufgabe geht es um ganz normale zylindrische

Mehr

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158

I = 1; V = 5; X =10; L = 50; C = 100; D = 500; M = 1000; Bsp.: MCLVIII = 1158 Grundwissen Mathematik G8 5. Klasse 1 Zahlen 1.1 Zahlenmengen IN = {1; 2; 3; } Menge der natürlichen Zahlen IN o = {0; 1; 2; 3; } Menge der natürlichen Zahlen mit Null Z = { ; -3; -2; -1; 0; 1; 2; 3; }

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten Abschlussprüfung 0 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A Nachtermin A Eierbecher S Die nebenstehende Skizze zeigt den

Mehr

Grundwissen Mathematik 7II-III/1

Grundwissen Mathematik 7II-III/1 Grundwissen athematik 7II-III/ ultiplikation und Division in QI Rechenregeln a c a c a c a d : b d b d b d b c Vorzeichenregeln + ++ + + + + : ++ : + : + + : Potenzgesetze. Potenzgesetz n m n m a a a +

Mehr

Einleitung... 4 VORSCHAU

Einleitung... 4 VORSCHAU Inhaltsverzeichnis Einleitung................................................................... 4 Geometrische Grundformen ab Klasse 5 1 Ebene Figuren und Körper im Alltag......................................

Mehr

MATHEMATIK GRUNDWISSEN 7. KLASSE LESSING-GYMNASIUM NEU-ULM

MATHEMATIK GRUNDWISSEN 7. KLASSE LESSING-GYMNASIUM NEU-ULM MATHEMATIK GRUNDWISSEN 7. KLASSE LESSING-GYMNASIUM NEU-ULM Dieses Heft gehört: I. ALGEBRA 1. Terme 1.1 Begriff Terme sind sinnvolle Zusammenstellungen aus Zahlen, Platzhaltern (= Variablen), Rechenzeichen

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite Aufnahmeprüfung 00 Mathematik (. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 00 Kurzgymnasium (Anschluss. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus

Mehr

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150) Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei

Mehr

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) KK/Werkjahr mit Mindeststandards [Druckversion] Leitdeen/Richtziele Stundentafeln Sprache Geometrisches Zeichnen Mensch und Umwelt Gestalten und Musik Sport Individuum und Gemeinschaft Niveaus E P Links

Mehr

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN

LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN LERNZIRKEL WIEDERHOLUNG DER FLÄCHEN Lehrplaneinheit Methode Sozialform Einsatzmöglichkeit Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Berufsrelevantes Rechnen Einzelarbeit Wiederholung

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 7 7 Kapitel I Prozente und Zinsen 1 Prozente Vergleiche werden einfacher 2 Prozentsatz Prozentwert Grundwert 3 Grundaufgaben

Mehr