11 Stochastisches Integral und Itô-Formel

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "11 Stochastisches Integral und Itô-Formel"

Transkript

1 11 Stochastisches Integral und Itô-Formel Im diskreten Finanzmodell bei selbstfinanzierender Strategie ϑ = {ϑ n n=,...,n mit Anfangswert V gilt : Ṽ n ϑ = V + n ϑ T j S j. j=1 Dieser diskontierte Wertprozess des Assetprozesses {S n n=,...,n ist eine Martingaltransformation von { S n n=,...,n, wobei letzterer Prozess ein Martingal ist unter dem äquivalentem W-Maß P. Im stetigen Modell gibt es kein direktes Analogon, etwa Ṽ t ϑ = V + ϑ T s d S s, da die Prozesse { S t t T oft von unbeschränkter Variation sind, z.b. Funktionen eines d-dimensionalen Wiener-Prozesses. Konstruktion eines stochastischen Integrals Itô-Integral bezüglich des Standard- Wiener-Prozesses : Gegeben : {W t t 1-dimensionaler Standard - Wiener-Prozess bezüglich {A t t mit stetigen Pfaden auf einem W-Raum Ω, A, P. Definition {H t t T heißt Elementarprozess auf Ω, A,P : H t ω = k ϑ i ωi ti 1,t i ]t, wobei = t < t 1 <... < t k = T, k N, i=1 ϑ i beschränkt, A ti 1 -messbar i = 1,...,k. Stochastisches Integral von {H t bezüglich {W t : Sei t t l,t l+1 ] l =, 1,...,k 1 : IH t := l ϑ i Wti W ti 1 + ϑl+1 W t W tl. i=1 Äquivalente Darstellung : k IH t := ϑ i Wti t W ti 1 t, i=1 insbesondere t IH t stetig. Schreibweise : IH t =:. 48

2 Eigenschaften : Sei {H t t T Elementarprozess bezüglich {A t t T : { t T E = E E sup t T wohldefiniert, stetiges Martingal bezüglich{a t t T ; Hs ds ; 4E Hs ds. Bemerkung Wir definieren noch für t T : 11.4 t :=. Falls A A t, so definiert auch I A ωi t,t] sh s ω einen Elementarprozess. Man verifiziert leicht : 11.5 I A ωh s ωi t,t] sdw s ω = I A ω ω. t Fortsetzung des stochastischen Integrals auf die Klasse H = { {H t t T {Ht t T ist progressiv messbar, E Ht dt <. Satz Sei {W t t T Wiener-Prozess auf Ω, A,P bezüglich {A t t T mit stetigen Pfaden und M c = M c [,T] = { {M t t T {M t ist stetiges Martingal bezüglich {A t. Dann gilt : a eine lineare Abbildung I : H M c : a1 Falls {H t Elementarprozess ist P-f.s., so folgt : IH t = a E I H t = E Hs ds t T. ; I ist P-f.s. eindeutig im folgenden Sinn : Falls I und Ĩ die Eigenschaften a1, a besitzen, so folgt für P-fast alle ω : IH t ω = ĨH tω t T. Wir setzen : := IH t. 49

3 b Für {H t t T H und τ : Ω [,T] Stoppzeit bezüglich {A t t T : b1 E sup t T 4E Hs ds ; b τ = I [,τ] s P-f.s. Wir benötigen noch eine Erweiterung von IH t H = { {H s s T {Ht t T ist progressiv messbar, auf die größere Klasse Hs ds < P-f.s. H. Es gilt der folgende Satz : Satz 11.. Sei {W t t T Wiener-Prozess auf Ω, A,P bezüglich {A t t T mit stetigen Pfaden und X c = {{X t t T X t ist stochastischer Prozess mit stetigen Pfaden = eine eindeutige lineare Abbildung Ĩ : H X c derart, dass gilt : i Falls {H t Elementarprozess ist, so folgt P-f.s. : ĨH t = t T ; ii Falls {H n H mit sup t T H n P s ds n, so folgt : ĨH n t P n. Schreibweise : := ĨH t, t T. Bemerkung 11.. { t T ist im Allgemeinen kein Martingal! 5

4 Zusammenfassung: Sei {W t t T Wiener-Prozess bezüglich {A t t T mit stetigen Pfaden. 1 Für progressiv messbare Prozesse {H t t T mit Satz 11. ein stochastisches Integral P-f.s. : Gilt sogar E Hs ds < +, so bildet Martingal bezüglich {A t t T. Bezeichnung: Itô-Integral. 3 Es lässt sich zeigen : E Hs ds < + E sup t T < +. t { H s ds < + P-f.s. liefert stetig in t ; t T ein stetiges Itô-Kalkül: Basierend auf dem obigen stochastischen Integral wird jetzt ein Differentialkalkül eingeführt, der es gestattet, Funktionen t fw t, f C, Weise zu differenzieren. Die üblichen Formeln wie f t = fsf sds = d f t = ftdft sind dabei nicht zu erwarten. Würde nämlich gelten, dass W t = so wäre {W t t T W s dw s, wegen E Ws ds = T mit W, folglich W t = P-f.s. Widerspruch. Es wird sich zeigen : fsdfs falls f = bzw. in geeigneter < ein nicht-negatives Martingal W t = In differentieller Form : W s dw s + t Itô-Formel für fw t = W t. d Wt = Wt dw t + dt, W =. 51

5 Allgemein : dfw t = f W t dw t + 1 f W t dt mit der Bedeutung : fw t = fw + f W s dw s + 1 f W s ds. Die Itô-Formel gilt für eine allgemeinere Klasse von stochastischen Prozessen und wird nützlich sein bei der konkreten Berechnung stochastischer Integrale. Definition 11.. Sei {W t t T ein Wiener-Prozess bezüglich {A t t T mit stetigen Pfaden. Ein Prozess {X t t T heißt Itô-Prozess in R, wenn er die Darstellung besitzt P-f.s. : 11.6 X t = X + K s ds +, t T, wobei X A -messbar ist, {K s t T, {H s t T progressiv messbar sind, T K s ds < P-f.s., H s ds < P-f.s.. Bemerkung Die Darstellung eines Itô-Prozesses ist im folgenden Sinne eindeutig : Falls X t = X + = X + K s ds + K s ds +, t T, so gilt : X = X P - f.s., K s = K s λ P - f.ü., H s = H s λ P - f.ü. Ist der Itô-Prozess ein Martingal bezüglich {A t t T, so folgt : K = λ P - f.ü. 5

6 Satz Sei {X t t T ein Itô-Prozess der Form X t = X + K s ds + und f : x fx zweimal stetig differenzierbar. Dann gilt : 11.7 fx t = fx + f X s dx s + 1 f X s d X,X s, wobei X,X t := und f X s dx s := H s ds quadratische Variation f X s K s ds + In differentieller Form : f X s dx t = K t dt + H t dw t, d fx t = f X t dx t + 1 f X t d X,X t = f X t K t d t + f X t H t dw t + 1 f X t d X,X t. Beispiel X t = W t, also dx t = ds + 1 dw t ; fx = x, 1 ds = t. Dann gilt : dwt = W t dw t + 1 dt W t = W s dw s + t. bzw. Allgemeiner gilt : Satz Sei dx t = K s ds+ wie in Satz 11.3 und f : t,x ft,x zweimal stetig partiell differenzierbar bezüglich x mit Ableitungen f x t,x, f xx t,x und einmal stetig partiell differenzierbar bezüglich t mit Ableitung f t t,x = 11.1 dft,x t = f t t,x t dt + f x t,x t dx t + 1 f xxt,x t d X,X t, d.h. ft,x t = f,x + f s s,x s ds f x s,x s dx s f xx s,x s d X,X s. 53

7 Beispiel 11.. Lösung einer stochastischen Differentialgleichung Suche einen adaptierten progressiv messbaren Prozess {S t t, so dass P-f.s. gilt : ds t = S t µ dt + σ dwt, S = x, d.h S t = x + µ S s ds + σ S s dw s, t. Ansatz: Fasse formal ds t /S t als dlog S t auf, S t >, und benutze die Itô-Formel für fx = log x. Dies ergibt : log S t = log S + wegen somit log S t = log S + = log S + 1 S s ds s + 1 µ σ µ σ Daher macht man den folgenden Ansatz S t = x exp ds + 1 Ss t + σ W t. {µ t σ + σ W t σ dw s σ S s ds, geometrische Brown sche Bewegung und verifiziert mit Hilfe der Itô-Formel für ft,x = x exp { µ σ t + σ x : Beachtet man f t t,x = µ σ ft,x, fx t,x = σ ft,x, f xx t,x = σ ft,x, d W,W t = dt, so liefert die Itô-Formel Satz 11.4 : S t = ft,w t = x + also die Behauptung. S s µ σ ds + S s σ dw s + 1 S s σ ds, Um die Eindeutigkeit der Lösung S t = x exp {µ t σ + σ W t von bzw nachweisen zu können, benötigen wir noch die folgende Formel von der partiellen Integration stochastischer Integrale : 54

8 Satz Seien {X t t T und {Y t t T Itô-Prozesse mit X t = X + Y t = Y + Dann folgt : K s ds + K s ds +. und X t Y t = X Y + X s dy s + Y s dx s + X,Y t, wobei X,Y t = H s Hs ds Kreuz-Variation. In differentieller Form : dx t Y t = X t dy t + Y t dx t + d X,Y t. Beispiel 11.. Fortsetzung ds t = S t µdt + σ dw t, S = x. Zeige : S t = x exp { µ σ t + σ Wt ist eindeutige Lösung. Fazit: Für jeden Wiener-Prozess {W t t, µ,σ R, T >, existiert ein eindeutiger Itô-Prozess {S t t T mit ds t = S t µdt + σ dw t, S = x, nämlich S t = x exp {µ σ t + σ W t, t T. Bemerkung a Der obige Prozess {S t t T modelliert im kontinuierlichen Black-Scholes- Modell die Entwicklung des risikobehafteten Assets z.b. eines Aktienpreises. b Für µ = ist {S t t T ein Martingal, das exponentielle Martingal der Brown schen Bewegung. Bemerkung Falls {X t t T ein Itô-Prozess ist mit Werten in V, V R 1, offen z.b. V =,, so gilt die Itô-Formel auch in der folgenden verallgemeinerten Form : Sei f : V R zweimal stetig differenzierbar, so folgt : dfx t = f X t dx t + 1 f X t d X,X t. Mit diesen Vorüberlegungen sind wir nun in der Lage, ein kontinuierliches Analogon des Cox-Ross-Rubinstein-Modells zu untersuchen. 55

Das Black-Scholes Modell

Das Black-Scholes Modell Vathani Arumugathas Das Black-Scholes Modell 1 Das Black-Scholes Modell Vathani Arumugathas Seminar zu Finanzmarktmodellen in der Lebensversicherung, Universität zu Köln 10. Juni 016 Inhaltsverzeichnis

Mehr

Diffusionsprozesse und lineare stochastische DGL

Diffusionsprozesse und lineare stochastische DGL Diffusionsprozesse und lineare stochastische DGL Michele Bieber TU Dortmund - Fakultät Statistik 15. Mai 2012 Inhaltsverzeichnis 1 Einleitung 2 Diffusionsprozesse Stochastische DGL eines Diffusionsprozesses

Mehr

Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik

Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik Univ. Leipzig Mathematisches Institut Vertretung Professur Stochastische Prozesse Max v. Renesse email: mrenesse@math.tu-berlin.de Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik

Mehr

Zufallsvariablen: Die allgemeine Definition

Zufallsvariablen: Die allgemeine Definition KAPITEL 8 Zufallsvariablen: Die allgemeine Definition 8.1. Zufallsvariablen Bis zu diesem Zeitpunkt haben wir ausschließlich Zufallsvariablen mit endlich oder abzählbar vielen Werten (also diskrete Zufallsvariablen)

Mehr

7. Die Brownsche Bewegung

7. Die Brownsche Bewegung 7. DIE BROWNSCHE BEWEGUNG 7 5 5 50 00 50 200 250 0 5 20 Abbildung 7.: Pfad einer Brownschen Bewegung 7. Die Brownsche Bewegung Definition 7.. Ein cadlag stochastischer Prozess {W t } mit W 0 = 0, unabhängigen

Mehr

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 15 Flüsse Bisher wurde im wesentlichen die Abhängigkeit der Lösungen autonomer Systeme von der Zeit bei festem Anfangswert untersucht. Nun wird

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 18 8. Januar 2010 Kapitel 5. Funktionen mehrerer Veränderlicher, Stetigkeit und partielle Ableitungen 5.2. Partielle Ableitungen von Funktionen

Mehr

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2 Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat

Mehr

3 Markov-Eigenschaft der Brownschen Bewegung

3 Markov-Eigenschaft der Brownschen Bewegung Man verifiziert 2.) für P n = Q n, und somit gilt: jede Teilfolge von (P n ) n N besitzt eine konvergente Teilfolge. Betrachte nun die endlich-dimensionalen Randverteilungen der Maße P n. Dazu sei π t1,...,t

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

Verallgemeinerte Funktionen

Verallgemeinerte Funktionen Verallgemeinerte Funktionen. Der Raum der Grundfunktionen Für den Vektorraum R n, n N, über R betrachten wir die Euklidische Norm kk W R n! R; v x 7! p ux x > x WD t n und bezeichnen eine Menge A R n als

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

6.3 Exakte Differentialgleichungen

6.3 Exakte Differentialgleichungen 6.3. EXAKTE DIFFERENTIALGLEICHUNGEN 23 6.3 Exakte Differentialgleichungen Andere Bezeichnungen: Pfaffsche Dgl., Dgl. für Kurvenscharen, Nullinien Pfaffscher Formen. 1. Definitionen Pfaffsche Dgl, Dgl.

Mehr

Skalare Differenzialgleichungen

Skalare Differenzialgleichungen 3 Skalare Differenzialgleichungen Differenzialgleichungen stellen eine Beziehung her zwischen einer oder mehreren Funktionen und ihren Ableitungen. Da Ableitungen Veränderungen beschreiben, modellieren

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

8 Verteilungsfunktionen und Dichten

8 Verteilungsfunktionen und Dichten 8 Verteilungsfunktionen und Dichten 8.1 Satz und Definition (Dichten) Eine Funktion f : R R heißt Dichtefunktion, kurz Dichte, wenn sie (Riemann-) integrierbar ist mit f(t) 0 für alle t R und Setzt man

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN 204 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

x(t) := 1 k definierte Funktion. (a) Berechnen Sie ẋ(t) und ẍ(t). (b) Zeigen Sie, daß die Funktion x = x(t) eine Lösung der Differentialgleichung

x(t) := 1 k definierte Funktion. (a) Berechnen Sie ẋ(t) und ẍ(t). (b) Zeigen Sie, daß die Funktion x = x(t) eine Lösung der Differentialgleichung Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Algebra II SS 26 Blatt 7 3.5.26 Aufgabe 33: Die Funktion f : R R sei stetig. Betrachten Sie die durch x(t) : 1 k f(u) sin (k(t u)) du definierte Funktion.

Mehr

Klausur Analysis II

Klausur Analysis II WS 28/9 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis II 6.2.28 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts

Integral- und Differentialrechnungen für USW Lösungen der Beispiele des 10. Übungsblatts Integral- und Differentialrechnungen für USW Lösungen der Beispiele des. Übungsblatts. Flächeninhalt unter einer Kurve: (a) Das bestimmte Integral von y(x) x zwischen x und x ist x dx x + + x ( ) x / (b)

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen.

Das heißt, Γ ist der Graph einer Funktion von d 1 Veränderlichen. Kapitel 2 Der Gaußsche Satz Partielle Differentialgleichung sind typischerweise auf beschränkten Gebieten des R d, d 1, zu lösen. Dabei sind die Eigenschaften dieser Gebiete von Bedeutung, insbesondere

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

PD Dr. R. Schätzle 1.11.1999. Maßtheoretische Methoden WS 1999/00

PD Dr. R. Schätzle 1.11.1999. Maßtheoretische Methoden WS 1999/00 ETH Zürich Departement für Mathematik PD Dr. R. Schätzle 1.11.1999 Maßtheoretische Methoden WS 1999/00 1.Übung AUFGABE 1: Es sei µ ein borelreguläres Maß auf einem metrischen Raum X und X = j=1 V j, wobei

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE

DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE DIFFERENTIATION PARAMETERABHÄNGIGER INTEGRALE Zusammenfassung. Ergänzend zur Übung vom 06.06.203 soll hier die Leibnizregel für die Differentiation parameterabhängiger Integrale formuliert und bewiesen

Mehr

Probeklausur zur Analysis II

Probeklausur zur Analysis II Probeklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 3. Februar 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

Inverse und implizite Funktionen

Inverse und implizite Funktionen Kapitel 8 Inverse und implizite Funktionen Josef Leydold Mathematik für VW WS 2017/18 8 Inverse und implizite Funktionen 1 / 21 Inverse Funktion Sei f : D f R n W f R m, x y f(x). Eine Funktion f 1 : W

Mehr

5 Kontinuierliches Wachstum

5 Kontinuierliches Wachstum 5 Kontinuierliches Wachstum Kontinuierlich meßbare Größe Wir betrachten nun eine Größe a, die man kontinuierlich messen kann. Den Wert von a zum Zeitpunkt t schreiben wir nun als a(t). Wir können jedem

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema Prof. Dr. H. Brenner Osnabrück SS 205 Analysis II Vorlesung 50 Hinreichende Kriterien für lokale Extrema Wir kommen jetzt zu hinreichenden Kriterien für die Existenz von lokalen Extrema einer Funktion

Mehr

48 Symplektische Geometrie und Klassische Mechanik

48 Symplektische Geometrie und Klassische Mechanik 48 Symplektische Geometrie und Klassische Mechanik Zusammenfassung Zum Schluss der Vorlesung gehen wir noch auf eine geometrische Struktur ein, die wie die euklidische oder die Minkowski-Struktur im Rahmen

Mehr

Martingal-Maße. Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Manuel Müller Mathematisches Institut

Martingal-Maße. Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Manuel Müller Mathematisches Institut Martingal-Maße Manuel Müller 29.04.2016 Mathematisches Institut Stochastic Finance: An Introduction in Discrete Time (Hans Föllmer, Alexander Schied) Seite 2 Martingal-Maße 29.04.2016 Inhaltsverzeichnis

Mehr

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Aufgabe 1: Es sei D die Menge aller rationalen Dedekind-Mengen, also D := { M 2 Q M is Dedekind-Menge }. Auf der Menge D definieren wir

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

Analysis II. 8. Klausur mit Lösungen

Analysis II. 8. Klausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis II 8. Klausur mit en 1 2 Aufgabe 1. Definiere die folgenden kursiv gedruckten) Begriffe. 1) Eine Metrik auf einer Menge M. 2) Die Kurvenlänge

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Kapitel 4. Reihen 4.1. Definition und Beispiele

Kapitel 4. Reihen 4.1. Definition und Beispiele Kapitel 4. Reihen 4.1. Definition und Beispiele Ist (a n ) eine Folge von Zahlen, so heißt der formale Ausdruck a ν = a 0 + a 1 + a 2 +... eine Reihe; die einzelnen a ν sind die Glieder dieser Reihe. Um

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Analysis I. 4. Beispielklausur mit Lösungen

Analysis I. 4. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 4. Beispielklausur mit en Aufgabe 1. Definiere die folgenden (kursiv gedruckten) Begriffe. (1) Eine bijektive Abbildung f: M N. () Ein

Mehr

Ableitung einer Betragsfunktion Differenzierbarkeit

Ableitung einer Betragsfunktion Differenzierbarkeit Ableitung einer Betragsfunktion Differenzierbarkeit 1-E Differenzierbarkeit einer Funktion Eine Funktion y = f (x) heißt an der Stelle x differenzierbar, wenn der Grenzwert f ' ( x) = lim Δ x 0 Δ y Δ x

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen Seminar Fraktionale Differentialgleichungen Prof. Dr. P.E. Kloeden, WS1000/2001 Caputo fraktionale Differentialgleichungen Lars Grüne, 25.1.2001 Basierend auf Fractional Differential Equations, Theory

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Polynomiale Approximation. und. Taylor-Reihen

Polynomiale Approximation. und. Taylor-Reihen Polynomiale Approximation und Taylor-Reihen Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Jonathan Mosser 3. Juni 27 / 38 Vorbemerkungen Singularität Singuläre Probleme können auf zwei Arten formuliert

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Überblick. Kapitel 7: Anwendungen der Differentialrechnung

Überblick. Kapitel 7: Anwendungen der Differentialrechnung Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Wiederholungsklausur zur Analysis II

Wiederholungsklausur zur Analysis II Wiederholungsklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 11. April 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten

Mehr

Differentialrechnung bei Funktionen mehreren Variablen

Differentialrechnung bei Funktionen mehreren Variablen Kap. 6 Differentialrechnung bei Funktionen mehreren Variablen Im folgenden geht es um Funktionen des Typsf :R n R X... Y =f(x,...,x n ) X n Eine Weiterentwicklung der Differentialrechnung für solche Funktionen

Mehr

Universität Ulm Abgabe: Mittwoch,

Universität Ulm Abgabe: Mittwoch, Universität Ulm Abgabe: Mittwoch, 8.5.23 Prof. Dr. W. Arendt Jochen Glück Sommersemester 23 Punktzahl: 36+4* Lösungen Halbgruppen und Evolutionsgleichungen: Blatt 2. Sei X ein Banachraum und (T (t)) t

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

Numerisches Lösen von Gleichungen

Numerisches Lösen von Gleichungen Numerisches Gesucht ist eine Lösung der Gleichung f(x) = 0. Das sverfahren ist eine numerische Methode zur Bestimmung einer Nullstelle. Es basiert auf dem Zwischenwertsatz: Satz (1.1.1) Zwischenwertsatz:

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1

e x e x x e x + e x (falls die Grenzwerte existieren), e x e x 1 e 2x = lim x 1 Aufgabe a Hier kann man die Regel von de l Hospital zweimal anwenden (jeweils und die Ableitung des Nenners ist für hinreichend große x ungleich. Dies führt auf e x e x e x + e x e x + e x e x e x e x

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Nun zeigen wir: wie kann man durch eine Liftung eine neue Unterlösung konstruieren.

Nun zeigen wir: wie kann man durch eine Liftung eine neue Unterlösung konstruieren. 56 SS2016 Definition 6.17 (Unterlösung,Oberlösung). Ω R n seieingebietleinelliptischeroperator wie in Bedingung 6.1. Seien a i j, b i c stetig mit c 0 in Ω. Sei f stetig in Ω. Eine Funktion u C(Ω) heißt

Mehr

Funktionen mehrerer Variablen

Funktionen mehrerer Variablen Funktionen mehrerer Variablen Partielle Ableitungen 1-E Die Grundfragen Um Differentialrechnung im Mehrdimensionalen zu formulieren, müssen wir folgende Fragen beantworten: 1-1 Wie wird die Konstruktion

Mehr

Itô s Lemma. Sandro Grunert. SS 09 Seminar Finanzmathematik Technische Universität Chemnitz. Kiyosi Itô

Itô s Lemma. Sandro Grunert. SS 09 Seminar Finanzmathematik Technische Universität Chemnitz. Kiyosi Itô Itô s Lemma Sandro Grunert SS 9 Seminar Finanzmathematik Technische Universität Chemnitz Kiyosi Itô Quelle: www.math.ru/history/people/portrait/99.thumb.jpg. Kurzbiographie: Itô wurde am 7. September 1915

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen Konvergenz gegen einen rozess mit unabhängigen Zuwächsen - Anwendungen Saskia F. Glaffig 20.07.17 "Wiederholung" Definition (vgl. Jacod, Shiryaev, I.3.26: oissonprozess). Ein erweiterter oissonprozess

Mehr

Polynominterpolation mit Matlab.

Polynominterpolation mit Matlab. Polynominterpolation mit Matlab. Die Matlab-Funktion polyfit a = polyfit(x,f,n-1); berechnet die Koeffizienten a = (a(1),a(2),...,a(n)); des Interpolationspolynoms p(x) = a(1)*x^(n-1) + a(2)*x^(n-2) +...

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten Kapitel 4 Stochastische Grundlagen An dieser Stelle möchte ich auf einige stochastische Grundlagen eingehen, die bisher im Kapitel 3 Anwendung gefunden haben und im Folgenden Anwendung finden werden. Grundproblem

Mehr

26. Der Gaußsche Integralsatz

26. Der Gaußsche Integralsatz 6 26. Der Gaußsche Integralsatz Im Folgenden sei eine k-dimensionale Untermannigfaltigkeit des R n und a 2. 26.1. Tangentialvektoren. Ein Vektor v 2 R n heißt Tangentialvektor an in a, falls es eine stetig

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 74 Folgerungen aus dem Satz von Fubini Beispiel 74.1. Wir wollen das Integral der Funktion f :R 2 R, (x,y) x 2 xy +2y 3, über dem Rechteck

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Stochastische Analysis

Stochastische Analysis Stochastische Analysis SS1 von Steffen Dereich Fachbereich Mathematik und Informatik Philipps-Universität Marburg Version vom 6. Mai 21 Inhaltsverzeichnis 1 Motivation / Einführung 4 1.1 Motivation anhand

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Partielle Differentialgleichungen Kapitel 11

Partielle Differentialgleichungen Kapitel 11 Partielle Differentialgleichungen Kapitel Die Laplace- und Poisson- Gleichungen Die Struktur bei elliptischen Gleichungen zweiter Ordnung ist nicht wesentlich verschieden bei Operatoren mit konstanten

Mehr

Parametrisierung und Integralsätze

Parametrisierung und Integralsätze Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene

Mehr