Verallgemeinerte Funktionen

Größe: px
Ab Seite anzeigen:

Download "Verallgemeinerte Funktionen"

Transkript

1 Verallgemeinerte Funktionen. Der Raum der Grundfunktionen Für den Vektorraum R n, n N, über R betrachten wir die Euklidische Norm kk W R n! R; v x 7! p ux x > x WD t n und bezeichnen eine Menge A R n als offen, falls es zu jedem x A eine reelle ahl ">gibt mit K x ;" WD fx R n Ikx x k <"ga: Eine Menge U R n heißt offene Umgebung von x R n, falls x U und U eine offene Menge darstellt. Eine Menge A R n heißt abgeschlossen, falls das Komplement A c WD fx R n I x Ag offen ist. Sind für eine beliebige nichtleere Menge I Teilmengen A i, i I,desR n abgeschlossen, so ist auch der Schnitt A WD \ ii A i id x i eine abgeschlossene Teilmenge des R n. Eine Menge A R n heißt beschränkt, falls es ein ">gibt mit A K ;" : Abgeschlossene und beschränkte Teilmengen des R n werden als kompakt bezeichnet. Springer-Verlag GmbH Deutschland 7 S. Schäffler, Verallgemeinerte stochastische Prozesse, DOI.7/ _

2 Verallgemeinerte Funktionen Sei nun M R n,soistderabschluss vom M definiert als cl.m / WD \ AA A; wobei A WD fb R n I B ist abgeschlossen und M Bg: Die Menge cl.m / ist somit die kleinste abgeschlossene Teilmenge des R n,diem enthält; das heißt: Es gibt keine echte Teilmenge von cl.m /,diem enthält und abgeschlossen ist. Sind für eine beliebige nichtleere Menge I Teilmengen B i, i I,desR n offen, so ist auch die Vereinigung B WD [ ii B i eine offene Teilmenge des R n. Ist nun M R n,soistdasinnere von M definiert als int.m / WD [ C C C; wobei C WD fb R n I B ist offen und B M g: Die Menge int.m / ist also die größte offene Teilmenge von M ; das heißt: Es gibt keine offene Teilmenge T von M mit int.m / T und int.m / 6D T. Für eine Menge M R n wird / WD cl.m / n int.m / WD fx cl.m /I x int.m /g als Rand von M bezeichnet. Für jedes M R n gilt zum Beispiel (Übungsaufgabe): (i) int.m / D M falls M offen und cl.m / D M falls M abgeschlossen, / \ M D;falls M offen, / M falls M abgeschlossen. (iv) / c D int.m / [ cl.m / c, ist der Rand von M abgeschlossen. Sei nun f W R n! R eine Funktion. Der Träger supp.f / von f ist definiert durch supp.f / WD cl.fx R n I f.x/ 6D g/:

3 . Der Raum der Grundfunktionen 3 Durch diese Festlegung wird supp.f / c eine offene Menge; es gibt also zu jedem x supp.f / c ein ">mit: K x ;" supp.f / c und daher f.x/ D für alle x K x ;": Obwohl zum Beispiel die trigonometrischen Funktionen sin und cos jeweils unendlich viele Nullstellen haben, gilt dennoch supp.sin/ c D supp.cos/ c D;: Im Folgenden betrachten wir die Menge der beliebig oft stetig differenzierbaren Funktionen f W R n! R; die wir mit C.R n ; R/ bezeichnen. Mit Hilfe des Trägers einer Funktion definieren wir nun eine wichtige Teilmenge von C.R n ; R/. Definition. (Grundfunktion) Eine Funktion ' C.R n ; R/ heißt Grundfunktion, falls supp.'/ beschränkt (und somit kompakt) ist. Die Menge aller Grundfunktionen wird mit D.R n ; R/ bezeichnet. G Offensichtlich gilt für alle partiellen m i :::@x im W R n! R m-ter Ordnung einer Grundfunktion m ' i :::@x im supp.'/ für alle m N; i ;:::;i m f;;:::;ng; da supp.'/ c offen ist und auf dieser Menge somit alle partiellen Ableitungen gleich Null werden. unächst ist nicht klar, ob es neben der Grundfunktion ' überhaupt eine weitere Grundfunktion gibt. Sei h W R! R; x 7! ( für alle x exp x für alle x> ; so ist h C.R; R/ (siehe Abb..). Mit k W R n! R; x 7! kxk ; n N;

4 4 Verallgemeinerte Funktionen Abb.. Die Funktion h ist ( für alle kxk WD h ı k W R n! R; x 7! exp für alle >kxk kxk in C.R n ; R/ (Kettenregel) und wegen o supp. / D nx R n Ikxk.D cl.k ; // ist eine Grundfunktion (siehe Abb..). Für jedes R und ' D.R n ; R/ ist ' W R n! R; x 7! '.x/ wegen ( supp.'/ D supp.'/ für 6D ; für D ebenfalls eine Grundfunktion und für ' ;' D.R n ; R/ ist ' C ' W R n! R; x 7! '.x/ C '.x/ wegen supp.' C ' / supp.' / [ supp.' / ebenfalls eine Grundfunktion, denn die endliche Vereinigung abgeschlossener Mengen ist abgeschlossen. Somit bildet D.R n ; R/ einen Vektorraum über R.

5 . Der Raum der Grundfunktionen 5 Abb.. Die Funktion für n D Da für die Funktion offensichtlich ( für alle kxk W R n! R; x 7! exp für alle >kxk kxk <I WD gilt, folgt natürlich für WD I R n.x/dx < (Riemann-Integral) (siehe Abb..3): R n.x/dx D : Nun wählen wir eine reelle ahl R>und untersuchen die Funktion x R W R n! R; x 7! R : R n Die Substitution y D x R liefert: R n R.x/dx D :

6 6 Verallgemeinerte Funktionen Abb..3 Die Funktion für n D Ferner erhalten wir supp. R / D fx R n Ikxk Rg D cl.k ;R /: Durch die Funktionen R können wir weitere Grundfunktionen gewinnen. Sei f W R n! R stetig mit kompaktem Träger, so ist durch ' R W R n! R; x 7! f./ R. x/d R n für jedes R>eine neue Grundfunktion gegeben, denn da f./ R. x/d D f./ R. x/d; R n cl.k x;r / ist ' R C.R n ; R/ (Differentiation und Integration können vertauscht werden). Wegen ' R.x/ D für alle x fy R n I cl.k y;r / \ supp.f / D;g ist der Träger von ' R beschränkt. Wählt man für n D zum Beispiel die stetige Funktion (Abb..4) W R! R; x 7! ( 4 ˇˇ jxj ˇˇ für 3 x 3 sonst ;

7 . Der Raum der Grundfunktionen 7 Abb..4 Die Funktion Abb..5 Die Funktion ' : so erhält man für R D :5 und R D :5 die Funktionen ' :5 und ' :5 wie in den Abb..5 und Abb..6 dargestellt. Die Funktion f läßt sich durch eine Grundfunktion beliebig genau approximieren, wie der folgende Satz zeigt. Theorem. (Approximationssatz) Sei f W R n! R eine stetige Funktion mit beschränktem (und damit kompaktem) Träger dann gibt es zu jedem ">eine Grundfunktion ' mit jf.x/ '.x/j <" für alle x R n :

8 8 Verallgemeinerte Funktionen Abb..6 Die Funktion ' : Ferner gilt mit ' R W R n! R; x 7! f./ R. x/dw gleichmäßig im R n. lim R!; R> ' R D f R n G Beweis Da f einen kompakten Träger hat, ist f gleichmäßig stetig; es gibt also zu jedem ">ein ı>mit jf.x/ f.x /j <" für alle x; x R n mit kx x k <ı: Mit dem Mittelwertsatz der Integralrechnung (siehe etwa [Wal]) folgt für x R n : ' R.x/ D cl.k x;r / f./ R. x/d D f.x / für ein x cl.k x;r /: Wählt man R<ı, so erhalten wir für alle x R n : jf.x/ ' R.x/j Djf.x/ f.x /j <"; da kx x k <ı: Damit ist auch die zweite Behauptung bewiesen. q. e. d. Im nächsten Abschnitt werden wir Grundfunktionen verwenden, um eine größere Klasse von Funktionen zu beschreiben.

9 . Darstellung von Funktionen durch Funktionale 9. Darstellung von Funktionen durch Funktionale Sei f W R n! R eine beliebige Funktion, so heißt f lokal integrierbar, falls jf j für jedes x R n und ">auf der Kugel cl.k x;" / integrierbar ist. Wir können also jeder lokal integrierbaren Funktion f eine Abbildung F f W D.R n ; R/! R; ' 7! f.x/'.x/dx zuordnen; für eine positive Grundfunktion ' mit gilt für eine stetige Funktion f : R n '.x/dx D R n F f.'/ D f.x / für ein x supp.'/: Die Funktion F f wird als Funktional bezeichnet. Ist allgemein ein Vektorraum V über einem Körper K gegeben, so wird jede Abbildung als Funktional bezeichnet. Gilt zudem G W V! K G. x/ D G.x/ für alle K; x V G.x C y/ D G.x/ C G.y/ für alle x; y V ; so heißt G lineares Funktional. In diesem Sinne ist F f für jedes lokal integrierbare f ein lineares Funktional. Nachdem wir jeder lokal integrierbaren Funktion f das Funktional F f zuordnen können, stellt sich nun die Frage, ob wir nur mit Kenntnis des Funktionals F f die Funktionswerte von f eindeutig rekapitulieren können. Dazu betrachten wir basierend auf den bereits eingeführten Grundfunktionen R für jedes x R n die Grundfunktionen x;r W R n! R; 7! R. x/: Da für eine stetige Funktion f gilt: F f. x;r / D f.x / für ein x cl.k x;r /; folgt: lim F f. x;r / D f.x/ für alle x R n : R!; R>

10 Verallgemeinerte Funktionen Sei nun n D, f differenzierbar (und damit lokal integrierbar) und f lokal integrierbar, so gilt mit partieller Integration und ' D.R; R/: f.x/'.x/dx D Somit erhalten wir h i f.x/'.x/ f.x/'.x/dx D F f.'/ D F f.' / für alle ' D.R; R/: f.x/'.x/dx: Das Interessante an dieser Gleichung ist nun, dass die linke Seite nur für differenzierbare Funktionen f definiert ist, deren Ableitung lokal integrierbar ist, während die rechte Seite für alle lokal integrierbaren Funktionen f definiert ist. Wir können also durch die rechte Seite dieser Gleichung eine Ableitung betrachten, die im klassischen Differentialkalkül nicht notwendig existiert. Dies ist die Grundidee verallgemeinerter Funktionen. Kehren wir zurück zum Beispiel (Abb..4) W R! R; x 7! ( 4 ˇˇ jxj ˇˇ für 3 x 3 sonst und verwenden wir erneut die Grundfunktionen R, so ergibt sich als Approximation der (im klassischen Sinne nicht existenten) Ableitung von die Funktion Q mit Q W R! R; x 7!./ R. x/d: Für R D :5 erhält man die Funktion Q wie in Abb..7 dargestellt. Die Funktion Q existiert auch als Grenzwert für R! (siehe Abb..8). Dabei zeigen die Sterne die Funktionswerte an den Unstetigkeiten an. Nun betrachten wir eine Funktion w W R! R, die zwar stetig ist, aber an keiner Stelle differenzierbar (Abb..9).Abb.. stellt das zugehörige Qw für R D : dar. Die Funktion w wird aus Pfaden Brownscher Bewegungen gewonnen, auf die wir noch zurückkommen werden. um Abschluss dieses Abschnitts untersuchen wir noch eine wichtige Eigenschaft der linearen Funktionale F f. u diesem weck führen wir einen Konvergenzbegriff für Grundfunktionen ein und definieren die Stetigkeit von Funktionalen. Definition.3 (Konvergenz von Grundfunktionen, stetige Funktionale) Ist f' i g in eine Folge von Grundfunktionen, so heißt f' i g in konvergent gegen eine Grundfunktion ', falls es eine beschränkte Menge M R n gibt mit supp.' i / M für alle i N

11 . Darstellung von Funktionen durch Funktionale Abb..7 Die Funktion Q für R D : Abb..8 Die Funktion Q für R! 4 3 * * * * *

12 Verallgemeinerte Funktionen Abb..9 Die Funktion w Abb.. Die Funktion Qw, R D : und falls die Folge f' i 'g in und alle Folgen partieller Ableitungen beliebiger Ordnung von.' i '/, i N, gleichmäßig im R n gegen Null konvergieren. Ein Funktional F W D.R n ; R/! R

13 .3 VerallgemeinerteFunktionen (Distributionen) 3 heißt stetig, falls für jede konvergente Folge f' i g in von Grundfunktionen (mit Grenzwert ') gilt: lim F.' i/ D F.'/: G i! Ist F W D.R n ; R/! R linear, so ist F offensichtlich stetig, falls lim F.' i / D i! für alle Folgen von Grundfunktionen f' i g in die gegen D.R n ;R/ W R n! R; x 7! konvergieren. Sei nun f' i g in eine derartige Folge, so gibt es ein >derart, dass und es gilt: supp.' i / cl.k ; / für alle i N lim jf f.' i /jd lim i! i! f.x/' i.x/dx ˇ ˇ D lim f.x/' i! i.x/dx R ˇ n cl.k ; / ˇ B C sup fj' i.x/jg jf.x/jdxa D : i! xcl.k ; / Somit sind die linearen Funktionale F f stetig. cl.k ; /.3 Verallgemeinerte Funktionen (Distributionen) Jeder lokal integrierbaren Funktion g W R n! R haben wir im letzten Abschnitt ein stetiges lineares Funktional F g zugeordnet. Dabei konnten wir einer lokal integrierbaren Funktion f W R! R durch.f f / W D.R; R/! R; ' 7! f.x/'.x/ dx

14 4 Verallgemeinerte Funktionen ein weiteres stetiges lineares Funktional zuordnen, das als Ableitung von f interpretiert werden kann insbesondere wenn f im klassischen Differentialkalkül nicht differenzierbar ist. Ist f differenzierbar und ist f lokal integrierbar, so gilt:.f f / D F f : Diese Beobachtung nehmen wir nun zum Anlass für folgende Definition. Definition.4 ((reguläre) verallgemeinerte Funktion, (reguläre) Distribution) Sei D.R n ; R/ der Vektorraum aller Grundfunktionen ' W R n! R über R, so wird jedes stetige lineare Funktional F W D.R n ; R/! R als verallgemeinerte Funktion bzw. Distribution bezeichnet. Gibt es eine lokal integrierbare Funktion f mit F D F f ; so wird F als reguläre verallgemeinerte Funktion bzw. reguläre Distribution bezeichnet. G Die Menge aller verallgemeinerten Funktionen wird mit D.R n ; R/ bezeichnet. Für n D ist die Ableitung F einer verallgemeinerten Funktion F gegeben durch und existiert immer. Durch F W D.R; R/! R; ' 7! F.' / F W D.R n ; R/! R; ' 7! F.'/.D F.'//; R; F D.R n ; R/ und F C G W D.R n ; R/! R; ' 7! F.'/C G.'/; F; G D.R n ; R/ wird D.R n ; R/ zu einem Vektorraum über R (dem Dualraum von D.R n ; R/). Die wichtigsten Vertreter verallgemeinerter Funktionen, die nicht regulär sind, sind die Dirac- Distributionen ı x : u jedem x R n betrachtet man die Abbildung ı x W D.R n ; R/! R; ' 7! '.x /: Offensichtlich sind die Abbildungen ı x linear und stetig. Wir zeigen nun indirekt, dass für jedes x R n die Distribution ı x nicht regulär ist. Sei also f eine lokal integrierbare Funktion mit R n f.x/'.x/dx D '.x / für alle ' D.R n ; R/;

15 .3 VerallgemeinerteFunktionen (Distributionen) 5 Abb.. Die Funktion ;r für r D :; :5; : r = r =.5.5 r = so gibt es ein ">mit cl.k x ;"/ jf.x/j dx D d<: Wählt man nun für ' die bereits bekannten Grundfunktionen so folgt: x ;" W R n! R; 7! ". x /; jf.x/ x ;".x/j dx sup fj x ;".x/jg xcl.k x ;"/ R n cl.k x ;"/ jf.x/j dx D x ;".x / d< x ;".x /: Um sich von den Dirac-Distributionen eine Vorstellung machen zu können, betrachten wir die regulären verallgemeinerten Funktionen F x ;r. Es gilt: F x ;r.'/ D '.x / mit x cl.k x ;r / für alle ' D.R n ; R/: Einer Dirac-Distribution ı x würde somit die Funktion x ;r für r! entsprechen (siehe Abb..). Die Ableitung einer Dirac-Distribution ist gegeben durch ı x W D.R; R/! R; ' 7! '.x /:

16 6 Verallgemeinerte Funktionen Für n D ergeben sich die Dirac-Distributionen ı x, x R, als Ableitung regulärer verallgemeinerter Funktionen. Sei so gilt W R! R; x 7! F W D.R; R/! R; ' 7! ( für x x sonst.x/'.x/ dx D (Heaviside-Funktion); x '.x/ dx D '.x /: Ist eine Funktion y W R! R Lösung einer speziellen gewöhnlichen Differentialgleichung, so kann wegen.f y / D F y auch die reguläre verallgemeinerte Funktion F y als Lösung dieser gewöhnlichen Differentialgleichung interpretiert werden. Um nun untersuchen zu können, ob es auch nichtreguläre verallgemeinerte Funktionen gibt, die eine spezielle gewöhnliche Differentialgleichung lösen, ob also durch den Übergang zum Kalkül der Distributionen zusätzliche Lösungen gewonnen werden können, ist eine Integration verallgemeinerter Funktionen zu definieren. Folgt man der gleichen Grundidee wie beim Differenzieren, so erhält man für eine lokal integrierbare Funktion g W R! R mit x G W R! R; x 7! g./d (Existenz vorausgesetzt) durch partielle x g./ d '.x/ A dx D 4G.x/ D x 3 './ d5 x './ da dx C c; ƒ DW O'.x/ x './ da dx wobei die Existenz von vorausgesetzt ist. x c WD lim G.x/ x! './ d

17

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010

Induktive Limiten. Arpad Pinter, Tobias Wöhrer. 30. Jänner 2010 Induktive Limiten Arpad Pinter, Tobias Wöhrer 30. Jänner 2010 1 Inhaltsverzeichnis 1 Induktiver Limes von Mengen 2 2 Induktiver Limes von Vektorräumen 4 3 Lokalkonvexe topologische Vektorräumen 7 4 Induktiver

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Mengensysteme, Wahrscheinlichkeitsmaße

Mengensysteme, Wahrscheinlichkeitsmaße Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen

Mehr

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Inauguraldissertation zur Erlangung des Doktorgrades der Mathematisch Naturwissenschaftlichen

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Grundlagen der Mathematik II

Grundlagen der Mathematik II Wintersemester 204/205 - Aufgabenblatt I Abgabe: bis Donnerstag, den 6. November 204, 9:00 Uhr Aufgabe : Untersuchen Sie, für welche 2 C die folgende Matrix c diagonalisierbar ist, und bestimmen Sie für

Mehr

Klausur Analysis II (SS 2005)

Klausur Analysis II (SS 2005) Klausur Analysis II (SS 5) Prof. Dr. J. Franke Abschlußklausur vom. Juli 5 Name, Vorname: Matrikelnummer: Gruppe, Tutor: Pseudonym: ir wünschen Ihnen viel Erfolg! Mit 5 Punkten oder mehr von 5 ist die

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

Fraktale Geometrie: Julia Mengen

Fraktale Geometrie: Julia Mengen Fraktale Geometrie: Julia Mengen Gunnar Völkel 1. Februar 007 Zusammenfassung Diese Ausarbeitung ist als Stoffsammlung für das Seminar Fraktale Geometrie im Wintersemester 006/007 an der Universität Ulm

Mehr

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist?

f : C C, z f(z) = zz komplex differenzierbar? Gibt es ein Gebiet G so dass f G analytisch ist? Tutor: Martin Friesen, martin.friesen@gmx.de Klausurvorbereitung - Lösungsvorschläge- Funktionentheorie Hier eine kleine Sammlung von Klausurvorbereitungsaufgaben vom Sommersemester 008 aus der Vorlesung

Mehr

Mathematische Methoden der Physik: Funktionalanalytische Methoden. Technische Universität Clausthal WS 1998/99

Mathematische Methoden der Physik: Funktionalanalytische Methoden. Technische Universität Clausthal WS 1998/99 Mathematische Methoden der Physik: Funktionalanalytische Methoden Technische Universität Clausthal WS 1998/99 W. Lücke 3 Vorwort Als Funktionalanalysis bezeichnet man die Analysis von Funktionen, deren

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Inhaltsverzeichnis. 3 Ableitung stückweise glatter Funktionen 16 3.1 PolynomemitSprungstellen... 16 3.2 StückweiseglatteFunktionen...

Inhaltsverzeichnis. 3 Ableitung stückweise glatter Funktionen 16 3.1 PolynomemitSprungstellen... 16 3.2 StückweiseglatteFunktionen... DISTRIBUTIONEN Inhaltsverzeichnis 1 Axiome der Distributionentheorie 2 1.1 Notation... 2 1.2 Äquivalenzklassen... 3 1.3 Axiome... 5 1.4 Ein die Axiome erfüllendesmodell... 6 1.5 DieEindeutigkeitdesModells...

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen

22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22 Die trigonometrischen Funktionen und die Hyperbelfunktionen 22.1 Sinus und Cosinus 22.3 Definition von 22.6 Sinus und Cosinus als eindeutige Lösungen eines Differentialgleichungssystems 22.7 Tangens

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

e d m m = D d (E e (m)) D d E e m f c = f(m) m m m 1 f(m 1 ) = c m m 1 m c = f(m) c m c m b b 0, 1 b r f(b, r) f f(b, r) := y b r 2 n, n = pq ggt (p, q) = 1 p q y n f K f(x + y) = f(x) + f(y) f(x y) =

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Einführung in die Funktionalanalysis

Einführung in die Funktionalanalysis Einführung in die Funktionalanalysis Bernhard Gsell Skriptum zur Vorlesung gelesen von Prof. Wolfgang Woess 21. August 2014 Dies ist die Umsetzung meiner Vorlesungsmitschrift zu Einführung in die Funktionalanalysis,

Mehr

Grundlagen der Variationsrechnung

Grundlagen der Variationsrechnung Universität des Saarlandes Fachrichtung 6.1 Mathematik /home/lehrstuhl/ag-fuchs/olli/work/texstyles/eule-eps-conv Grundlagen der Variationsrechnung Eine anwendungsorientierte Einführung in die lineare

Mehr

1. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013

1. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 O. Alaya, R. Bauer K. Sanei Kashani, F. Kissling, B. Krinn, J. Schmid, T. Vassias. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshinweise zu den

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

1 Stochastische Prozesse in stetiger Zeit

1 Stochastische Prozesse in stetiger Zeit 1 Stochastische Prozesse in stetiger Zeit 1.1 Grundlagen Wir betrachten zufällige Prozesse, definiert auf einem Wahrscheinlichkeitsraum (Ω, F, P), welche Werte in einen fest gewählten Zustandsraum annehmen.

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Jurgen Muller Analysis I-IV

Jurgen Muller Analysis I-IV Jurgen Muller Analysis I-IV Skriptum zur Vorlesung Wintersemester 5/6 bis Sommersemester 7 Universitat Trier Fachbereich IV Mathematik/Analysis Dank an Elke Gawronski und Judith Wahlen fur die Mithilfe

Mehr

Numerische Verfahren zur Lösung nichtlinearer Gleichungen

Numerische Verfahren zur Lösung nichtlinearer Gleichungen Kapitel 2 Numerische Verfahren zur Lösung nichtlinearer Gleichungen 21 Aufgabenstellung und Motivation Ist f eine in einem abgeschlossenen Intervall I = [a, b] stetige und reellwertige Funktion, so heißt

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Mathematik für Physiker III/Analysis III

Mathematik für Physiker III/Analysis III Mathematik für Physiker III/Analysis III Ausarbeitung einer Vorlesung vom Wintersemester 26/7 Joachim Weidmann Fachbereich Informatik und Mathematik der Universität Frankfurt Stand 9. Februar 27 2 Teil

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

I N H A L T S V E R Z E I C H N I S. 1.Zielsetzung der Seminararbeit... - 3-1.1.Didaktischer Kommentar für Schüler und Lehrer...

I N H A L T S V E R Z E I C H N I S. 1.Zielsetzung der Seminararbeit... - 3-1.1.Didaktischer Kommentar für Schüler und Lehrer... I N H A L T S V E R Z E I C H N I S 1.Zielsetzung der Seminararbeit... - 3-1.1.Didaktischer Kommentar für Schüler und Lehrer... - 3-2. Lokale Änderungsrate und Gesamtänderung... - 4-3. Ober- und Untersumme...

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

Fixpunktsemantik logischer Programme Pascal Hitzler Juli 1997 Kurzuberblick im Rahmen der Vorlesung Einfuhrung in Prolog von T. Cornell im Sommersemester 1997 an der Universitat Tubingen. Beweise sind

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Nichtlineare hyperbolische Gleichungen.

Nichtlineare hyperbolische Gleichungen. Nichtlineare hyperbolische Gleichungen. 1 Hyperbolische Gleichungen 1.1 Einleitung In dieser Vorlesung geht es um hyperbolische Gleichungen. Es sind Evolutionsgleichungen. Das heißt, wir haben ein System

Mehr

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015

Schleswig-Holsteinische Ergänzung der Musteraufgaben für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 ische Ergänzung der für den hilfsmittelfreien Teil der schriftlichen Abiturprüfung im Fach Mathematik ab 2015 Ministerium für ildung und Wissenschaft des Landes Juni 2013 1 für Aufgabenpool 1 Analysis

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Bernhard Riemann [Monatsberichte der Berliner Akademie, November 1859.

Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Bernhard Riemann [Monatsberichte der Berliner Akademie, November 1859. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Bernhard Riemann [Monatsberichte der Berliner Akademie, November 859.] Transcribed by D. R. Wilkins Preliminary Version: December 998 Ueber

Mehr

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) Was ist eine Zufallsmatrix?

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Hilbertraum-Methoden

Hilbertraum-Methoden Skript zur Vorlesung Hilbertraum-Methoden SS 2013 Peter Junghanns Hinweis: Das vorliegende Skript stellt nur ein Gerüst zu den Inhalten der Vorlesung dar. Die Vorlesung selbst bietet weiterführende Erläuterungen,

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Höhere Mathematik III für Wirtschaftsinformatiker

Höhere Mathematik III für Wirtschaftsinformatiker TU Ilmenau Institut für Mathematik Prof. Dr. S. Vogel Höhere Mathematik III für Wirtschaftsinformatiker Funktionen von mehreren Variablen. Grenzwerte und Stetigkeit Betrachtet werden Funktionen f : D f

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr