Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)"

Transkript

1 Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg

2

3

4

5 Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere Progrmme 4 Folgen und Reihen 5 Finnzmthemtik 6 Reelle Funktionen 7 Differenzieren 1 8 Differenzieren 2 9 Integrtion 9 Integrtion Unbestimmte Integrle Bestimmte Integrle Uneigentliche Integrle Mehrdimensionle Integrle 10 Differentilgleichungen

6 Einleitung Mthemtik Stefn Etschberger Umkehrung der Frgestellung der Differentilrechnung Jetzt gesucht: Funktion, deren Änderungsverhlten beknnt ist Beispiel: Beknnt: Geschwindigkeit eines Körpers in Abhängigkeit der Zeit Gesucht: Ort in Abhängigkeit der Zeit Gliederung 1 Unbestimmte Integrle 2 Riemnnsche Summen und bestimmte Integrle 3 Uneigentliche Integrle 4 Anmerkungen zu mehrdimensionlen Integrlen 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 183

7 Stmmfunktion Mthemtik Stefn Etschberger Eine differenzierbre Funktion F : D R mit D R heißt Stmmfunktion der Funktion f : D R, wenn für lle x D gilt F (x) = f(x) 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme Sind F, ˆF beliebige Stmmfunktionen von f, gilt für lle x D: ˆF(x) F(x) = konstnt Also: Ht mn eine Stmmfunktion F gefunden, gilt für lle nderen Stmmfunktionen ˆF(x) = F(x) + c 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 184

8 Unbestimmtes Integrl Mthemtik Stefn Etschberger Ist F : D R eine Stmmfunktion von f : D R, so heißt f(x) dx = F (x) dx = F(x) + c für beliebiges c R 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme ds unbestimmte Integrl der Funktion f. Weitere Bezeichnungen: x : Integrtionsvrible f(x) : Integrnd c : Integrtionskonstnte 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle Unbestimmte Integrtion ist Umkehrung der Differentition 185

9 Einige unbestimmte Integrle Mthemtik Stefn Etschberger Sei f eine reelle Funktion und c R eine beliebige Konstnte. Dnn gilt: ) f(x) = ( R) f(x) dx = x + c b) f(x) = x n (n N, x R) f(x) dx = 1 f(x) = x m (m = 2, 3,..., x 0) f(x) = x r (r R, r 1, x > 0) f(x) dx = f(x) dx = 1 n + 1 xn+1 + c 1 m + 1 xm+1 + c r + 1 xr+1 + c c) f(x) = x 1 (x 0) f(x) dx = ln x + c d) f(x) = sin x (x R) f(x) dx = cos x + c f(x) = cos x (x R) f(x) dx = sin x + c e) f(x) = e x (x R) f(x) dx = e x + c f(x) = x ( > 0, 1, x R) f(x) dx = 1 ln x + c 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 186

10 Rechenregeln Mthemtik Stefn Etschberger Summen und konstnte Fktoren Für die reellen Funktionen f, g : D R, D R existiere ds unbestimmte Integrl. Dnn gilt: ) b) (f(x) + g(x)) dx = f(x) dx + g(x) dx f(x) dx = f(x) dx für lle R 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik Prtielle Integrtion Für zwei stetig differenzierbre Funktionen f, g : D R, D R gilt: f(x)g (x) dx = f(x)g(x) f (x)g(x) dx 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 187

11 Rechenregeln Mthemtik Stefn Etschberger Substitutionsregel Die Funktion f : D R, D R besitze eine Stmmfunktion F und g : D 1 R, D 1 R, g(d 1 ) D sei stetig differenzierbr. Dnn existiert die zusmmengesetzte Funktion f g : D 1 R mit z = f(y) = f(g(x)) = (f g) (x) und es gilt mit y = g(x) f(g(x))g (x) dx = f(y) dy = F(y) + c = F(g(x)) + c = (F g) (x) + c 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle mit c R beliebig. 188

12 Riemnnsche Summen Mthemtik Stefn Etschberger Gegeben: Beschränkte und stetige Funktion f : [, b] R mit < b und f 0 Unterteilen von [, b] in [, x 1 ], [x 1, x 2 ],..., [x i 1, x i ],..., [x n 1, b] mit = x 0, b = x n In jedem Teilintervll: Wähle Mximum und Minimum: f(u i ) = min {f(x) : x [x i 1, x i ]} f(v i ) = mx {f(x) : x [x i 1, x i ]}. f(x) und 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik 9. Integrtion f 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle f(v i ) f(u i ) 4. Mehrdimensionle Integrle = x 0 x 1 x 2 x 3 x 4... x i 1 x i... b = x n x 189

13 Riemnnsche Summen Mthemtik Stefn Etschberger Untere und obere Grenze I n min I In mx für Flächeninhlt unter Kurve mit: n I n min = n f(u i )(x i x i 1 ), I n mx = f(v i )(x i x i 1 ) i=1 i=1 f(x) f f(v i ) f(u i ) 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik = x 0 x 1 x 2 x 3 x 4... x i 1 x i... b = x n x 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 190

14 Riemnnsche Summen Mthemtik Stefn Etschberger Untere und obere Grenze I n min I In mx für Flächeninhlt unter Kurve mit: n I n min = n f(u i )(x i x i 1 ), I n mx = f(v i )(x i x i 1 ) i=1 i=1 Jetzt: Verfeinerung der Unterteilung von [, b] Folgen (I n min ) und (In mx) Existieren für n die Grenzwerte der beiden Folgen und gilt für den whren Flächeninhlt I unter der Kurve lim n In min = lim n In mx = I dnn heißt f Riemnn-integrierbr im Intervll [, b] Schreibweise: I = f(x) dx Bezeichnungen: I Bestimmtes Integrl von f im Intervll [, b] x Integrtionsvrible f(x) Integrnd, b Integrtionsrenzen 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 190

15 Existenz von bestimmten Integrlen Mthemtik Stefn Etschberger Gegeben: Reelle Funktion f : [, b] R. Dnn gilt: ) f stetig in [, b] f(x) dx existiert b) f monoton in [, b] f(x) dx existiert 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 191

16 Existenz von bestimmten Integrlen Mthemtik Stefn Etschberger Gegeben: Reelle Funktion f : [, b] R. Dnn gilt: ) f stetig in [, b] f(x) dx existiert b) f monoton in [, b] Beispiele: Gesucht: +1 1 f i(x) dx für { 2 für x < 0 f 1 (x) = und 1 für x 0 f 2 (x) = x f 1 (x) 2 1 f(x) dx existiert f 2 (x) 1 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 1 1 x 1 1 x 191

17 Sätze zu bestimmten Integrlen Mthemtik Stefn Etschberger Gegeben: Integrierbre Funktionen f, g : [, b] R. Dnn gilt: ) cf(x) dx = c f(x) dx b) f(x) g(x) für lle x [, b] für lle c R f(x) dx g(x) dx 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik c) f(x) dx = c f(x) dx + c f(x) dx für lle c (, b) 9. Integrtion 1. Unbestimmte Integrle Definiert wird ußerdem: f(x) dx = 0, f(x) dx = b f(x) dx 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 192

18 Zusmmenhng bestimmtes und unbestimmtes Integrl Mthemtik Stefn Etschberger Zusmmenhng Gegeben f : D R, D R eine in D stetige Funktion. Dnn existiert eine Stmmfunktion F von f mit F (x) = f(x) 1. Aussgenlogik 2. Linere Algebr sowie ds unbestimmte Integrl f(x)dx = F(x) + c 3. Linere Progrmme 5. Finnzmthemtik und ds bestimmte Integrl Unterschiede f(x) dx = F(b) F() 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle Bestimmtes Integrl entspricht einer reellen Zhl Unbestimmtes Integrl entspricht Schr von Funktionen 193

19 Integrtionsregeln Mthemtik Stefn Etschberger ) Für integrierbre Funktionen f, g : [, b] R gilt die Additionsregel (f(x) + g(x)) dx = f(x) dx + g(x) dx. b) Für stetig differenzierbre Funktionen f, g : [, b] R gilt die Regel der prtiellen Integrtion f(x)g (x) dx = f(x)g(x) b f (x)g(x) dx c) Ist f : [α, β] R integrierbr mit der Stmmfunktion F und g : [, b] R mit g[, b] [α, β] stetig differenzierbr, so gilt die Substitutionsregel f(g(x)) g (x) dx = F(g(x)) b = F(g(b)) F(g()) = g(b) g() f(y) dy. 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 194

20 Grenzen bei ± Mthemtik Stefn Etschberger Die reelle Funktion f sei für lle x R definiert und integrierbr. Dnn heißt der Grenzwert lim f(x) dx, flls er existiert, ds konvergente b uneigentliche Integrl von f im Intervll [, ), und mn schreibt lim f(x) dx = f(x) dx. b Andernflls spricht mn von einem divergenten uneigentlichen Integrl. Entsprechend definiert mn ds konvergente uneigentliche Integrl von f im Intervll (, b], flls folgender Grenzwert existiert: lim f(x) dx = f(x) dx Sind beide Integrle f(x) dx und f(x) dx konvergent, so existiert uch f(x) dx = f(x) dx + f(x) dx. 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 195

21 Beliebige Grenzen Mthemtik Stefn Etschberger Geg.: Reelle Funktion f : [, b) R, die für lle x [, b ɛ] mit ɛ (0, b ) integrierbr. Dnn heißt Grenzwert lim b ɛ ɛ 0 f(x) dx (flls er existiert) konvergentes uneigentliches Integrl von f im Intervll [, b]. Schreibweise: ɛ lim f(x) dx = f(x) dx. ɛ 0 Andernflls: Divergentes uneigentliches Integrl Anlog für lle x [ + ɛ, b] mit ɛ (0, b ), konvergentes uneigentliches Integrl von f in [, b], mit lim f(x) dx = ɛ 0 +ɛ f(x) dx. Ist f in (, b) definiert und sind für c (, b) die uneigentlichen Integrle c f(x) dx und c f(x) dx konvergent, dnn ist uch folgendes Integrl konvergent: c f(x) dx = f(x) dx + f(x) dx c 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 196

22 Prmeterintegrl: Stz Mthemtik Stefn Etschberger f(x 1, x 2 ) f(x 1, b 2 ) f(b 1, x 2 ) 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 0 F x 1 (b 2 ) F 2 (b 1 ) 2 b x 2 b Finnzmthemtik Ist die Funktion f : [ 1, b 1 ] [ 2, b 2 ] R stetig, so ist uch 1 F 1 : [ 2, b 2 ] R mit F 1 (x 2 ) = f(x 1, x 2 ) dx 1 und 1 F 2 : [ 1, b 1 ] R mit F 2 (x 1 ) = 2 2 f(x 1, x 2 ) dx 2 stetig. 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 197

23 Vertuschung: Intergrtion und Differentition Mthemtik Stefn Etschberger Gegeben: stetige Funktion f : [ 1, b 1 ] [ 2, b 2 ] R und f ist nch beiden Vriblen stetig prtiell differenzierbr. Dnn sind die Funktionen F 1, F 2 mit 1. Aussgenlogik 2. Linere Algebr F 1 (x 2 ) = 1 1 f(x 1, x 2 ) dx 1 und F 2 (x 1 ) = stetig differenzierbr, und es gilt: df 1 = d 1 f(x 1, x 2 ) dx 1 = dx 2 dx 2 1 df 2 = d dx 1 dx f(x 1, x 2 ) dx 2 = f(x 1, x 2 ) dx 2 f(x 1, x 2 ) dx 1 1 x f(x 1, x 2 ) x 1 dx 2 3. Linere Progrmme 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle Also: Differentition und Integrtion können vertuscht werden. 198

24 Stz von Fubini Mthemtik Stefn Etschberger Die stetige Funktion f : [ 1, b 1 ] [ 2, b 2 ] R sei nch beiden Vriblen stetig prtiell differenzierbr. Dnn gilt: b 2 2 b 1 1 f(x 1, x 2 ) dx 1 dx 2 = b 1 1 b 2 2 f(x 1, x 2 ) dx 2 dx 1 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 199

25 Interprettion über Riemnnsche Summen Mthemtik Stefn Etschberger Existieren die Grenzwerte der unteren und oberen Schrnke von I nlog dem eindimensionlen Fll für n und sind sie identisch, so heißt die Funktion f : [ 1, b 1 ] [ 2, b 2 ] R in ihrem Definitionsbereich integrierbr. Ist f stetig und stetig prtiell differenzierbr, so gilt I = b 2 2 b 1 1 f(x 1, x 2 ) dx 1 dx 2 = b 1 1 b 2 2 f(x 1, x 2 ) dx 2 dx 1. Mn bezeichnet ds Doppelintegrl I ls ds bestimmte Integrl von f im Bereich [ 1, b 1 ] [ 2, b 2 ], ferner x 1, x 2 ls Integrtionsvrible, f(x 1, x 2 ) ls Integrnd und 1, b 1, 2, b 2 ls Integrtionsgrenzen 1. Aussgenlogik 2. Linere Algebr 3. Linere Progrmme 5. Finnzmthemtik 9. Integrtion 1. Unbestimmte Integrle 2. Bestimmte Integrle 3. Uneigentliche Integrle 4. Mehrdimensionle Integrle 200

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

Analysis II. Universität Stuttgart, SS 06 M. Griesemer

Analysis II. Universität Stuttgart, SS 06 M. Griesemer Anlysis II Universität Stuttgrt, SS 06 M. Griesemer Inhltsverzeichnis 9 Ds Riemnnsche Integrl 3 9.1 Definition und Beispiele........................... 3 9.2 Elementre Eigenschften..........................

Mehr

Brückenkurs MATHEMATIK

Brückenkurs MATHEMATIK Brückenkurs MATHEMATIK Professor Dr. rer. nt. Bernd Bumnn Professor Dr. rer. nt. Ulrich Stein Hochschule für Angewndte Wissenschften Hmburg 5. März 008 VO R B E M E R K U N G E N Liebe Studentin, lieber

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014 Anlysis 2 Vorlesungsskript Sommersemester 214 Bernd Schmidt Version vom 15. Oktober 214 Institut für Mthemtik, Universität Augsburg, Universitätsstr. 14, 86135 Augsburg, bschmidt@mth.uni-ugsburg.de 1 Inhltsverzeichnis

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Ein Aufschrieb der Vorlesung Analysis I an der Uni Karlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog.

Ein Aufschrieb der Vorlesung Analysis I an der Uni Karlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog. Anlysis I Ein Aufschrieb der Vorlesung Anlysis I n der Uni Krlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog. GeTEXt von Andres Klöckner (k@ixion.net). Für Kommentre und Berichtigungen

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

Vorlesungsskript Mathematik I für Wirtschaftsingenieure

Vorlesungsskript Mathematik I für Wirtschaftsingenieure Vorlesungsskript Mthemtik I für Wirtschftsingenieure Verfsserin: HSD Dr. Sybille Hndrock TU Chemnitz Fkultät für Mthemtik e-mil: hndrock@mthemtik.tu-chemnitz.de Wintersemester 2005/06 Litertur [] Dllmnn,

Mehr

Mathematik Brückenkurs

Mathematik Brückenkurs Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Mthemtik Brückenkurs im Fchbereich Informtik & Elektrotechnik Rumpfskript V7 Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Inhltsverzeichnis Mengen...

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Eigenschften Besonderheiten - Beispiele Kreis beknnt us Klsse 8: U Kreis = 2 π r A Kreis = r 2 π Kreissektor Bogenlänge b Flächeninhlt Kreissektor: Die Länge b des Kreisbogens und der Flächeninhlt

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mthemtik I Dr. Wolfgng Metzler Universität Kssel unter Mitwirkung von Dipl.-Mth. Mrtin Steigemnn Sommersemester 2005 ii c 2005 Dr. Wolfgng Metzler, Fchbereich Mthemtik und Informtik der Universität

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02

Abiturprüfung 2007. Mathematik, Leistungskurs 0,02 M LK HT Seite von Nme: Abiturprüfung 007 Mthemti, Leistungsurs Aufgbenstellung: Gegeben ist die Funtion f mit Ein Teil des Grphen von f ist für 0,0 t ft () = t e, t IR. 0 t 5 m Ende der Aufgbe uf Seite

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Mathematik I Internationales Wirtschaftsingenieurwesen

Mathematik I Internationales Wirtschaftsingenieurwesen Mathematik I Internationales Wirtschaftsingenieurwesen Integralrechnung 03.12.08 Das unbestimmte Integral/Stammfunktion Das bestimmte Integral/Flächenberechnung Integral als Umkehrung der Ableitung Idee:

Mehr

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns Skript zur Vorlesung Anlysis I/II 9/ Peter Junghnns Hinweis: Ds vorliegende Skript stellt nur ein Gerüst zu den Inhlten der Vorlesung dr. Die Vorlesung selbst bietet weiterführende Erläuterungen, Beweise

Mehr

Beispiel-Abiturprüfung. Fach Mathematik

Beispiel-Abiturprüfung. Fach Mathematik Beispiel-Abiturprüfung in den Bildungsgängen des Berufskollegs. Leistungskurs Fch Mthemtik Fchbereich Technik mthe_lk_tech_beispielufg09_0085.doc Seite von 9 Konstruktionsmerkmle der Aufgbe rten Aufgbe

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Analysis I im SS 2011 Kurzskript

Analysis I im SS 2011 Kurzskript Anlysis I im SS 2011 Kurzskript Prof. Dr. C. Löh Sommersemester 2011 Inhltsverzeichnis -2 Literturhinweise 2-1 Einführung 4 0 Grundlgen: Logik und Mengenlehre 5 1 Zählen, Zhlen, ngeordnete Körper 14 2

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Mathematik: Vorwissen und Selbststudium

Mathematik: Vorwissen und Selbststudium Mthemtik: Vorwissen und Selbststudium Prof. Thoms Apel Studienjhr 00/ Lerning nything chnges people; lerning mth mkes big chnge it opens minds nd opens doors. [Hirsh Cohen, SIAM president 983-984] Vorwort

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Differentialgleichungen Gewöhnliche Differentialgleichungen

Differentialgleichungen Gewöhnliche Differentialgleichungen Differentilgleichungen Gewöhnliche Differentilgleichungen ( n) + + +... ++ Eplizite Form: (Gleichung lässt sich nch höchster Ableitung uflösen Implizite Form: + 0 Lösung: Durch eine Funktion Lösungsweg:

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Einleitung. Mathematik für Volkswirte. Literatur. Über die mathematische Methode. Weitere Übungsbeispiele. Statische (Gleichgewichts-) Analyse

Einleitung. Mathematik für Volkswirte. Literatur. Über die mathematische Methode. Weitere Übungsbeispiele. Statische (Gleichgewichts-) Analyse Mthemtik für Volkswirte Mthemticl Methods for Economists Josef Leydold Institute for Sttistics nd Mthemtics WU Wien Wintersemester 05/6 009 05 Josef Leydold This work is licensed under the Cretive Commons

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Analysis I/II - Vorlesungs-Script

Analysis I/II - Vorlesungs-Script Anlysis I/II - Vorlesungs-Script Prof. Michel Struwe 05/06 Mitschrift: Eveline Hrdmeier Grphics: Prisc Greminger Mthis Weylnd Corrections: Prisc Greminger $Id: nlysis.tex 1237/1502 2006-10-19 21:13:30

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Integrieren wie geht das?

Integrieren wie geht das? Integrieren wie geht ds? Ich knn Dir ds Integrieren nur erklären, wenn wir zuvor ds Differenzieren wiederholen. Ds mchen wir gnz forml, ohne die zugrundeliegenden Ideen zu esprechen. Nur so viel: Aleitung

Mehr

http://www.tfh-wildau.de/gerking/arbeiten.html 2005

http://www.tfh-wildau.de/gerking/arbeiten.html 2005 Hllo Ilse, gut nch Huse gekommen? Ich htte Glück, die U-Bhnnschlüsse wren gut. http://www.tfh-wildu.de/gerking/arbeiten.html 5 Sonntgs hbe ich mich dnn erstml mit der Frge beschäftigt, ob Mthemtik und

Mehr

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm 3 Module in C 5 Glole Vrilen!!!.c Quelldteien uf keinen Fll mit Hilfe der #include Anweisung in ndere Quelldteien einkopieren Bevor eine Funktion us einem nderen Modul ufgerufen werden knn, muss sie deklriert

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Skript zur Vorlesung. Numerik stochastischer Differentialgleichungen

Skript zur Vorlesung. Numerik stochastischer Differentialgleichungen Skript zur Vorlesung Numerik stochstischer Differentilgleichungen Wintersemester 5/6 Johnnes Schropp Universität Konstnz Fchbereich Mthemtik und Sttistik Johnnes Schropp, 9. November 5 Inhltsverzeichnis

Mehr

Praktikum: Elektronische Schaltungstechnik I, 90min Raum: Labor Schaltungs- und Prozessortechnik Betreuung: Prof. Dr.-Ing. M.

Praktikum: Elektronische Schaltungstechnik I, 90min Raum: Labor Schaltungs- und Prozessortechnik Betreuung: Prof. Dr.-Ing. M. Technische Informtik TI 4. Semester Prktikum: Elektronische Schltungstechnik I, 90min um: Lbor Schltungs- und Prozessortechnik Betreuung: Prof. Dr.-Ing. M. Viehmnn Versuch: ES. Them: Opertionsverstärker.

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Vorkurs Mathematik Teil II Analysis. Integration

Vorkurs Mathematik Teil II Analysis. Integration ********* Vorkurs Mthemtik Teil II Anlysis F. Kruse Kpitel Integrtion Der Inhlt dieses Kpitels:. Umkehrung des Ableitens (Aufleiten). Die inhltliche Interprettion des Integrles.3 Die Technik des Integrierens

Mehr

e d m m = D d (E e (m)) D d E e m f c = f(m) m m m 1 f(m 1 ) = c m m 1 m c = f(m) c m c m b b 0, 1 b r f(b, r) f f(b, r) := y b r 2 n, n = pq ggt (p, q) = 1 p q y n f K f(x + y) = f(x) + f(y) f(x y) =

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Gymnasiale Oberstufe Saar. Lehrplan Mathematik. E-Kurs. Juni 2008. Stand August 2011

Gymnasiale Oberstufe Saar. Lehrplan Mathematik. E-Kurs. Juni 2008. Stand August 2011 Gymnsile Oberstufe Sr Lehrpln Mthemtik E-Kurs Juni 008 Stnd August 0 MBKW G.B0.030 6/008 LEHRPLAN MATHEMATIK FÜR DEN E-KURS DER GYMNASIALEN OBERSTUFE SAAR Stoffverteilungspln E-Kurs,. Hlbjhr der Huptphse

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

2 Stetigkeit und Differenzierbarkeit

2 Stetigkeit und Differenzierbarkeit 2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Studiengang Umweltschutz. Mathematik 2

Studiengang Umweltschutz. Mathematik 2 Fchhochschule Bingen, Studiengng Umweltschutz Sommersemester 0 Mthemtik_ Studiengng Umweltschutz Mthemtik Inhltsverzeichnis Grundlgen... Rechnen mit Potenzen...8 Binomische Formel... 6 Iterierte Abbildungen...

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Stoffumfang 1.Semester - Lektionen. Grundbegriffe 1 2 3 4 5 6

Stoffumfang 1.Semester - Lektionen. Grundbegriffe 1 2 3 4 5 6 FH Augsburg Ingenieurmthemtik Stoffumfng.Semester - Lektionen Grundbegriffe 4 5 6 Differenzition 7 8 9 0 Höhere Funktionen 4 Koordinten, Gerde, Steigung Funktionen und Grphen, Umkehrfunktion Trigonometrische

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

f (x) UNTERRICHTSENTWICKLUNG

f (x) UNTERRICHTSENTWICKLUNG UNTERRICHTSENTWICKLUNG y f (x) S Integrlrechnung Rekonstruktion von Beständen Didktisch-methodische Hinweise zur Unterrichtsgestltung im Fch Mthemtik der Sekundrstufe II b x Bildungsregion Berlin-Brndenburg

Mehr

Lösungen der Probe-Vorklausur 1. Lösungen der Probe-Vorklausur 2

Lösungen der Probe-Vorklausur 1. Lösungen der Probe-Vorklausur 2 Bei allen Aufgaben muss der Rechenweg erkennbar sein (auch beim Bruchrechnen mindestens Zwischenschritt). Ohne Rechnung gibt es auch bei richtigem Ergebnis keine Punkte. Lösungen der Probe-Vorklausur Aufgabe

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45.

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45. Mathematik I für Wirtschaftswissenschaftler Klausur am 8.6.4, 5.45 7.45. Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. b) Lösungswege und Begründungen sind anzugeben. Die

Mehr

Identifizierbarkeit von Sprachen

Identifizierbarkeit von Sprachen FRIEDRICH SCHILLER UNIVERSITÄT JENA Fkultät für Mthemtik und Informtik INSTITUT für INFORMATIK VORLESUNG IM WINTERSEMESTER STOCHASTISCHE GRAMMATIKMODELLE Ernst Günter Schukt-Tlmzzini 06. Quelle: /home/schukt/ltex/folien/sprchmodelle-00/ssm-06.tex

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

-25/1- DIE RÖHRENDIODE

-25/1- DIE RÖHRENDIODE -25/1- DIE RÖHRENDIODE ufgben: Messverfhren: Vorkenntnisse: Lehrinhlt: Litertur: ufnhme der Kennlinie einer Röhrendiode und einiger rbeitskennlinien. Bestimmung des Exponenten der Schottky-Lngmuirschen

Mehr

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac F FORMELSAMMLUNG Bruchrechnung Erweitern = Kürzen c c Addition Nenner gleichnmig mchen! + c d = d d + c d = d+c d, speziell + c = +c ei gnzzhligem Nenner: Huptnenner (= kgv der Nenner), zb 4 6 + 3 4 =

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11 Reder für den Einstz in der Wiederholungsphse im Mthemtikunterricht der Jhrgngsstufe Anhng zur schriftlichen Husrbeit zur Zweiten Sttsprüfung für ds Lehrmt n öffentlichen Schulen von Andres Rschke Vorwort

Mehr

Mathematik für Wirtschaftsinformatiker

Mathematik für Wirtschaftsinformatiker Mathematik für Wirtschaftsinformatiker Alfred Müller, Martin Rathgeb Universität Siegen Wintersemester 2008/09 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Zahlbereiche.................................... 1 1.2

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Entwurf und Realisierung analoger und digitaler Filter

Entwurf und Realisierung analoger und digitaler Filter Signl- und Messwert- Verrbeitung Dr. K. Schefer Entwurf und Relisierung nloger und digitler Filter Im Rhmen dieses Versuchs wollen wir uns mit der Dimensionierung von nlogen und digitlen Filtern und mit

Mehr

Technische Mechanik I

Technische Mechanik I Repetitorium Technische Mechnik I Version 3., 9.. Dr.-Ing. L. Pnning Institut für Dynmik und Schwingungen ottfried Wilhelm Leibniz Universität Hnnover Dieses Repetitorium soll helfen, klssische ufgbentypen

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Formelsammlung Wirtschaftsmathematik

Formelsammlung Wirtschaftsmathematik Formelsammlung Wirtschaftsmathematik Strobel Stefan 29. Januar 2006 Inhaltsverzeichnis I. Mathematik 2 1. Umrechnung von Dezimalzahlen in Brüche 2 2. Differentiationsregeln 2 2.1. Summenregel..................................

Mehr

Bruchterme I. Definitionsmenge eines Bruchterms

Bruchterme I. Definitionsmenge eines Bruchterms Bruchterme I Definitionsmenge eines Bruchterms Alle zulässigen Einsetzungen in einen Bruchterm ilden die Definitionsmenge D. Einsetzungen, für die der Nenner Null wird, gehören nicht zur Definitionsmenge.

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr