9 Das Riemannsche Integral

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "9 Das Riemannsche Integral"

Transkript

1 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit <. Eine Teilmenge P := {x 0,... x n } von I mit heißt Prtition von I. Die Zhl = x 0 < x 1 <... < x n = (1) P := mx...n x k x k 1 heißt Feinheit oder Korn der Prtition P. Sei f : I C, P := {x 0,... x n } eine Prtition von I und sei ξ k [x k 1, x k ], k = 1,..., n, (2) eine Whl von Zwischenpunkten. Dnn wird R P (f) := f(ξ k )(x k x k 1 ) Riemnnsche Summe von f ezüglich P gennnt. Die Funktion f heißt (Riemnn-) integrierr uf I flls eine Zhl λ C existiert, so dss folgende Bedingung erfüllt ist: Für jedes ε > 0 git es ein δ > 0, so dss für jede Prtition P und jede Whl von Zwischenpunkten (siehe (1),(2)) gilt P < δ f(ξ k )(x k x k 1 ) λ < ε. Die Zhl λ heißt (Riemnnsches) Integrl von f üer [, ] und wird mit f(x)dx oder f(x)dx ezeichnet. Die oen eingeführte Konvergenz von Riemnnsummen wird symolisch durch f(x)dx = lim f(ξ k )(x k x k 1 ) p 0 usgedrückt. Bemerkungen. 1. Ist f : I C integrierr und (R Pn ) eine Folge von Riemnnsummen mit lim n Pn = 0, dnn konvergiert die Folge (R Pn ) gegen f(x) dx. Zum Beispiel gilt f(x) dx = lim f(x k )(x k x k 1 ) n [,]

2 2 woei x k := + k ( ), k = 0,..., n. n 2. Jede stetige Funktion f : [, ] C ist integrierr (Theorem 9.4.3). 3. Die Dirichletfunktion uf [0, 1] ist nicht integrierr (Aufgenltt 1) Definition. Ist f wenigstens im Punkt R definiert, dnn Ist f uf [, ] integrierr, dnn 9.2 Elementre Eigenschften f(x)dx := 0. f(x)dx := f(x)dx. Stz (Cuchy-Kriterium). Eine Funktion f : [, ] C ist genu dnn integrierr, wenn zu jedem ε > 0 ein δ > 0 existiert, so dss für lle Prtitionen P, P von [, ] und elieige Whlen von Zwischenpunkten P, P < δ R P (f) R P (f) < ε. (3) Beweis. Sei f integrierr und sei ε > 0. Dnn git es ein δ > 0, so dss P < δ R P (f) f(x)dx < ε/2 für jede Whl von Zwischenpunkten. Wenn P < δ und P < δ dnn folgt drus die Cuchyedingung (3) mit Hilfe der Dreiecksungleichung. Sei nun umgekehrt die Cuchy-Bedingung (3) erfüllt. Sei P n = {x (n) k }n k=0 die Folge von Prtitionen mit x (n) k = + k ( ) n und sei ξ (n) k = x (n) k. Dnn ist die zugehörige Folge R P n (f) von Riemnnsummen eine Cuchy-Folge in C. Also ist sie konvergent. Sei λ := lim n R Pn (f) und sei ε > 0. Die Gültigkeit der Cuchy-Bedingung grntiert die Existenz eines δ > 0 pssend zu ε/2, so dss für jede Prtition P mit P < δ R P (f) λ = lim n R P (f) R Pn (f) ε/2 < ε. Dmit ist die Integrierrkeit von f ewiesen.

3 3 Stz Sei R(, ) := {f : D C D [, ] und f ist integrierr uf [, ]}. () f, g R(, ) f + g R(, ) und (f(x) + g(x))dx = f(x)dx + () f R(, ), α C αf R(, ) und αf(x)dx = α f(x)dx. (c) f R(, ) f R(, ) und f(x)dx = f(x)dx. (d) Ist f R(, ) und f M, dnn gilt f(x)dx M( ). (e) Sind f, g R(, ) reellwertig und ist f g, dnn gilt f(x)dx g(x)dx. g(x)dx Korollr Eine Funktion f : [, ] C ist genu dnn integrierr wenn Re f und Im f integrierr sind und es gilt f(x)dx = Re f(x)dx + i Im f(x)dx. Stz (Mittelwertstz der Integrlrechnung). Sei f uf [, ] stetig und reellwertig. Dnn existiert ein ξ [, ], so dss Beweis. D f stetig ist gilt f(x)dx = f(ξ)( ). (4) f([, ]) = [m, M] (5) woei m := min x [,] f(x) und M := mx x [,] f(x). Weiter folgt us Stz (e), dss 1 m f(x)dx M. Also existiert nch (5) ein ξ [, ], so dss (4) gilt.

4 4 Stz Es seien < < c reelle Zhlen und es sei f R(, c). Dnn ist f R(, ) R(, c) und es gilt f(x)dx = f(x)dx + f(x)dx. Beweis. Sei f R(, c), ε > 0 und sei δ > 0 ds nch Stz zu f und ε estimmte δ. Zum Beweis dss f R(, ) genügt es nch Stz zu zeigen, dss für jedes Pr von Prtitionen P, P von [, ] gilt P, P < δ R P (f) R P (f) < ε. (6) Dzu wählen wir n N so dss (c )/n < δ und wir definieren zu gegeener Prtition Q von [, ] und Riemnnsumme R Q (f) Q := Q { x 0,..., x n } R Q(f) := R Q (f) + f( x k )( x k x k 1 ) woei x k := + (c )k/n. Wegen Q = mx{ Q, (c )/n} gilt dnn, nch Whl von δ und n für jedes Pr von Prtitionen P, P von [, ] und zugehörige Riemnnsummen R P (f), R P (f) P, P < δ P, P < δ R P (f) R P (f) < ε. Wegen R P (f) R P (f) = R P (f) R P (f) ist dmit (6) gezeigt, lso f R(, ). Anlog eweist mn f R(, c). Seien nun f R(, c) und seien (R Pn (f)), (R Qn (f)) Folgen von Riemnnsummen mit Prtitionen P n, Q n von [, ] und [, c], für welche lim n Pn = 0 = lim n Qn. Weiter sei T n := P n Q n und R Tn (f) := R Pn (f)+r Qn (f). Letzteres ist eine Riemnnsumme zur Prtition T n. Wegen Tn = mx{ Pn, Qn } folgt lim n Tn = 0, und somit f(x)dx = lim R Tn (f) = lim R Pn (f) + lim R Qn (f) n n n = f(x)dx + f(x)dx. Korollr Sind,, c R und ist f integrierr uf dem Intervll von min{,, c} is mx{,, c}. Dnn gilt f(x)dx = f(x)dx + f(x)dx.

5 5 9.3 Huptstz der Integrlrechnung Theorem (Teil 1 des Huptstzes). Sei f : [, ] C integrierr. Ist F eine differenzierre Funktion mit F = f, dnn gilt f(x)dx = F () F (). Beweis. Sei zuerst f reellwertig. Dnn ist uch F reellwertig und der Mittelwertstz der Differentilrechnung, Theorem 8.4.2, ist uf F nwendr. Zu jeder Prtition P = {x 0,..., x n } von [, ] git es lso Zwischenpunkte ξ k (x k 1, x k ) mit F (x k ) F (x k 1 ) = F (ξ k )(x k x k x ) = f(ξ k )(x k x k 1 ). Mit dieser Whl von Zwischenpunkten zu P gilt F () F () = = ( F (xk ) F (x k 1 ) ) f(ξ k )(x k x k 1 ) f(x)dx, ( P 0). Im Fll wo f und F komplexwertig sind folgt ds Theorem nun mit Hilfe von Korollr und Korollr Stmmfunktion. Eine uf einem Intervll I differenzierre Funktion F mit F = f heißt Stmmfunktion von f uf I. Mit F ist uch F + c für jedes c C eine Stmmfunktion von f. Wenn umgekehrt F 1 und F 2 zwei Stmmfunktionen von f uf dem Intervll I sind, dnn gilt F 1 F 2 = const (Korollr 8.4.5). Dher hängt F () F () in Theorem nicht von der Whl der Stmmfunktion. Korollr Ist F C 1 ([, ]) dnn gilt F (x) = F () + x F (t)dt, x [, ]. Beweis. Folgt us Theorem 9.3.1, d stetige Funktionen integrierr sind. Theorem (Teil 2 des Huptstzes). Sei f : [, ] C integrierr und sei F (x) := x f(t)dt, x [, ]. Ist f im Punkt x 0 [, ] stetig, dnn ist F in x 0 differenzierr und es gilt F (x 0 ) = f(x 0 ).

6 6 Beweis. Für jedes h R mit x 0 + h [, ] gilt nch Korollr F (x 0 + h) F (x 0 ) = = = x0 +h x0 +h x 0 x0 +h Es folgt F (x 0 + h) F (x 0 ) f(x 0 ) h = 1 h f(x)dx f(x)dx x0 f(x)dx x 0 ( f(x) f(x0 ) ) dx + hf(x 0 ). x0 +h x 0 ( f(x) f(x0 ) ) dx sup f(x) f(x 0 ) 0, (h 0), x x 0 h woei Stz (d) und die Stetigkeit von f in x 0 enutzt wurde. Korollr Sei I R ein elieiges Intervll. Dnn ht jede stetige Funktion f : I C eine Stmmfunktion uf I. Beweis. D stetige Funktionen integrierr sind (Theorem 9.4.3), folgt us Theorem 9.3.3, dss jede Funktion F (x) = mit I eine Stmmfunktion von f ist. x f(t)dt Die Existenz der Stmmfunktion grntiert nicht dss mn sie uch elementr erechnen knn. Z.B. ist f(x) = e x2 /2 stetig, lso integrierr, er ihre Stmmfunktion F (x) = x 0 e t2 /2 dt lässt sich nicht durch elementre Funktionen usdrücken. Mn findet die Werte der Gussschen Fehlerfunktion F/ 2π telliert in Sttistiküchern. Nottionen. Für F () F () schreit mn uch F, Dmit wird Theorem zu F (x) x= x=, oder [ F (x) ] x= x=. f(x)dx = F

7 7 woei F irgend eine Stmmfunktion von f ist. Die Äquivlenzklsse der Stmmfunktionen (ezüglich der Reltion F 1 F 2 F 1 F 2 = const) wird mit f(x)dx (7) ezeichnet und heißt unestimmtes Integrl von f. Oft wird uch ein Repräsentnt dieser Klsse mit f(x)dx ezeichnet. Theorem lutet somit f(x)dx = f(x)dx ws die Nottion (7) erklärt. Der Prozess der Berechnung des unestimmten Intergrls (7) heißt Integrtion von f. Die Berechnung des estimmten Integrls f(x)dx nennt mn mnchml Qudrtur. Integrtion ist die Inverse der Differentition in folgendem Sinn: Die Aildung d dx : C1 (I)/ C(I) ist ijektiv (surjektiv nch Theorem 9.3.3) und sie ht die Inverse f f(x)dx. Ds heißt d dx f(x)dx = f und d f(x)dx = [f] dx woei [f] := {f + c c C} die Äquivlenzklsse von f ezeichnet. 9.4 Integrierrkeitskriterien Stz Ist f integrierr, dnn ist f eschränkt. Lemm Sei f : [, ] C eschränkt und sei P = {x 0,..., x n } eine Prtition von [, ] mit sup f(x) f(y) < δ x,y I k für jedes Teilintervll I k := [x k 1, x k ]. Dnn gilt für jede feinere Prtition P P, dss R P (f) R P (f) < δ( ). Theorem Ist f : [, ] C stetig, dnn ist f Riemnn-integrierr.

8 8 Oer- und Untersummen. Sei f : [, ] R eschränkt und sei P = {x 0,..., x n } eine Prtition von [, ]. Wir definieren U P (f) := O P (f) := m k (x k x k 1 ) M k (x k x k 1 ), woei m k := inf x [xk 1,x k ] f(x) und M k := sup x [xk 1,x k ] f(x). Offensichtlich gilt dnn für jede Prtition P. U P (f) O P (f) Lemm Sei f : [, ] R eschränkt. Dnn gilt sup U P (f) inf O P (f). P P Theorem Sei f : [, ] R eschränkt. Dnn sind folgende Aussgen äquivlent. (i) f ist Riemnn-integrierr. (ii) Zu jedem ε > 0 git es eine Prtition P mit O P (f) U P (f) < ε. (Riemnnsches Integrierrkeitskriterium.) (iii) sup P U P (f) = inf P O P (f). Ist (i), (ii), oder (iii) erfüllt, dnn gilt f(x)dx = sup U P (f) = inf O P (f). P P Beweis: Siehe Heuser, Lehruch der Anlysis, Teil 1. Nullmengen. Eine Teilmenge M R heißt Nullmenge (oder Menge vom Mß 0), wenn zu jedem ε > 0 eine zählre Fmilie (I k ) von Intervllen I k R existiert, so dss M k I k und I k < ε. Hier ezeichnet I k die Länge des Intervlls I k. Bemerkungen. 1. Endliche und zählre Teilmengen von R sind Nullmengen. 2. Die Vereinigung von zählr vielen Nullmengen ist wieder eine Nullmenge. k

9 9 3. Jede Teilmenge einer Nullmenge ist eine Nullmenge. Sei D R und f : D C. Mn sgt f sei fst üerll stetig, wenn die Punkte x D wo f unstetig ist eine Nullmenge ilden. Theorem (Leesguesches Integrierrkeitskriterium). Eine Funktion f : [, ] C ist genu dnn Riemnn-integrierr, wenn sie eschänkt und fst üerll stetig ist. Beweis: Siehe Heuser, Lehruch der Anlysis, Teil 1. Korollr () Ist f integrierr uf [, ] und uf [, c] dnn ist f uch integrierr uf [, c]. () Ist f : [, ] C integrierr, so ist uch f integrierr und es gilt fdx f dx. () Sind f, g : [, ] C integrierr, so ist uch fg integrierr. 9.5 Uneigentliche Integrle und Reihen Sei < und sei f : [, ) C uf jedem Intervll [, x], x <, integrierr. Dnn heißt x lim f(t) dt (8) x uneigentliches Integrl der Funktion f von is, und wird mit f(t)dt (9) ezeichnet. Ds uneigentliche Integrl (9) heißt konvergent, wenn der Grenzwert (8) in C existiert. Bezüglich der unteren Grenze uneigentliche Integrle werden nlog definiert. Ein eidseitig uneigentliches Integrl f(t)dt konvergiert per Definition genu dnn wenn es ein c (, ) git, so dss eide uneigentlichen Integrle konvergent sind. Dnn setzt mn f(t)dt und c f(t)dt f(t)dt := f(t)dt + c f(t)dt.

10 10 Beispiel. Ds uneigentliche Integrl 1 1 x α dx ist für α > 1 konvergent und für α 1 divergent. Ds uneigentliche Integrl x β dx ist für β < 1 konvergent und für β 1 divergent. Stz Sei < und seien f, g integrierr uf [, c] für lle c <. () Ist f(x) g(x) für lle x [, ) und ist ds uneigentlich Integrl g dx konvergent, so ist uch f dx konvergent. () Ist f g 0 uf [, ) und ist uneigentliche Integrl g dx divergent, so ist uch f dx divergent. Bemerkung. Nch diesem Stz impliziert Konvergenz von f dx die Konvergenz von f dx. Die Umkehrung dvon gilt nicht! Zum Beispiel ist ds uneigentliche Integrl 0 sin x x dx konvergent, während 0 sin x /x dx divergent ist. Stz Ist f : [0, ) R positiv und monoton fllend, dnn konvergiert die Reihe k 0 f(k) genu dnn, wenn ds uneigentliche Integrl 0 f dx konvergiert. Bemerkung. Ein nloger Stz gilt für Funktionen f : [n, ) R (n Z) die positiv und monoton fllend sind. Beispiel. Die Reihe n=1 1 n α ist für α > 1 konvergent und für α 1 divergent.

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mthemtik 1 für Ingenieure (Sommersemester 2016) Kpitel 10: Integrlrechnung einer Veränderlichen Prof. Miles Simon Nch Folienvorlge von Prof. Dr. Volker Kibel Otto-von-Guericke Universität Mgdeburg.

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

VI. Das Riemann-Stieltjes Integral.

VI. Das Riemann-Stieltjes Integral. VI. Ds Riemnn-Stieltjes Integrl. Es stellt sich herus, dss der hier entwickelte Integrlbegriff strk von der Ordnungsstruktur von R bhängt. Definition. Sei [, b] ein Intervll in R. Unter einer Prtition

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mthemtik für Wirtschftsinformtik Wintersemester 202/3 Stefn Etschberger Hochschule Augsburg Existenz von bestimmten Integrlen Mthemtik 2 Stefn Etschberger Gegeben: Reelle Funktion f : [, b] R. Dnn gilt:

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Analysis II. Universität Stuttgart, SS 06 M. Griesemer

Analysis II. Universität Stuttgart, SS 06 M. Griesemer Anlysis II Universität Stuttgrt, SS 06 M. Griesemer Inhltsverzeichnis 9 Ds Riemnnsche Integrl 3 9.1 Definition und Beispiele........................... 3 9.2 Elementre Eigenschften..........................

Mehr

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b].

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b]. Krlsruhe Institute of Technology 3 Integrtion (3.1) ) Z = {x,...,x n } mit = x < x 1 < < x n = b heißt eine Zerlegung von [,b] in endlich viele Teilintervlle. Z (oder Z [, b]) sei die Menge ller Zerlegungen

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Anlysis Vorlesungssript Enno Lenzmnn, Universität Bsel 7. November 213 5 Konvergenz- und Approximtionssätze 5.1 Monotone und Dominierte Konvergenz Wir strten mit einem grundlegenden Stz der Integrtionstheorie,

Mehr

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG

Prof. Dr. Siegfried Echterhoff.. 1 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Vorlesung SS 29 Anlysis 2 HAUPTSATZ DER INTEGRAL UND DIFFERENTIALRECHNUNG Teil : Fortsetzung des Studiums von Funktionen in einer reellen Vriblen (Integrtion und Tylorreihen). Huptstz der Integrl und Differentilrechnung

Mehr

6.4 Uneigentliche Integrale

6.4 Uneigentliche Integrale 6.4 Uneigentliche Integrle 3 Beispiele : d + + d ( + ) t + d t t d t ( t + t + t ) + t + t t ln ( + t) + c + ln ( + + ) + c + t rctn + c 6.4 Uneigentliche Integrle bisher : beschränkte Funktionen uf endlichen

Mehr

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen Vorlesung 16 Infinitesimlrechnung, Mengenlehre und logische Verknüpfungen 16.1 Huptstz der Differentil- und Integrlrechnung Wir verknüpfen nun Differentil- mit Integrlrechnung. Definition 16.1.1. Eine

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

6.1 Zerlegungen Ober- und Unterintegrale Existenz des Integrals

6.1 Zerlegungen Ober- und Unterintegrale Existenz des Integrals Kpitel 6 Ds Riemnn-Integrl In diesem Abschnitt wollen wir einen Integrlbegriff einführen. Dieser Integrlbegriff geht uf Riemnn 1 zurück und beruht uf einer nheliegenden Anschuung. Es wird sich zeigen,

Mehr

Riemann-integrierbare Funktionen

Riemann-integrierbare Funktionen Kpitel VI Riemnn-integrierbre Funktionen 26 Ds Riemnn-Integrl ls Grenzwert von Zwischensummen 27 Der Huptstz der Differentil- und Integrlrechnung nebst Folgerungen 28 Äquivlente Definitionen des Riemnn-

Mehr

Serie 13 Lösungsvorschläge

Serie 13 Lösungsvorschläge D-Mth Mss und Integrl FS 204 Prof. Dr. D. A. Slmon Serie 3 Lösungsvorschläge. Sei I := [, b] R ein kompktes Intervll und sei B 2 I die Borel-σ-Algebr. Def. Eine Funktion f : I R heisst von beschränkter

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

21. Das bestimmte Integral

21. Das bestimmte Integral 1. Ds bestimmte Integrl Wir betrchten eine Kurve y = f(x) mit f(x) 0 uf dem Intervll [, b]. Obwohl der Flächeninhlt eines Rechteces (und in weiterer Folge eines Dreieces und nderer elementrer geometrischer

Mehr

f(ξ k )(x k x k 1 ) k=1

f(ξ k )(x k x k 1 ) k=1 Integrlrechnung Definition des bestimmten Integrls Die Integrtion ist die Umkehropertion zur Differentition. Grundufgbe der Integrlrechnung ist die Bestimmung von Flächen. Will mn beispielsweise den Inhlt

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei 8. Integrierbre Funktionen Definition 3.3 (Treppenfunktionen). Eine Funktion t : [,b] R heißt Treppenfunktion, flls es endlih viele Punkte x < x 1 < < x n mit x = und x n = b gibt, so dss f uf jedem der

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

2.6 Unendliche Reihen

2.6 Unendliche Reihen 2.6 Unendliche Reihen In normierten Räumen steht ds wichtige Werkzeug der Bildung von unendlichen Reihen zur Verfügung. Mn denke in diesem Zusmmenhng drn, dss mn in der Anlysis Potenz- und Fourierreihen

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

Musterlösung zu Blatt 9, Aufgabe 2

Musterlösung zu Blatt 9, Aufgabe 2 Musterlösung zu Bltt 9, Aufgbe Anlysis II MIIA SoSe 7 Mrtin Schottenloher Musterlösung zu Bltt 9, Aufgbe I Aufgbenstellung Es sei J [, ] und f : J R deniert durch fx x 3. Finden Sie eine Folge f n n N

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Übungsaufgaben. Achtung(!):

Übungsaufgaben. Achtung(!): Übungsufgben 8. Übung: Woche vom 5.12.-9.12.16 (Int.-R. I): Heft Ü1: 11.1 (,b,g,j); 11.2 (e,g,l,m,p); 11.3 (,c-e,q,r) Achtung(!): 2. Test (relle Fkt., Diff.-rechng.) wird m 2.12. freigeschlten (Duer: bis

Mehr

9.3 Der Hauptsatz und Anwendungen

9.3 Der Hauptsatz und Anwendungen 9.3 Der Huptstz und Anwendungen Definition: Seien Funktionen F, f : [, b] R Funktionen mit F (x) = f(x), x b. Dnn heißt F(x) Stmmfunktion von f(x). Bemerkung: Ist F(x) eine Stmmfunktion von f(x), so sind

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

29 Uneigentliche Riemann-Integrale

29 Uneigentliche Riemann-Integrale 29 Uneigentlihe Riemnn-Integrle 29.2 Uneigentlihe Riemnn-Integrle bei einer kritishen Integrtionsgrenze 29.3 Zusmmenhng des uneigentlihen mit dem eigentlihen Riemnn-Integrl 29.5 Cuhy-Kriterium für uneigentlihe

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

Hilfsblätter Folgen und Reihen

Hilfsblätter Folgen und Reihen Hilfsblätter Folgen und Reihen Sebstin Suchnek unter Mithilfe von Klus Flittner Steffen Hofmnn Mtthis Stb c 2002 by Sebstin Suchnek Printed with L A TEX Inhltsverzeichnis 1 Folgen 1 1.1 Definition.........................................

Mehr

Lösungsvorschläge zum 9. Übungsblatt.

Lösungsvorschläge zum 9. Übungsblatt. Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x

Mehr

Analysis I. Vorlesung 24. Der Mittelwertsatz der Integralrechnung. b a

Analysis I. Vorlesung 24. Der Mittelwertsatz der Integralrechnung. b a Prof. Dr. H. Brenner Osnbrück WS 203/204 Anlysis I Vorlesung 24 Der Mittelwertstz der Integrlrechnung Zu einer Riemnn-integrierbren Funktion f: [, b] R knn mn f(t)dt b ls die Durchschnittshöhe der Funktion

Mehr

Integration. Kapitel 8: Integration Informationen zur Vorlesung: wengenroth/ J. Wengenroth () 17.

Integration. Kapitel 8: Integration Informationen zur Vorlesung:  wengenroth/ J. Wengenroth () 17. Integrtion Kpitel 8: Integrtion Informtionen zur Vorlesung: http://www.mthemtik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juli 2009 1 / 22 8.1 Motivtion Kpitel 8: Integrtion 8.1 Motivtion Ist die

Mehr

5 Das Riemannsche Integral 1

5 Das Riemannsche Integral 1 5 Ds Riemnnsche Integrl 5. Drbouxsche Summen Sei I [, b] mit < b und f : [, b] IR sei beschränkt (d. h. f(i) ist beschränkt). Z {x, x,..., x n } mit x < x < x 2 < < x n b heißt Zerlegung von [, b]. I k

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnbrück WS 20/202 Mthemtik für Anwender I Vorlesung 24 Der Mittelwertstz der Integrlrechnung Zu einer Riemnn-integrierbren Funktion f :[,b] R knn mn f(t)dt b ls die Durchschnittshöhe

Mehr

Unter einer Partition oder Zerlegung eines Intervalls [a, b] verstehen wir eine endliche Menge P = {x 0, x 1,..., x n } mit der Eigenschaft ...

Unter einer Partition oder Zerlegung eines Intervalls [a, b] verstehen wir eine endliche Menge P = {x 0, x 1,..., x n } mit der Eigenschaft ... Kpitel 7 Ds Riemnn Integrl 7.1 Unter und Obersummen 7.2 Riemnn Integrl 7.3 Riemnnsche Summen 7.4 Rechenregeln 7.5 Differentition und Integrtion 7.6 Die L p Normen 7.1 Unter und Obersummen Unter einer Prtition

Mehr

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung . INTEGRALRECHNUNG 69 Aufgbe 9.3 Bestimme lle Extrem der Funktion f : [,] R, x ( x) +9x. Aufgbe 9.3 Bestimme die Extrem der Funktion f : R\{} R : x x4 5x 4 (x ) 3. Untersuche die Funktion hinsichtlich

Mehr

Der Hauptsatz der Differential und Integralrechnung

Der Hauptsatz der Differential und Integralrechnung Kpitel 4 Der Huptstz der Differentil und Integrlrechnung Bemerkung 4. Motivtion. Die Integrtionstheorie wurde im letzten Kpitel recht weit entwickelt. Nun wird ein Werkzeug bereitgestellt, mit welchem

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

9.4 Integration rationaler Funktionen

9.4 Integration rationaler Funktionen 9.4 Integrtion rtionler Funktionen Ziel: Integrtion rtionler Funktionen R(x) = p(x) q(x) wobei p(x) = n k x k, q(x) = k=0 m b k x k. k=0 Methode: Prtilbruch-Zerlegung von rtionler Funktion R(x). Anstz:

Mehr

6.6 Integrationsregeln

6.6 Integrationsregeln 50 KAPITEL 6. DAS RIEMANN-INTEGRAL Beispiel 6.5.4 (Differenzierbreit und gleichmäßige Konvergenz) Die Funtionenfolge {f n (x)} n N definiert durch f n (x) = n sin(nx) onvergiert uf jedem Intervll gleichmäßig

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Integralrechnung. 1. Stammfunktionen

Integralrechnung. 1. Stammfunktionen Integrlrechnung. Stmmfunktionen In der Differentilrechnung hen wir gelernt, durch Aleiten einer Funktion f eine neue Funktion f zu finden, die uns hilft, Eigenschften von f zu estimmen (z.b. Hoch- oder

Mehr

Zusammenfassung Analysis für Informatik

Zusammenfassung Analysis für Informatik Zusmmenfssung Anlysis für Informtik Stefn Hider e25543@student.tuwien.c.t Sommersemester 202 Prüfungsstoff 4. - 6.3, 7.5, 7.6 und 9. Inhltsverzeichnis Folgen reeller Zhlen 3. Beispiele für Folgen......................................

Mehr

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s

Die Geschwindigkeit v ist die lokale Änderungsrate des Ortes x d.h. v = lim. Zeit 3s 7s Entfernung vom Bezugspunkt. 3s 2 m = 6 m 6 m + 1 Bezugspunkt s 6 Integrlrechnung ================================================================== 6.1 Lokle Änderungsrte und Gesmtänderung ------------------------------------------------------------------------------------------------------------------

Mehr

Analysis I (HS 2016): DAS RIEMANNSCHE INTEGRAL

Analysis I (HS 2016): DAS RIEMANNSCHE INTEGRAL Anlysis I (HS 216): DAS RIEMANNSCHE INTEGRAL Dietmr A. Slmon ETH-Zürich 12. Dezember 216 Zusmmenfssung Dieses Mnuskript dient der Einführung in ds Riemnnsche Integrl für Funktionen einer reellen Vriblen.

Mehr

Analysis I. Partielle Integration. f (t)g(t)dt =

Analysis I. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück WS 3/4 Anlysis I Vorlesung 5 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0

Antworten auf Anfragen von Kursteilnehmern. Zu folgender Aussage aus den Multiple-Choice-Aufgaben: f (n) (a) (x a) n n! n=0 Ferienkurs Anlysis 1 WS 11/12 Florin Drechsler Antworten uf Anfrgen von Kursteilnehmern Zu Tylorreihen Zu folgender Aussge us den Multiple-Choice-Aufgben: Es gibt Funktionen f C (R) mit konvergenter Tylorreihe

Mehr

Parameterabhängige uneigentliche Integrale.

Parameterabhängige uneigentliche Integrale. Kpitel 9: Integrtion Prmeterbhängige uneigentliche Integrle. F(x) := Beispiel: Die Gmm-Funktion: Γ(x) := Definition: Ds uneigentliche Integrl für x I. e t t x 1 dt. für x I heißt gleichmäßig konvergent,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Simulation von Störungen mit zeitlichen Schranken

Simulation von Störungen mit zeitlichen Schranken Simultion von Störungen mit zeitlichen Schrnken Die geräuchlichen sttistischen Verteilungen können elieig große Werte hervorringen, ws ei der Simultion von Störungen oft nicht erwünscht ist. Verwendet

Mehr

9.5. Uneigentliche Integrale

9.5. Uneigentliche Integrale 9.5. Uneigentliche Integrle Bestimmte und unestimmte Integrle hängen zwr eng zusmmen, er die Existenz des einen grntiert nicht immer die des nderen: Eine integrierre Funktion muß keine Stmmfunktion esitzen,

Mehr

6. Grundbegriffe der Analysis (II)

6. Grundbegriffe der Analysis (II) 7 Mthemtik für Biologen, Biotechnologen und Biochemiker 6 Grundegriffe der Anlsis (II) 6 Integrle: Flächeninhlte Seien < reelle Zhlen, sei I = [, ] = { R } ds Intervll der Zhlen zwischen und Wir etrchten

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Doppel- und Dreifachintegrale

Doppel- und Dreifachintegrale KAPITEL 6 Doppel- und Dreifchintegrle 6. Doppelintegrle................................... 74 6.. Flächeninhlt ebener ereiche.......................... 74 6..2 Definition und Eigenschften des Doppelintegrls..............

Mehr

Analysis I, WS 04/05 Verzeichnis der wichtigsten Definitionen und Sätze

Analysis I, WS 04/05 Verzeichnis der wichtigsten Definitionen und Sätze Anlysis I, WS 04/05 Verzeichnis der wichtigsten Definitionen und Sätze Lorenz Schwchhöfer 8. Februr 2005 Inhltsverzeichnis 1 Mthemtische Grundlgen 1 2 Folgen und Reihen 6 3 Stetigkeit 12 4 Differenzierbrkeit

Mehr

Mitschrift zur Analysis II Vorlesung von Prof. Dr. Wittbold im SS 08. Thomas El Khatib 2. August 2008

Mitschrift zur Analysis II Vorlesung von Prof. Dr. Wittbold im SS 08. Thomas El Khatib 2. August 2008 Mitschrift zur Anlysis II Vorlesung von Prof. Dr. Wittbold im SS 08 Thoms El Khtib 2. August 2008 Inhltsverzeichnis 5 Integrtion 6 5. Ds bestimmte Riemnn-Integrl.................. 6 5.. Motivtion..........................

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2)

Beispiele: cos(x) dx = sin(x) + c (1) e t dt = e t + c (2) . Stmmfunktion Definition Stmmfunktion: Gegeen sei eine Funktion f(). Gesucht ist eine Funktion F (), so dss d = f(). Die Funktion F() heisst Stmmfunktion. Schreiweise: F () = f()d. Mn spricht uch vom

Mehr

Mathematik II. Vorlesung 31

Mathematik II. Vorlesung 31 Prof. Dr. H. Brenner Osnbrück SS 2010 Mthemtik II Vorlesung 31 In den folgenden Vorlesungen beschäftigen wir uns mit der Integrtionstheorie, d.h. wir wollen den Flächeninhlt derjenigen Fläche, die durch

Mehr

c a+ bzw. f(x) dx. c a bzw. 1 =

c a+ bzw. f(x) dx. c a bzw. 1 = 3. Uneigentliche Integrle Die Funktion f sei uf dem rechts oenen Intervll x < b erklrt und uf jedem bgeschlossenen Teilintervll [, c], c < b, stuckweise stetig, b R { }. Dnn der Integrlbegri erweitert

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 015/16 Bltt 4 09.11.015 Übungen zur Vorlesung Differentil und Integrlrechnung I Lösungsvorschlg 13. Zu betrchten ist die durch 0 = 1 und

Mehr

Mathematik II. Partielle Integration. f (t)g(t)dt =

Mathematik II. Partielle Integration. f (t)g(t)dt = Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 33 Wir besprechen nun die wesentlichen Rechenregeln, mit denen mn Stmmfunktionen finden bzw. bestimmte Integrle berechnen knn. Sie beruhen uf Ableitungsregeln.

Mehr

J.M. Sullivan, TU Berlin A: Integration Analysis II, WS 2008/09

J.M. Sullivan, TU Berlin A: Integration Analysis II, WS 2008/09 J.M. Sullivn, TU Berlin A: Integrtion Anlysis II, WS 8/9 A. INTEGRATION A1. Einleitung In diesem Semester fngen wir mit Integrtion n. Es gibt viele Möglichkeiten, ds Integrl einer Funktion genu zu definieren;

Mehr

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014 Institut für Mthemtik Freie Universität Berlin C. Hrtmnn, A. Ppke Wer spricht von Siegen, Überleben ist lles. Riner Mri Rilke Lösung zu Klusurvorbereitungsusfgben für die Feiertge Anlysis II im WS 23/24

Mehr

Uneigentliche Integrale & mehrdim. Differenzialrechnung

Uneigentliche Integrale & mehrdim. Differenzialrechnung Mthemtik I für Biologen, Geowissenschftler und Geoökologen Uneigentliche Integrle & mehrdimensionle Differenzilrechnung 25. Jnur 2010 Uneigentliche Integrle Unendlich Integrnd divergiert Grenze Prtielle

Mehr

1 Folgen und Reihen. Schreibweise: (a n ) n N.

1 Folgen und Reihen. Schreibweise: (a n ) n N. Krlsruhe Institute of Technology 1 Folgen und Reihen (1.1) Eine Folge reeller Zhlen ist eine Abbildung N R. Schreibweise: ( n ) n N. (1.2) Sei ( n ) n N eine Folge. ) Für n j N mit 1 n 1 < n 2

Mehr

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL

12. STAMMFUNKTIONEN UND DAS UNBESTIMMTE INTEGRAL 98 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel III: Funktionen einer Veränderlichen

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel III: Funktionen einer Veränderlichen Friedrich-Schiller-Universität Jen Institut für Physiklische Chemie BC 1.2 Mthemtik PD Dr. Thoms Bocklitz BC 1.2 Mthemtik Zusmmenfssung Kpitel III: Funktionen einer Veränderlichen 1 Konzept Funktionen

Mehr

9 Riemann-Integral für Funktionen einer Variablen

9 Riemann-Integral für Funktionen einer Variablen 9 Riemnn-Integrl für Funktionen einer Vriblen Integrl = (orientierte) Fläche zwischen Funktion f : r, bs Ñ R und der x-achse «ř n px n x n 1 qf pξ n q mit Zwischenpunkten ξ n P rx n 1, x n s x n 1 x n

Mehr

1. Die reellen Zahlen

1. Die reellen Zahlen . Die reellen Zhlen Die reellen Zhlen sind eine Menge R zusmmen mit zwei Rechenvorschriften, die je zwei Elementen x, y R ein Element x + y R und ein Element x y R zuordnen, wobei ferner eine Teilmenge

Mehr

Analysis I. TU Dortmund, Wintersemester 2013/14. Ben Schweizer

Analysis I. TU Dortmund, Wintersemester 2013/14. Ben Schweizer Anlysis I TU Dortmund, Wintersemester 2013/14 Ben Schweizer Inhltsverzeichnis 1 Reelle Zhlen 1.1 Logische Grundlgen: Aussgen, Beweise, Mengen........ 3 1.2 Die Zhlenbereiche N, Z und Q..................

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

Funktionenfolgen. Kapitel 6

Funktionenfolgen. Kapitel 6 Kpitel 6 Funktionenfolgen Bemerkung 6.1 Motivtion. Dieser Abschnitt betrchtet die Konvergenz von Folgen von uf einem gemeinsmen Intervll definierten Funktionen. Dies ist eine wichtige Grundlge, um eine

Mehr

4.5 Integralrechnung II. Inhaltsverzeichnis

4.5 Integralrechnung II. Inhaltsverzeichnis 4.5 Integrlrechnung II Inhltsverzeichnis 1 Integrlrechnung 22.02.2010 Theorie und Übungen 2 Wir hben im ersten Skript beobchtet, dss ein Zusmmenhng besteht zwischen der Formel für die Fläche A 0b und der

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Wir wollen den Inhalt A der Fläche bestimmen, den der Graph von f mit der x-achse und den zu a und b gehörendenden Ordinaten einschließt.

Wir wollen den Inhalt A der Fläche bestimmen, den der Graph von f mit der x-achse und den zu a und b gehörendenden Ordinaten einschließt. I. Integrlrechnung 1 ================================================================= 1.1 Oer- und Untersumme -------------------------------------------------------------------------------------------------------------

Mehr

13.1 Definition: Es sei I = [a, b] abgeschlossenes Intervall. Die Menge

13.1 Definition: Es sei I = [a, b] abgeschlossenes Intervall. Die Menge V. Integrlrechnung 13. Ds Riemnn-Integrl 13.1 Definition: Es sei I = [, b] bgeschlossenes Intervll. Die Menge B([, b]) := {f f : [, b] R, f beschränkt} heißt Menge der beschränkten Funktionen (uf dem Intervll

Mehr