Serie 13 Lösungsvorschläge

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Serie 13 Lösungsvorschläge"

Transkript

1 D-Mth Mss und Integrl FS 204 Prof. Dr. D. A. Slmon Serie 3 Lösungsvorschläge. Sei I := [, b] R ein kompktes Intervll und sei B 2 I die Borel-σ-Algebr. Def. Eine Funktion f : I R heisst von beschränkter Vrition : V (f) := sup =t 0 <...<t l =b f(t i ) f(t i ) <. Wir bezeichnen die Menge ller Funktionen f : I R von beschränkter Vrition mit BV(I). Diese Menge ist ein reeller Vektorrum. Funktionen f BV(I) hben höchstens bzählbr viele Unstetigkeitsstellen und der linke wie uch der rechte Grenzwert existiert überll. Zeigen Sie: ) Jede monotone Funktion f : I R ist von beschränkter Vrition. b) Sei f BV(I) linksseitig-stetig. Dnn gibt es monotone linksseitig-stetige Funktionen f ± : I R so dss f = f + f. Hinweis: Definieren Sie F (x) := sup =t 0 <...<t l =x f(t i ) f(t i ), x b. Zeigen Sie, dss F linksseitig-stetig ist und dss die Funktionen F ± f monoton sind. c) Sei f : I R linksseitig-stetig. Dnn: f BV(I) signiertes Borelmss λ: B R so dss f(y) f(x) = λ([x, y)), x < y b. Hinweis: Betrchten Sie für f BV (I) und h C(I) Λ(h) := b h df Bitte wenden!

2 := sup =t 0 <...<t l =b ( ) inf h (f(t i ) f(t i )). [t i,t i ] Dieses Integrl wird Riemnn-Stieltjes-Integrl gennnt. Zeigen Sie, dss Λ: C(I) R ein positives lineres Funktionl ist. Benutzen Sie den Rieszschen Drstellungsstz um ds Borelmss λ: B [0, ) mit Λ(h) = h dλ, h C(I) zu finden. Benutzen Sie, dss f linksseitig-stetig ist I um zu zeigen, dss λ die Gleichung in der Behuptung erfüllt. d) Ist f BV(I) linksseitig-stetig und λ wie in c), dnn gilt V (f) = λ (I). e) Jede bsolut stetige Funktion f : I R ist von beschränkter Vrition. Lösungsvorschlg: ) Wir nehmen n, f sei monoton steigend (der ndere Fll ist nlog). Für jede Prtition {x 0, x,..., x n }, n N, von I gilt ufgrund der Monotonie f(x n ) f(x n ), lso n f(x n ) f(x n ) = n (f(x n ) f(x n )) = f(b) f(). (Die nderen Summnden heben sich uf). Dmit erhlten wir unmittelbr ufgrund der Definition V (f) := lso ist f von beschränkter Vrition. sup f(b) f() = f(b) f() <, =x 0 <...<x n=b b) F ist linksseitig stetig. Dies sieht mn z.b. so: Die Vrition von f uf [, x] ist eine monoton wchsende Funktion von x. Dher existiert der linksseitige Grenzwert von F n der Stelle x. Nennen wir diesen Grenzwert y. Dnn gilt y F (x). Wir müssen zeigen, dss y = F (x) ist. Dzu verwenden wir die Gleichung y = sup V (f [,ξ] ) = sup ξ<x =t ) <t < <t l <x f(t i ) f(t i ). (vgl. mit dem Riemnn-Integrl im Skript PREPRINTS/n-int.pdf) Siehe nächstes Bltt!

3 (mit strikter Ungleichung t l < x). Nun sei ε > 0. Wähle δ > 0 so dss f(x) f(t) < ε für x δ < t < x. Wähle = t 0 < t < < t l = x, so dss f(t i ) f(t i ) > F (x) ε. Wir können obda nnehmen, dss t l > x δ ist. (Die Summe knn sich durch Hinzunhme einer weiteren Stelle nur vergrössern.) Dnn ist der letzte Summnd kleiner ls ε und dher l y f(t i ) f(t i ) > F (x) 2ε. D ε beliebig gewählt wr, gilt y F (x) und dher y = F (x). Dmit ist F und uch F ± f linksseitig stetig. Weiter ist F ± f monoton (und zwr monoton wchsend), denn es gilt x < y b: F (y) f(y) f(x) + f(t i ) f(t i ) lso d.h., F (y) f(y) f(x) + F (x) F (y) f(y) f(x) + F (x) F (y) f(x) f(y) + F (x) und dmit Sei jetzt F (y) f(y) F (x) f(x) F (y) + f(y) F (x) + f(x) f + := (F + f) 2 f := (F f). 2 Dnn sind uch f + und f monoton, linksseitig stetig und es gilt f = f + f. Bitte wenden!

4 c) Sei f BV (I). Wie im Skript zum Riemnnschen Integrl (http://www. mth.ethz.ch/~slmon/preprints/n-int.pdf) diskutiert (die Argumente für ds Riemnn-Stieltjes Integrl sind Wort für Wort nlog), ist Λ ein positives lineres Funktionl. Sei nun λ = 3.5(ii) µ ds ufgrund des Rieszschen Drstellungsstzes eindeutige reguläre Borelmss (siehe uch Thm. 3.6, Corollry 3.7). Sei nun x < y b und n N h n : [, b] R t h n (t) :=, t (x, y ] [x, y) n n(t y + ), t (y, y) [x, y) n n 0, sonst Dnn ist n N und x < y b die Funktion f n linksseitig stetig und es gilt h n χ [x,y) <, lim h n = χ [x,y). Also hben wir λ([x, y)) = dλ [x,y) = I = I = lim χ [x,y) dλ lim h n dλ I h n dλ, Lebesgue DCT, ist Dominnte = lim h n dλ + lim h n dλ [x,y n ] (y n }{{,y) } =0 = lim Λ(h n ) = f(y) f(x), Def. Λ für hn C(I) womit die Gleichung in der Behuptung gezeigt ist. Siehe nächstes Bltt!

5 d) : Wir hben: V (f) = sup =t 0 <...<t l =b c) V (f) = sup =t 0 <...<t l =b V (f) sup =t 0 <...<t l =b : Umgekehrt: f(t i ) f(t i ) < λ([t i, t i )) < λ ([t i, t i )) V (f) λ ([, b)) λ ([, b]) =: λ (I). λ (I) := sup{λ(e) λ(f ) E, F A, E F =, E F = A} = sup Also insgesmt V (f) = λ (I). e) Wir bezeichnen llgemein mit V b (f) die Totlvrition V b (f) := V (f) := sup =t 0 <...<t l =b f(t i ) f(t i ) von f uf einem Intervll I {[, b], (, b], [, b), (, b)}. Sei f bsolut stetig uf [, b] und δ > 0 s.d. (t i t i ) δ. Dnn ist V t i t i (f), lso =t 0 <...<t l =b V b (f) l <. 2. Sei 0 < ε <. Zeigen Sie: 2 Borelmenge E R, so dss ε < m(e I) m(i) < ε, Intervll I R. Bitte wenden!

6 Hinweis: Zeigen Sie dies durch Widerspruch. Nehmen Sie lso n, dss es eine solche Menge gibt. Betrchten Sie die Funktion f := χ E (x r,x+r), r > 0. Überlegen Sie sich welches die Lebesguepunkte von f sind, und leiten Sie drus den Widerspruch b. Lösungsvorschlg: Sei 0 < ε <. Wir zeigen durch Widerspruch, dss es keine Borelmenge E R 2 gibt, so dss: ε < m(e I) m(i) < ε, Intervlle I R. Angenommen es gibt eine solche Menge. Betrchte die Funktion f := χ E (x r,x+r), r > 0. Es gilt R f dm = m(e (x r, x + r)) < Voruss. 2r( ε) < d.h., f L (m). Mit Theorem 6.4 gilt: Fst lle x R sind Lebesgue-Punkte, d.h., für fst lle x R gilt: ( ) lim f f(x) dm = 0. r 0 m(b r (x)) B r(x) D wir im R sind, hben wir lso B r (x) = (x r, x + r) und m(b r (x)) = 2r. Aufgrund von Lebesgue = Riemnn bedeutet ( ) lim r 0 2r x+r x r f(y) f(x) dy = 0. Sei nun x E beliebig. Dnn ist χ E (x r,x+r) (x) = 0, d.h., lim r 2r x+r x r (f(y) f(x)) dy Siehe nächstes Bltt!

7 Aus der Bedingung ε < m(e I) m(i) = lim r 2r = lim r 2r x+r x r x+r x r (χ E (x r,x+r) (y) (χ E (x r,x+r) (x)) dy }{{} =0 (χ E (x r,x+r) (y) = lim m(e (x r, x + r)) r 2r > Voruss. lim r = ε > 0. 2r 2r ε < ε, Intervlle I R. für lle I R folgt usserdem, dss m(e c ) > 0 sein muss. (Denn wir können I so wählen, dss E I = E ist. Dnn ist m(e c ) = (R) m(e) > 0.) Ds gewählte x }{{} = ist lso nicht Element einer m-nullmenge. Dmit hben wir gezeigt, dss ( ) nicht für fst lle x R erfüllt ist, Widerspruch! 3. Zeigen Sie ds folgende Theorem. Sei f : [, b] R eine überll differenzierbre Funktion und sei f L (I). Dnn ist f bsolut stetig. Hinweis: Sei ε > 0. Aufgrund des Stzes von Vitli-Crthéodory wissen wir, dss es eine unterhlbstetige Funktion g : [, b] R gibt, mit g > f, b b g(t) dt < f (t) dt + ε. Definieren Sie F η : [, b] R x F η (x) := x g(t) dt f(x) f() + η(x ), η > 0. Bitte wenden!

8 Betrchten Sie einen Punkt x < b und finden Sie eine Zhl δ x > 0, so dss Folgern Sie: g(t) > f (x), f(t) f(x) t x < f (x) + η, x < t < x + δ x. F η (t) > F η (x), x < t < x + δ x. D F η () = 0, wissen wir, dss es ein mximles Element x [, b] gibt, so dss F η (x) = 0. Flls x < b hben wir F η (t) > 0, < t b. In jedem Fll gilt F η (b) 0 und wir hben f(b) f() b g(t) dt+η(b ) < b f (t) dt+ε+η(b ), ε > 0, η > 0, lso b f(b) f() f (t) dt. Mit demselben Argument für f nstelle von f können Sie dnn zeigen, dss f(b) f() = f (t) dt. b Nun können Sie folgern, dss x f(x) f() = f (t) dt, x [, b]. Lösungsvorschlg: Die vorgegebenen Schritte im Detil usführen. 4. Finde eine nichtkonstnte stetige monotone Funktion f : [0, ] R und eine Lebesguesche Nullmenge E [0, ], so dss f differenzierbr ist in jedem Punkt [0, ] \ E und f (x) = 0, x [0, ] \ E. Hinweis: Wähle E ls Cntormenge. Lösungsvorschlg: Dies ist eine Anwendung der Cntorschen Teufelstreppe.

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

2.5 Messbare Mengen und Funktionen

2.5 Messbare Mengen und Funktionen 1 2.5 Messbre Mengen und Funktionen Definition Eine beschränkte Menge M R n heißt messbr, flls die chrkteristische Funktion χ M integrierbr ist. Die Zhl vol n (M) := χ M dµ n nennt mn ds Volumen von M.

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

9 Riemann-Integral für Funktionen einer Variablen

9 Riemann-Integral für Funktionen einer Variablen 9 Riemnn-Integrl für Funktionen einer Vriblen Integrl = (orientierte) Fläche zwischen Funktion f : r, bs Ñ R und der x-achse «ř n px n x n 1 qf pξ n q mit Zwischenpunkten ξ n P rx n 1, x n s x n 1 x n

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

1 Ergänzungen zur Differentialrechnung

1 Ergänzungen zur Differentialrechnung $Id: nlytisch.te,v 1.3 2011/04/13 11:01:11 hk Ep $ 1 Ergänzungen zur Differentilrechnung Dieses einleitende Kpitel wollen wir verwenden um den Anschluss n ds vorige Semester herzustellen. Eine direkte

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mthemtisches Institut der Universität München Prof. Dr. Frnz Merkl Sommersemester 2013 Bltt 2 26.4.2013 Übungen zur Anlysis 2 2.1 Vernschulichung der Cuchy-Schwrz-Ungleichung. Gegeben seien die Vektoren

Mehr

Unter einer Partition oder Zerlegung eines Intervalls [a, b] verstehen wir eine endliche Menge P = {x 0, x 1,..., x n } mit der Eigenschaft ...

Unter einer Partition oder Zerlegung eines Intervalls [a, b] verstehen wir eine endliche Menge P = {x 0, x 1,..., x n } mit der Eigenschaft ... Kpitel 7 Ds Riemnn Integrl 7.1 Unter und Obersummen 7.2 Riemnn Integrl 7.3 Riemnnsche Summen 7.4 Rechenregeln 7.5 Differentition und Integrtion 7.6 Die L p Normen 7.1 Unter und Obersummen Unter einer Prtition

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene. Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

Analysis II. Universität Stuttgart, SS 06 M. Griesemer

Analysis II. Universität Stuttgart, SS 06 M. Griesemer Anlysis II Universität Stuttgrt, SS 06 M. Griesemer Inhltsverzeichnis 9 Ds Riemnnsche Integrl 3 9.1 Definition und Beispiele........................... 3 9.2 Elementre Eigenschften..........................

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

Analysis I. TU Dortmund, Wintersemester 2013/14. Ben Schweizer

Analysis I. TU Dortmund, Wintersemester 2013/14. Ben Schweizer Anlysis I TU Dortmund, Wintersemester 2013/14 Ben Schweizer Inhltsverzeichnis 1 Reelle Zhlen 1.1 Logische Grundlgen: Aussgen, Beweise, Mengen........ 3 1.2 Die Zhlenbereiche N, Z und Q..................

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Musterlösungen Blatt 6 komplett (mit Kommentaren)

Musterlösungen Blatt 6 komplett (mit Kommentaren) Musterlösungen Bltt 6 omplett (mit Kommentren) Aufgbe (3 + 3 Punte) ) Sei f : beschränt und es existieren die uneigentlichen iemnnintegrle f(x) dx und f(x)dx. Zeigen Sie, dss f Lebesgue-integrierbr über

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $ Mthemtik für Ingenieure II, SS 9 Freitg 15.5 $Id: integrl.te,v 1.1 9/5/15 13:14:4 hk Ep $ $Id: uneigentlich.te,v 1. 9/5/15 13:1:33 hk Ep $ Integrlrechnung.5 Sonstige Integrtionstechniken Wir kommen nun

Mehr

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mthemtik 1 für Ingenieure (Sommersemester 2016) Kpitel 10: Integrlrechnung einer Veränderlichen Prof. Miles Simon Nch Folienvorlge von Prof. Dr. Volker Kibel Otto-von-Guericke Universität Mgdeburg.

Mehr

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014 Anlysis 2 Vorlesungsskript Sommersemester 214 Bernd Schmidt Version vom 15. Oktober 214 Institut für Mthemtik, Universität Augsburg, Universitätsstr. 14, 86135 Augsburg, bschmidt@mth.uni-ugsburg.de 1 Inhltsverzeichnis

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

f(x) := lim f n (x) (a) Wann ist die Grenzfunktion f stetig? Reicht dazu die Stetigkeit aller Funktionen f n?

f(x) := lim f n (x) (a) Wann ist die Grenzfunktion f stetig? Reicht dazu die Stetigkeit aller Funktionen f n? Kpitel 9 Gleichmäßige Konvergenz von Funktionenfolgen 9.1 Gleichmäßige Konvergenz 9.2 Eigenschften der Grenzfunktion 9.3 Gleichmäßige Konvergenz von Funktionenreihen 9.4 Anwendung uf Potenzreihen 9.5 Tylor

Mehr

Thema 11 Vektorwertige Funktionen, Kurven

Thema 11 Vektorwertige Funktionen, Kurven Them 11 Vektorwertige Funktionen, Kurven Definition 1 Eine Kurve in R n ist eine stetige Abbildung uf einem Intervll I mit Werten in R n. Wir verwenden den Buchstben c für Kurven und schreiben c = (c 1,...,c

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Komplexe Kurvenintegrale

Komplexe Kurvenintegrale Komplexe Kurvenintegrle nlog zu Kurvenintegrlen: Sei : [, b] D R n ein stükweiser C Weg, f : D R und F : D R n gegeben. Dnn htten wir in Anlysis II/III die beiden Kurvenintegrle. und 2. Art f (x)ds = b

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Analysis. 1. April 2003

Analysis. 1. April 2003 Anlysis Jürgen Elstrodt. April 003 Teil I Die reellen Zhlen Grundlgen N := {,, 3,...} Menge der ntürlichen Zhlen N 0 := {0,,,...} Menge der gnzen Zhlen 0 Z := {0, ±, ±,...} Menge der gnzen Zhlen Q :=

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

ANALYSIS II OLIVER C. SCHNÜRER

ANALYSIS II OLIVER C. SCHNÜRER ANALYSIS II OLIVER C. SCHNÜRER Zusmmenfssung. Bei diesem Mnuskript hndelt es sich um Notizen zu einer Vorlesung Anlysis II. Ich hbe sie im Sommersemester 215 in Konstnz benutzt. Inhltsverzeichnis 4. Differentition

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

Analysis I Wintersemester 2002/03. W. Ebeling

Analysis I Wintersemester 2002/03. W. Ebeling Anlysis I Wintersemester 2002/03 W. Ebeling c Wolfgng Ebeling Institut für Algebrische Geometrie Leibniz Universität Hnnover Postfch 6009 30060 Hnnover E-mil: ebeling@mth.uni-hnnover.de Litertur [] M.

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Funktionenfolgen. Kapitel 6

Funktionenfolgen. Kapitel 6 Kpitel 6 Funktionenfolgen Bemerkung 6.1 Motivtion. Dieser Abschnitt betrchtet die Konvergenz von Folgen von uf einem gemeinsmen Intervll definierten Funktionen. Dies ist eine wichtige Grundlge, um eine

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Einführung in die Analysis. Prof. Dr. René Grothmann

Einführung in die Analysis. Prof. Dr. René Grothmann Einführung in die Anlysis Prof. Dr. René Grothmnn 2011 2 Vorwort Es hndelt sich bei diesem Skript nur um eine Zusmmenfssung der Vorlesung. Beweise und Beispiele wurden uf ein Minimum reduziert. Auch eine

Mehr

1. Elementare Grundlagen 1.1. Vollständige Induktion und der binomische Lehrsatz. Wir folgen weitgehend den Überlegungen in Forster, Kapitel 1.

1. Elementare Grundlagen 1.1. Vollständige Induktion und der binomische Lehrsatz. Wir folgen weitgehend den Überlegungen in Forster, Kapitel 1. 1. Elementre Grundlgen 1.1. Vollständige Induktion und der binomische Lehrstz. Wir folgen weitgehend den Überlegungen in Forster, Kpitel 1. Die ohne Beweis ufgeführten Sätze sind mit den Sätzen identisch,

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

Analysis I. Gunther H. Peichl. Institut für Mathematik Karl Franzens Universität Graz. Skriptum zur Vorlesung im SS 2011

Analysis I. Gunther H. Peichl. Institut für Mathematik Karl Franzens Universität Graz. Skriptum zur Vorlesung im SS 2011 Anlysis I Gunther H. Peichl Skriptum zur Vorlesung im SS 20 Institut für Mthemtik Krl Frnzens Universität Grz Inhltsverzeichnis Kpitel I. Reelle und komplexe Zhlen. Axiomtische Beschreibung der reellen

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

Höhere Mathematik für Elektrotechniker II

Höhere Mathematik für Elektrotechniker II Vorlesungsmnuskript zu Höhere Mthemtik für Elektrotechniker II Werner Blser Institut für Angewndte Anlysis Sommersemester 2009 Inhltsverzeichnis 1 Integrlrechnung 4 11 Riemnn-Summen und Riemnn-Integrl

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Die Keplersche Fassregel

Die Keplersche Fassregel Die Keplersche Fssregel K. Gerer Bei vielen Aufgen, z.b. ei der Lösung von Differentilgleichungen, tucht die Schwierigkeit uf, dss Integrtionen nicht durchgeführt werden können. So können z.b. die folgenden

Mehr

10.2 Kurven und Bogenlänge

10.2 Kurven und Bogenlänge 10.2 Kurven und Bogenlänge Definition: Sei c = (c 1,..., c n ) : [, b] R n eine stetige Funktion. Dnn wird c ls Kurve im R n bezeichnet; c() heißt Anfngspunkt, c(b) heißt Endpunkt von c. c heißt geschlossene

Mehr

Teil 1. Kurseinheit 1

Teil 1. Kurseinheit 1 Teil 1 Kurseinheit 1 1 Inhlt der Kurseinheit Studierhinweise und Nottionen 5 1 Ds Riemnn-Integrl 13 1.1 Definition und elementre Eigenschften............... 14 Anhng: Gleichmäßige Stetigkeit....................

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzufgben zu Mthemtik I für ET/IT und ITS WS / Bltt 6. Bestimmen Sie zu vorgegebenem Volumen V > die Dose (Zylinder mit der kleinsten Oberfläche und ds Gls (Zylinder ohne Deckel mit

Mehr

Theoretische Mechanik - Übungen 10 WS 2016/17

Theoretische Mechanik - Übungen 10 WS 2016/17 Prof. Dr. A. Ms Institut für Physik N A W I G R A Z Theoretische Mechnik - Übungen 1 WS 16/17 Aufgbe P: Poissonklmmern Präsenzufgben 15. Dezember 16 ) Betrchten Sie zwei Erhltungsgrößen A und B, d. h.

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Mathematik. Ingo Blechschmidt. 22. Januar 2007

Mathematik. Ingo Blechschmidt. 22. Januar 2007 Mthemtik Ingo Blechschmidt 22. Jnur 2007 Inhltsverzeichnis I Mthemtik 2 1 Anlysis 2 1.1 Stetigkeit und Differenzierbrkeit........... 2 1.1.1 Stetigkeit..................... 2 1.1.2 Differenzierbrkeit................

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

Kapitel 4 Differentialrechnung in mehreren Variablen. 4.1 Topologie des R n und Stetigkeit von Funktionen

Kapitel 4 Differentialrechnung in mehreren Variablen. 4.1 Topologie des R n und Stetigkeit von Funktionen Kpitel 4 Differentilrechnung in mehreren Vriblen 4.1 Topologie des R n und Stetigkeit von Funktionen Gegenstnd dieses Kpitels sind Funktionen in mehreren Vriblen. Wir können die Definitionsbereiche solcher

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Fraktale Geometrie. 9: Metrische äußere Maße II. Universität Regensburg Sommersemester Daniel Heiß:

Fraktale Geometrie. 9: Metrische äußere Maße II. Universität Regensburg Sommersemester Daniel Heiß: Universität Regensburg Sommersemester 013 Daniel Heiß: 9: Metrische äußere Maße II I Das mehrdimensionale Lebesguemaß 1.1 Definition (i) Für reelle Zahlen a b, c d ist ein Rechteck im R die Menge R = a,

Mehr

Grenzwerte von Funktionen

Grenzwerte von Funktionen Grenzwert und Stetigkeit von Funktionen Methodische Bemerkungen H Hinweise und didktisch-methodische Anmerkungen zum Einstz der Areitslätter und Folien für den Themenkreis Grenzwert und Stetigkeit von

Mehr

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns

Analysis I/II. Skript zur Vorlesung 2009/2010. Peter Junghanns Skript zur Vorlesung Anlysis I/II 9/ Peter Junghnns Hinweis: Ds vorliegende Skript stellt nur ein Gerüst zu den Inhlten der Vorlesung dr. Die Vorlesung selbst bietet weiterführende Erläuterungen, Beweise

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

4 Stetigkeit. 4.1 Intervalle

4 Stetigkeit. 4.1 Intervalle 4 Stetigkeit Der Grenzwertbegriff für Zhlenfolgen lässt sich uf Funktionen übertrgen. Funktionen (oder Abbildungen) wren bereits im Kpitel über Mengen ufgetreten. Hier wird nun der Fll betrchtet, dss Definitionsbereich

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

Monte-Carlo-Integration

Monte-Carlo-Integration Monte-Crlo-Integrtion von Dietmr Herrmnn, Anzing Kurzfssung: An Hnd eines einfchen Beispiels wird gezeigt, dß jedes Integrl ls Erwrtungswert einer reellen Zufllsgröße ufgefßt werden knn. een einer symptotischen

Mehr

Effiziente Algorithmen und Komplexitätstheorie

Effiziente Algorithmen und Komplexitätstheorie Effiziente Algorithmen und Komplexitätstheorie Vorlesung Ingo Wegener Vertretung Thoms Jnsen 10042006 1 Ws letzten Donnerstg geschh Linere Optimierung Wiederholung der Grundbegriffe und Aussgen M konvex

Mehr

1 Integralsätze - Motivation

1 Integralsätze - Motivation Wolfrm Liebermeister 28.10.2013 Einführung: Integrle HU-Berlin - Institut für Theoretische Biophysik nlehnung n die Vorlesung Höhere Mthemtik 3 von Michel Eisermnn, www.igt.uni-stuttgrt.de/eiserm Tutoren:

Mehr

Schreibweise : Der lineare Unterraum D(A) = L heißt Definitionsbereich. Für häufige Situationen L = X schreiben wir A : X Y.

Schreibweise : Der lineare Unterraum D(A) = L heißt Definitionsbereich. Für häufige Situationen L = X schreiben wir A : X Y. Kpitel 3 Linere Opertoren 3.1 Grundlegene Definitionen Wir betrchten in diesem Kpitel eine geringfügige Verllgemeinerung der m Ende von Abschnitt 2.1 eingeführten Begriffe des lineren Opertors bzw. der

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthemtik für Informtiker I (Wintersemester 00/00) Aufgbenbltt (. Oktober 00)

Mehr

KONSTRUKTION VON MASSEN

KONSTRUKTION VON MASSEN KONSTRUKTION VON MASSEN MARCUS HEITEL 1. Einleitung Wir wollen im Folgenden das Lebesguemaß konstruieren. Dieses soll die Eigenschaft λ ( [a, b = b a für a, b R besitzen. Nun ist ein Maß aber auf einer

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr