Monte-Carlo-Integration

Größe: px
Ab Seite anzeigen:

Download "Monte-Carlo-Integration"

Transkript

1 Monte-Crlo-Integrtion von Dietmr Herrmnn, Anzing Kurzfssung: An Hnd eines einfchen Beispiels wird gezeigt, dß jedes Integrl ls Erwrtungswert einer reellen Zufllsgröße ufgefßt werden knn. een einer symptotischen Fehlerschätzung werden 4 Methoden zur Reduktion der Vrinz diskutiert: Verfhren der wesentlichen Stichproe, Geschichtete und ntithetische Zufllszhlen, Control- Vrite-Methode.. Ein einführendes Beispiel / I sin x () Der exkte Wert des Integrls ist eknntlich. D die Riemnnsche Summe des Integrls nicht von der speziellen Zerlegung des Integrtionsintervlls hängt, knn mn die Funktionswerte n zufälligen Aszissen uswerten und so erhält mn einen Monte-Crlo (MC)-Schätzwert des Integrls. Um Zufllszhlen us dem Bereich [;[ verwenden zu können, wird ds Integrl [;] mit Hilfe der Trnsformtion x u () uf ds Einheitsintervll [;[ trnsformiert. Die Sustitution () u x du trnsformiert () zu I / sin x sin( u) du Durch Auslosen der Zufllszhlen ergit sich us (3) die Berechnungsformel I sin( i ) (4) i Durch eine ndere Whl der verwendeten Zufllszhlen ändert sich uch der numerische Wert von (4) stochstisch. Um nicht von den Zufllszhlen einer Telle oder eines Rechners hängig zu sein, werden hier die ersten (Pseudo-)Zufllszhlen x,..., x des einfchen Zuflsszhlen-Genertors x x.7; e + + x i xi [ e ]; i i {,..., } (3) Stochstik in der Schule (99), r., -7

2 9 verwendet, der uch equem mit dem elektronischen Tschenrechner uszuwerten ist. Mit diesen Zufllszhlen ergit sich die Berechnung von (4) us Telle. Der (solute) Fehler eträgt hier lso.65.. Eine stochstische Interprettion des Integrls Ist X eine im Intervll [; / ] gleichverteilte Zufllsgröße mit der Dichtefunktion p, so ist ihr Erwrtungswert definiert durch Ds gegeene Integrl Zufllsvrilen Telle / sin ( / ) Mittel.65 E ( X ) x (5) / I f ( f ( X ) X ) / schreien. / läßt sich somit ls Erwrtungswert einer f ( E ( ) I (6) Der Verschieungsstz Vr () E( ) E () liefert dmit die Vrinz / f ( Vr( ) I (7) Auf dem Intervll [; / ] stellt die Funktion p ( (sonst ) wegen / eine Dichtefunktion dr. Dmit knn für eine Zufllszhl [;[ ein Wert der Zufllsgröße X usgelost werden.

3 X X Für ein Integrl ergit sich dmit die äherung I E( ) i i i f ( X für eine hinreichend große Zhl von Werten X i. Für Beispiel () folgt drus I i 3. Eigenschften der MC-Integrtion sin( i ) Ist f eine uf [;] definierte Funktion und eine Zufllsvrile mit E( ) f ( I; Vr( ) < und sind,,..., stochstisch unhängige Relisierungen von, so heißt i i ds MC-Integrl von f. ht die Eigenschften (vgl. Frühwirth und Regler 93, 35): () ist erwrtungstreue Schätzung von I () ist konsistente Schätzung von I; d.h. mit Whrscheinlichkeit gilt lim P( I > ε ) ; ε > (3) ist symptotisch normlverteilt (4) Vr( ) Vr( ) 4. Auswhl der Dichtefunktion Wie ei Gleichung (7) ersichtlich, läßt sich durch geeignete Auswhl der Dichtefunktion p die Vrinz reduzieren. Es läßt sich zeigen, dß die Vrinz Vr() miniml wird, wenn proportionl zu f( ist. Ein Beweis dzu findet sich ei Sool (97, 7). D die Sinusfunktion in der ähe des Ursprungs wegen sin x x etw liner verläuft, ist für die Dichtefunktion der Anstz Cx nheliegend. Integrtion uf [;/ ] liefert i ) () (9)

4 / C x Dmit wurde die linere Dichtefunktion X mit Hilfe einer Zufllszhl ergit für ds Integrl die äherung X C p x X sin( ) i I ( x gefunden. Auslosen von () Einsetzen der gegeenen Zufllszhlen in () liefert die Werte in Telle. Wie zu erwrten wr, liefert die monoton steigende Dichtefunktion eine kleinere Vrinz. Der Fehler ist noch.93. Die Vrinz-Reduktion mittels einer geeigneten Dichtefunktion wird die Methode der wesentlichen Stichproe gennnt. 5. Fehlerschätzung Um einen Üerlick üer den symptotischen Fehler zu erhlten, soll Gleichung (7) für die konstnte Dichtefunktion p ( geschätzt werden: Vr( ) / f ( sin I x.34 / Telle sin ( / / Mittel.997 ) Die Stndrdweichung Vr( ).44 σ verhält sich dher wie. Der zentrle Grenzwertstz, der ei nur pproximtiv gilt, liefert für den Ein- Sigm-Bereich (dem Fehler im Sinne der Meßtechnik) die Fehlerwhrscheinlichkeit P( E( ) I < σ ).63

5 Mit 6.3% Whrscheinlichkeit gilt somit für die Fehler-Schrnke I.65±. Diese Aschätzung ist, verglichen mit dem empirischen Fehler.65 etws pessimistisch; dies gilt er für viele Ergenisse, die us Grenzwertsätzen resultieren. Die (Stichproen-)Streuung σ von Telle ist.39. dies liefert.39 den Fehler Geschichtete Zufllszhlen Eine weitere Vrinz-Reduktion erhält mn durch die Verwendung von geschichteten Zufllszhlen. Dies edeutet, dß die Zufllszhlen us Teilintervllen von [;[ usgelost werden. Teilt mn [;[ in gleich große Teilintervlle, so müssen sich ei Zufllszhlen je zwei Zhlen in einen Teilintervll efinden. Dies geschieht m einfchsten durch Trnsformtion: Ist [;+[ ds jeweilige Intervll, so wird die Zufllszhl trnsformiert zu + Dies liefert mit den gewählten Zufllszhlen die Telle 3. Der Fehler ist nur noch.5; die Vrinz wurde lso wesentlich reduziert. Telle 3 / sin ( / ) Mittel Verwendung von ntithetischen Zufllszhlen Auf dem Intervll [;[ wird der Zufllszhl mittels ihre ntithetische Zhl zugeordnet. Für streng monotone Funktionen knn durch Verwendung von ntithetischen Zufllszhlen die Vrinz verkleinert werden. Mit der ersten Hälfte der gewählten Zufllszhlen ergit sich Telle 4. Telle 4 / sin ( / ) / sin ( / ( )) Mittel.9

6 3. Die Control-Vrite-Methode Die Control-Vrite-Methode knn eingesetzt werden, wenn ds Integrl einer pproximierenden Funktion φ( eknnt ist. Ds gesuchte Integrl knn dnn zerlegt werden in ( f ( ( x ) f ( φ ( + φ ) () Wählt mn etw im gegeenen Beispiel ds kuische Tylor-Polynom x3 ( x 6 φ der Sinus-Funktion, so gilt / / ( ) 4 φ x x x.9 4 () 34 Mit Hilfe der gegeenen Zufllszhlen wird ds zweite Integrl in () üer die Differenzfunktion geschätzt zu / ( ( φ( ). 5 4 f (3) Die Summe us () und (3) liefert gemäß () den Wert I.995. Der Fehler ist hier Zusmmenfssung Die Monte-Crlo-Integrtion ist eine interessnte Anwendung für ds Rechnen mit Zufllszhlen. Es ergeen sich hierei zhlreiche Betätigungsfelder für Schülerreiten, Referte u.ä. Sie liefert insesondere prktische Anwendungen zu den Vrinz- und Grenzwertsätzen. Verglichen mit der Genuigkeit, die ei numerischer Integrtion erzielt werden knn, ist die MC-Methode wenig effektiv. Jedoch knn, wie gezeigt wurde, mit einfchen Mitteln die Vrinz reduziert werden. Hinzu kommt, dß die ngegeenen Methoden der Vrinz-Reduktion uch miteinnder kominiert werden können. In der Prxis wird die MC-Integrtion eingesetzt, wenn nur eine geringe Genuigkeit verlngt wird oder wenn mehrdimensionle Integrle zu erechnen sind. Bei mnchen physiklischen Simultionen stellt sie sogr die einzige Integrtionsmethode dr, d die Stützstelle-Methoden der umerik dort versgen. Ein Beispiel für ein einfches mehrdimensionles Integrl ist

7 4 e x + y + z dydz e3 3e + 3e 5.73 Die MC-Methode liefert hier ei 4 Funktionsuswertungen des Integrnden (lso mit den ersten Zufllszhlen des ngegeenen Genertors) den Wert Den eiden Gutchtern dnke ich für die wertvollen Hinweise. Litertur Hengrtner, W.; Theodorescu, R. (97): Einführung in die Monte-Crlo- Methode. München: Hnser Ermkow, S.M. (975): Die Monte-Crlo-Methoden und verwndte Frgen. München: Oldenourg Frühwirth, R.; Regler, M. (93): Monte-Crlo-Methoden. Mnnheim: Biliogrphisches Institut Sool, I.M. (97): Die Monte-Crlo-Methode. Berlin: VEB Deutscher Verlg der Wissenschften

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Musterlösungen zum 6. Übungsblatt

Musterlösungen zum 6. Übungsblatt Musterlösungen zum 6 Üungsltt Anlysis ei Dr Rolf Busm WS 6/7 Aufge 6 (Tois Hessenuer) ) 3 ep()d, setze u = ep(), v = 3 dnn gilt: 3 ep()d = ep() 3 = e (3 ep() ) 3 ep() d = e 3e + 6 ep() = 6e 3e + 6e 6e

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

3. Seminar Statistik

3. Seminar Statistik Sndr Schlick Seite.Seminr05.doc. Seminr Sttistik 0 Kurztest 5 Präsenttion diskrete Verteilungen Puse 0 Üungen diskrete Verteilungen 5 Präsenttion stetige Verteilungen 0 Üungen stetige Verteilungen Husufgen:

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017 HM I Tutorium 3 Lucs Kunz. Ferur 07 Inhltsverzeichnis Theorie. Differentilgleichungen erster Ordnung..................... Linere DGL zweiter Ordnung..........................3 Uneigentliche Integrle.............................

Mehr

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1)

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1) Mthemtik für die Physik II, Sommersemester 28 Lösungen zu Serie 5 2) Berechnen Sie die uneigentlichen Riemn-Integrle ln d und d +. Für jedes < < gilt ln t dt = t ln t t = ln und nch I. 2.Lemm 4 und I..Stz

Mehr

Simulation von Störungen mit zeitlichen Schranken

Simulation von Störungen mit zeitlichen Schranken Simultion von Störungen mit zeitlichen Schrnken Die geräuchlichen sttistischen Verteilungen können elieig große Werte hervorringen, ws ei der Simultion von Störungen oft nicht erwünscht ist. Verwendet

Mehr

Numerische Integration

Numerische Integration Numerische Integrtion Bei vielen Problemen des nturwissenschftlichen Rechnens treten Integrle uf, die nicht in expliziter Form drgestellt werden können, sei es, dß kein geschlossener Ausdruck für eine

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

F - 2 Unendliche Wahrscheinlichkeitsräume

F - 2 Unendliche Wahrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume F - Definition F.45 (Diskreter Whrscheinlichkeitsrum) Seien Ω eine höchstens bzählbre Menge und P : P(Ω) [0, ] eine Funktion. Dnn heißt

Mehr

Kapitel 7 INTEGRATION

Kapitel 7 INTEGRATION Kpitel 7 INTEGRATION Fssung vom 3. Ferur 6 Mthemtik für Humniologen und Biologen 97 7. Additive Prozesse 7. Additive Prozesse BEISPIEL Die Aufnhme von Blei us der Luft durch einen Orgnismus ist in einem

Mehr

Integration von Funktionen einer Variablen

Integration von Funktionen einer Variablen Integrtion von Funktionen einer Vriblen Ds Riemnnintegrl Motivtion: Wie knn mn den Weg w berechnen, den ein Fhrzeug zwischen den Zeitpunkten und b zurückgelegt ht, wenn mn seine Geschwindigkeit v(t) für

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt.

Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel als auch die partielle Integration zur Anwendung kommt. 64 Kpitel. Integrlrechnung Hier ist noch ein Beispiel, bei dem sowohl die Substitutionsregel ls uch die prtielle Integrtion zur Anwendung kommt..4.6 Beispiel Um eine Stmmfunktion für rctn zu finden, beginnen

Mehr

F - 2 Unendliche Wahrscheinlichkeitsräume

F - 2 Unendliche Wahrscheinlichkeitsräume Diskrete Whrscheinlichkeitsräume F - Definition F.45 (Diskreter Whrscheinlichkeitsrum) Seien Ω eine höchstens bzählbre Menge und P : P(Ω) [0, ] eine Funktion. Dnn heißt (Ω, P) ein diskreter Whrscheinlichkeitsrum,

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k

kann man das Riemannsche Unter- bzw. Oberintegral auch wie folgt definieren: xk+1 x k Integrlrechnung Definition 1 (Treppenfunktion, Zerlegung eines Intervlls): Sei [, b] R ein Intervll. Eine Funktion g : [, b] R heißt Treppenfunktion, flls es eine Zerlegung := { =: 0 < 1

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Integration von Regelfunktionen

Integration von Regelfunktionen Integrtion von Regelfunktionen Inhltsverzeichnis Einleitung 2 Treppen- und Regelfunktionen 3 Denition des Integrls 4 Rechen mit Integrlen 2 4. Grundlegende Eigenschften.............................................

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

Die Keplersche Fassregel

Die Keplersche Fassregel Die Keplersche Fssregel K. Gerer Bei vielen Aufgen, z.b. ei der Lösung von Differentilgleichungen, tucht die Schwierigkeit uf, dss Integrtionen nicht durchgeführt werden können. So können z.b. die folgenden

Mehr

Ober- und Untersummen, Riemann Integrale

Ober- und Untersummen, Riemann Integrale Oer- und Untersummen, Riemnn Integrle 1. Ds Prolem des Fläheninhlts Ausgngspunkt für die Entwiklung des Integrlegriffs wren vershiedene Frgestellungen, u.. ds Prolem der Messung des Fläheninhltes eines

Mehr

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den

Flächeninhalt unter dem Graphen. Ist nun die Kraft nicht mehr stückweise konstant, so wird man intuitiv immer noch den 19 REGELFUNKTIONEN 107 Kpitel 7: Integrtion Notwendigkeit des Integrlbegriffes und Hinweise zu seiner Präzisierung liegen uf der Hnd. Betrchten wir etw den physiklischen Begriff der Arbeit, die im einfchsten

Mehr

Zusatzaufgabe 1 für Informatiker

Zusatzaufgabe 1 für Informatiker Rheinisch-Westfälische Technische Hochschule Institut für Geometrie und Prktische Mthemtik Mthemtisches Prktikum (MPr) Sommersemester 00 Prof. Dr. Wolfgng Dhmen Dipl.-Mth. Jens Berger, Dipl.-Mth. Dipl.-Phs.

Mehr

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist 6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

8.4 Integrationsmethoden

8.4 Integrationsmethoden 8.4 Integrtionsmethoden 33 8.4 Integrtionsmethoden Die Integrtion von Funktionen erweist sich in prktischen Fällen oftmls schwieriger ls die Differenzition. Während sich ds Differenzieren durch Anwendung

Mehr

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom:

1 Folgen. 1. Februar 2016 ID 03/455. a) Folgende Folge ist gegeben: a n+1 = 7a n 12a n 1, a 0 = 1, a 1 = 0 (1) Charakteristisches Polynom: Tutorium Ynnick Schrör Lösung zur Bonusklusur vom WS 1/13 Ynnick.Schroer@rub.de 1. Februr 016 ID 03/455 1 Folgen ) Folgende Folge ist gegeben: n+1 7 n 1 n 1, 0 1, 1 0 (1) Chrkteristisches Polynom: q 7q

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Zulassungsprüfung Stochastik,

Zulassungsprüfung Stochastik, Zulssungsprüfung Stochstik, 2.0.2 Wir gehen stets von einem Mßrum (Ω, A, µ) bzw. einem Whrscheinlichkeitsrum (Ω,A,P) us. Die Borel σ-algebr uf R n wird mit B n bezeichnet, ds Lebesgue Mß uf R n wird mit

Mehr

2.6 Reduktion endlicher Automaten

2.6 Reduktion endlicher Automaten Endliche Automten Jörg Roth 153 2.6 Reduktion endlicher Automten Motivtion: Wir sind n Automten interessiert, die mit möglichst wenigen Zuständen uskommen. Automten, die eine Sprche mit einem Minimum n

Mehr

Integration. Kapitel Newton-Cotes-Formeln

Integration. Kapitel Newton-Cotes-Formeln Kpitel 4 Integrtion Die Integrtion von Funktionen ist eine elementre mthemtische Opertion, die in vielen Formeln benötigt wird. Im Gegenstz zur Ableitung, die für prktisch lle mthemtischen Funktionen explizit

Mehr

6 Numerische Integration

6 Numerische Integration Numerik I 251 6 Numerische Integrtion Ziel numerischer Integrtion (Qudrtur): Näherungswerte für f(t) dt. Wozu? Eine Apprtur liefere Messwerte x i = x i + ε i. Angenommen, die Messfehler ε i sind stndrdnormlverteilt

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

Musterlösung zu Blatt 9, Aufgabe 2

Musterlösung zu Blatt 9, Aufgabe 2 Musterlösung zu Bltt 9, Aufgbe Anlysis II MIIA SoSe 7 Mrtin Schottenloher Musterlösung zu Bltt 9, Aufgbe I Aufgbenstellung Es sei J [, ] und f : J R deniert durch fx x 3. Finden Sie eine Folge f n n N

Mehr

13-1 Funktionen

13-1 Funktionen 3- Funktionen 3 Integrle: Flächeninhlte Seien < reelle Zhlen, sei I = [, ] = { R } ds Intervll der Zhlen zwischen und Wir etrchten eine stetige Funktion f : I R und ds zugehörige Integrl f() d (dies ist

Mehr

Mathematikaufgaben > Analysis > Funktionenscharen

Mathematikaufgaben > Analysis > Funktionenscharen Michel Buhlmnn Mthemtikugen > Anlysis > Funktionenschren Auge: Gegeen ist die Funktionenschr t t t mit reellen Prmeter t >. Die zugehörigen Schuilder heißen K t. Skizziere die Schuilder K,5, K und K jeweils

Mehr

18. Algorithmus der Woche Der Euklidische Algorithmus

18. Algorithmus der Woche Der Euklidische Algorithmus 18. Algorithmus der Woche Der Euklidische Algorithmus Autor Friedrich Eisenrnd, Universität Dortmund Heute ehndeln wir den ältesten ereits us Aufzeichnungen us der Antike eknnten Algorithmus. Er wurde

Mehr

Kapitel 1: Integration

Kapitel 1: Integration Kpitel 1: Integrtion Vorbemerkungen: Wnn bruchen wir numerische Integrtion? nicht bei nlytisch integrierbren Funktionen, sondern bei nlytisch gegebenen, ber nicht nlytisch integrierbren Funktionen, bei

Mehr

a = x 0 < x 1 <... < x n = b

a = x 0 < x 1 <... < x n = b 7 Integrtion 7.1 Integrtion von Treppenfunktionen Im folgenden ezeichnen wir mit I = [, ] ein eschränktes und geschlossenes Intervll. Für Punkte = x 0 < x 1

Mehr

Serie 13 Lösungsvorschläge

Serie 13 Lösungsvorschläge D-Mth Mss und Integrl FS 204 Prof. Dr. D. A. Slmon Serie 3 Lösungsvorschläge. Sei I := [, b] R ein kompktes Intervll und sei B 2 I die Borel-σ-Algebr. Def. Eine Funktion f : I R heisst von beschränkter

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion. 9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte

Mehr

Relationen: Äquivalenzrelationen, Ordnungsrelationen

Relationen: Äquivalenzrelationen, Ordnungsrelationen TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden

Mehr

( N. m)( n m. P(X = m) EX = n M N. 1 M ) N n

( N. m)( n m. P(X = m) EX = n M N. 1 M ) N n .3.2.5 Hypergeometrische Verteilung Als Referenzmodell dient die bereits beknnte Urne mit N Kugeln, von denen M Kugeln schwrz und N M Kugeln weiß sind. Wir ziehen ohne Zurücklegen n Kugeln, wobei unsere

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3 Mthemtik fu r Ingenieure (Mschinenu und Sicherheitstechnik). Semester Apl. Prof. Dr. G. Herort Dr. T. Pwlschyk SoSe6 Areitsheft Bltt Hinweis: Besuchen Sie die Vorlesung und vervollst ndigen Sie Areitsheft.

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

9.5. Uneigentliche Integrale

9.5. Uneigentliche Integrale 9.5. Uneigentliche Integrle Bestimmte und unestimmte Integrle hängen zwr eng zusmmen, er die Existenz des einen grntiert nicht immer die des nderen: Eine integrierre Funktion muß keine Stmmfunktion esitzen,

Mehr

c a+ bzw. f(x) dx. c a bzw. 1 =

c a+ bzw. f(x) dx. c a bzw. 1 = 3. Uneigentliche Integrle Die Funktion f sei uf dem rechts oenen Intervll x < b erklrt und uf jedem bgeschlossenen Teilintervll [, c], c < b, stuckweise stetig, b R { }. Dnn der Integrlbegri erweitert

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

f(ξ k )(x k x k 1 ) k=1

f(ξ k )(x k x k 1 ) k=1 Integrlrechnung Definition des bestimmten Integrls Die Integrtion ist die Umkehropertion zur Differentition. Grundufgbe der Integrlrechnung ist die Bestimmung von Flächen. Will mn beispielsweise den Inhlt

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

Kapitel 4 Numerische Integration

Kapitel 4 Numerische Integration Kpitel 4 Numerische Integrtion Einführung und Motivtion Newton-Cotes-Formeln Zusmmengesetzte Integrtionsformeln Adptive Verfhren Romberg Verfhren Fzit Numerische Mthemtik II Herbsttrimester 01 1 Problemstellung:

Mehr

Integralrechnung. Andreas Rottmann. 15. Oktober 2003

Integralrechnung. Andreas Rottmann. 15. Oktober 2003 Integrlrechnung Andres Rottmnn 15. Oktober 2003 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 1.1 Integrtion ls Umkehrung des Differenzierens........... 2 1.2 Integrtionsregeln...........................

Mehr

Fur das unbestimmte Integral gilt. f(x) dx + b

Fur das unbestimmte Integral gilt. f(x) dx + b . Integrtionsregeln.. Linerität. Fur ds unbestimmte Integrl gilt (f(x) bg(x)) = f(x) b g(x),, b R... Prtielle Integrtion. Fur je zwei uf einem Intervll I = (, b) stetig differenzierbre Funktionen u und

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung . INTEGRALRECHNUNG 69 Aufgbe 9.3 Bestimme lle Extrem der Funktion f : [,] R, x ( x) +9x. Aufgbe 9.3 Bestimme die Extrem der Funktion f : R\{} R : x x4 5x 4 (x ) 3. Untersuche die Funktion hinsichtlich

Mehr

Die Zufallsvariable und ihre Verteilung

Die Zufallsvariable und ihre Verteilung Die Zufllsvrible und ihre Verteilung Die Zufllsvrible In der Whrscheinlichkeitstheorie bzw. Sttistik betrchtet mn Zufllsvriblen. Eine Zufllsvrible ist eine Funktion, die Ergebnissen eines Zufllsexperimentes

Mehr

Langzeitverhalten von ODE Lösungen

Langzeitverhalten von ODE Lösungen Euler Verfhren für Systeme von ODEs Bemerkung zum Lngzeitverhlten Häufig ist von Interesse (z.b. in der Klimvorhersge), wie sich Lösungen y(t) der ODE ẏ = F (y) für sehr grosse t qulittiv verhlten, und

Mehr

6. Spezielle Wahrscheinlichkeitsverteilungen

6. Spezielle Wahrscheinlichkeitsverteilungen 6. Sezielle Whrscheinlichkeitsverteilungen Bisher wurden Whrscheinlichkeitsverteilungen in einer llgemeinen Form drgestellt. In der Pris treten häufig gnz estimmte Whrscheinlichkeitsverteilungen uf, die

Mehr

Extrakapitel für M3 1. Integration durch Substitution (Umkehrung der Kettenregel)

Extrakapitel für M3 1. Integration durch Substitution (Umkehrung der Kettenregel) Etrkpitel für M. Integrtion durch Substitution (Umkehrung der Kettenregel Beispiel : Berechnen Sie ds Integrl I = + d D die Wurzel eine innere Funktion ht, substituieren wir diese und leiten dnn b... z

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren

5 Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5 Linere Ahängigeit und linere Unhängigeit von Vetoren 5.1 Linere Ahängigeit/Unhängigeit von Vetoren Eine esondere Rolle in der nlytischen Geometrie

Mehr

3 Trigonometrische Formeln

3 Trigonometrische Formeln Mthemtische Proleme, SS 018 Donnerstg 1.6 $Id: trig.tex,v 1. 018/06/1 14:08:44 hk Exp $ 3 Trigonometrische Formeln 3. Verdoppelungs- und Hlierungsformeln Als Verdoppelungsformeln ezeichnet mn die Formeln

Mehr

Minimierung von DFAs. Minimierung 21 / 98

Minimierung von DFAs. Minimierung 21 / 98 Minimierung von DFAs Minimierung 21 / 98 Ein Beispiel: Die reguläre Sprche L({, } ) Wie stellt mn fest, o ein Wort ds Suffix esitzt? Ein erster Anstz: Speichere im ktuellen Zustnd die eiden zuletzt gelesenen

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

5) Laplace-Wahrscheinlichkeit eines Zufallsexperiments

5) Laplace-Wahrscheinlichkeit eines Zufallsexperiments von Jule Menzel, 12Q4 5) Lplce-Whrscheinlichkeit eines ufllsexperiments Ergenis ω 1 ω 2 ω 3 ω 4 ω 1 Ω ω 2 ω 3 ω 4 Ergenismenge ist ein Ereignis ist Teilmenge von Ω kurz: c Ω Ws ist ein Ereignis? Beispiel:

Mehr

6. Spezielle Wahrscheinlichkeitsverteilungen

6. Spezielle Wahrscheinlichkeitsverteilungen 6. Spezielle Whrscheinlichkeitsverteilungen Bisher wurden Whrscheinlichkeitsverteilungen in einer llgeeinen For drgestellt. In der Pris treten häufig gnz estite Whrscheinlichkeitsverteilungen uf, die nun

Mehr

Einführung in die Numerische Mathematik Vordiplomsklausur,

Einführung in die Numerische Mathematik Vordiplomsklausur, Institut für Angewndte Anlysis und Numerische Simultion Prof Dr C Eck, Dr M Schulz, Dipl- Mth J Giesselmnn Universität Stuttgrt Sommersemester 9 Einführung in die Numerische Mthemtik Vordiplomsklusur,

Mehr

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 2. Besprechung in KW44

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 2. Besprechung in KW44 Technische Universität München Winter 08/9 Prof. J. Esprz / Dr. M. Luttenerger, C. Welzel 08//0 HA- TA- Diskrete Strukturen Tutorufgenltt Besprechung in KW Bechten Sie: Soweit nicht explizit ngegeen, sind

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

Lösungen zur Übungsserie 6

Lösungen zur Übungsserie 6 Anlysis Herstsemester Prof. Peter Jossen Montg, 5. Novemer Lösungen zur Üungsserie 6 Aufgen,,3,4,5,6,7,,9,,,3,4,5 Aufge. Sei f :[, ]! R die Funktion gegeen durch f(x) =x. BeweisenSieim Detil und nur mit

Mehr

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift

Mehr

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN Mthemtik: Mg. Schmid Wolfgng+LehrerInnentem ) Rottion um die -Achse ARBEITSBLATT 5L- BERECHNEN VON RAUMINHALTEN Es geht hier um folgende Aufgenstellung. Eine gegeene Funktion f() soll in einem estimmten

Mehr

Elementare Integrationstechniken

Elementare Integrationstechniken Elementre Integrtionstechniken Zusmmenfssung Wir wiederholen einfche und häufig benutzte Integrtionstechniken und geben zu jedem Kpitel uch einige Übungsbeispiele n. Die Menge n guten Anlysisbüchern ist

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

1.2 Kurven. Definition Äquivalente Formulierungen der Differenzierbarkeit

1.2 Kurven. Definition Äquivalente Formulierungen der Differenzierbarkeit 1 1. Kurven Wir betrchten jetzt vektorwertige Funktionen von einer Veränderlichen. Eine Abbildung f = (f 1,..., f m ) : I R m heißt differenzierbr in t I, flls lle Komponentenfunktionen f 1,..., f m in

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

G2.3 Produkte von Vektoren

G2.3 Produkte von Vektoren G Grundlgen der Vektorrechnung G. Produkte von Vektoren Ds Sklrprodukt Beispiel: Ein Schienenfhrzeug soll von einem Triler ein Stück s gezogen werden, der neen den Schienen fährt (vgl. Skizze). Wir wollen

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr