Algorithmische Bioinformatik I

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Algorithmische Bioinformatik I"

Transkript

1 Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift Hiermit stimme ich einer Veröffentlichung meines Klusurergenisses dieser Semestrlklusur unter Verwendung meiner Mtrikelnummer im Internet zu. J Nein (Unterschrift) Allgemeine Hinweise zur Semestrlklusur Vor der Prüfung ist diese Seite mit Vornmen, Nmen, Mtrikelnummer, Reihe und Pltz leserlich mit Druckuchsten zu versehen und zu unterschreien. Bitte nicht in roter oder grüner Fre zw. nicht mit Bleistift schreien. Der Studentenusweis und ein mtlicher Lichtildusweis sind ereit zu hlten. Die reine Bereitungszeit eträgt 120 Minuten. Es sind insgesmt 40 Punkte zu erreichen, zum Bestehen sind 17 Punkte nötig. Viel Erfolg! Hörsl verlssen von... is... von... is... Vorzeitig gegeen um... Hz A1 A2 A3 A4 A5 Erstkorrektur Nchkorrektur Zweitprüfer

2 Vornme: Nme: Mtrikelnummer: Aufge 1 (8 Punkte) Gi ds Mster-Theorem us der Vorlesung n. Spezifiziere hierzu insesondere die drei verschiedenen Fälle und gi n, welche Lösung der jeweilige Fll esitzt. Bestimme die Asymptotik von T(n) mithilfe des Mster-Theorems us der Vorlesung unter Ange einer der drei Fälle (siehe oen) mit Begründung zw. egründe, wrum ds Mster-Theorem nicht nwendr ist. Es gilt dei immer T(1) = 1: ) T(n) = 2 T(n/2)+ n, ) T(n) = 2 T(n/4)+ nlog(n), c) T(n) = 3 T(n/3)+n n. Seien,,d N mit > 1, sei f(n) eine Funktion und sei T(n) definiert durch die Rekursionsgleichung T(n) = T(n/)+f(n) für n > 1 und T(1) = d. Dnn gilt: Θ(n log () ) flls f(n) = O(n log () e ) für ein konstntes e > 0 Θ(n T(n) = log () log(n)) flls f(n) = Θ(n log () ) Θ(f(n)) flls f(n) = Ω(n log ()+e ) für ein konstntes e > 0 und f(n/) c f(n) für ein konstntes c < 1 ) Für ds Mster-Theorem erhlten wir = 2, = 2 und f(n) = n. Es gilt log 2 (2) = 1 und somit f(n) = n = n 1/2 = O(n log 2 (2) e ) = O(n log () e ) für e (0,1/2). Somit gilt der erste Fll und es ist T(n) = Θ(n log()) = Θ(n log 2 (2) ) = Θ(n). ) Für ds Mster-Theorem erhlten wir = 2, = 4 und f(n) = nlog(n). Es gilt log () = log 4 (2) = 1/2. Also ist f(n) = nlog(n) = ω(n 1/2 ) und dmit f(n) O(n 1/2 e ) = O(n log () e ) für lle e > 0 und Fll 1 ist nicht zutreffend. Weiter ist f(n) = nlog(n) = ω(n 1/2 ) und dher f(n) Θ(n 1/2 ) = Θ(n log () ). Fll 2 trifft lso nicht zu. Auch ist f(n) = nlog(n) Ω(n 1/2+e ) für lle e > 0, d nlog(n) = o(n 1/2+e ) für lle e > 0. Ds Mster-Theorem ist lso uch im Fll 3 nicht nwendr. c) FürdsMster-Theoremerhltenwir = 3, = 3undf(n) = n n.esgiltlog 3 (3) = 1 und somit f(n) = n n = n 3/2 = Ω(n log 3 (3)+e ) = Ω(n log ()+e ). für ein e (0,1/2), Weiter ist n f(n/) = 3 (n/3) 3 1 n 3/2! c f(n) 3 und somit gilt der dritte Fll des Mster-Theorems mit c = 1/ 3 < 1 (d 3 > 1). Dmit gilt T(n) = Θ(f(n)) = Θ(n n). [SS16] 2

3 Vornme: Nme: Mtrikelnummer: Aufge 2 (8 Punkte) Betrchte den unter ) geildeten Suffix-Bum für s = s 1 s 7 =. Der esseren Lesrkeit wegen sind hierei immer explizit die Kntenlels sttt der Referenzen ngegeen. ) Zeichne lle Suffix-Links ein, die Ukkonens Algorithmus hierfür konstruiert ht. ) Gi die Kntenlels so n, wie sie in Ukkonens Algorithmus verwendet werden. c) Führe Ukkonens Algorithmus für den Üergng von s uf s = s = us. d) Führe Ukkonens Algorithmus für den Üergng von s uf s = s = us. Gi für c) und d) lle Zwischenschritte n, mrkiere insesondere die Position des ktiven Knotens und Endknotens im jeweiligen Suffix-Bum. Zeichne dei nur die verwendeten und neu eingetrgenen Suffix-Links mit jeweils einer nderen Fre ein und nummeriere die neuen Blätter in der Reihenfolge der Einfügung. ) ε ) (1,1) ε (3, ) (3, ) (2, ) c) ε A E d) 2 4 ε 1 3 E A [SS16] 3

4 Vornme: Nme: Mtrikelnummer: Aufge 3 (8 Punkte) Löse die folgende Rekursionsgleichung mit Hilfe der llgemeinen Lösung für linere Rekursionsgleichungen: f n = 4 f n 1 2 für n 1, und f 0 = 1. Betrchte die Rekursionsgleichung für n und n 1: f n = 4 f n 1 2, f n 1 = 4 f n 2 2. Ziehen wir die zweite von der ersten Gleichung, so erhlten wir eine homogene linere Rekursionsgleichung f n = 5 f n 1 4 f n 2 f n 5 f n 1 +4 f n 2 = 0 mit den Anfngsedingungen f 0 = 1 und f 1 = 4 f 0 2 = 2. Wir etrchten nun ds chrkteristische Polynom χ(n) für diese Rekursionsgleichung: χ(n) = n 2 5n+4. Die Nullstellen ergeen sich (eispielsweise mit der p, q-formel) zu x 1,2 = ± 4 4 = ± 4. Also sind 1 und 4 die eiden Nullstelle des chrkteristischen Polynoms. Somit ht die Lösung der Rekursionsgleichung die Form: f n = (1) n + (4) n = + 4 n. Mit den Anfngsedingungen ergit sich für und : 1 = f 0 = (1) 0 + (4) 0 = +, 2 = f 1 = (1) 1 + (4) 1 = +4. Sutrktion der ersten von der zweiten Gleichung liefert 3 = 1, lso = 1. Somit ist 3 = 2, lso ist f 3 n = n. [SS16] 4

5 Vornme: Nme: Mtrikelnummer: Aufge 4 (8 Punkte) Gegeen seien zwei Wörter s = s 1 s m m und t = t 1 t n n. Gi einen Algorithmus mit Lufzeit O(n+m) n, der ds längste Präfix von s findet, ds uch ein Suffix von t ist. Beispiel: Für s = und t = sind ε und jeweils sowohl ein Präfix von s ls uch ein Suffix von t. Hinweis: Korrektheitseweis und Lufzeitnlyse nicht vergessen! Zuerst schuen wir uns n, wie ein Präfix von s, ds uch ein Suffix von t ist in der Zeichenreihe s$t ussieht: 0 m i n+m s $ t Z i Sei l := s$t = n+m+1. Gilt lso i+z[i] = l für ein i [m+1 : l 1], dnn endet ein Präfix von s ls Suffix von t n Position i m in t. Wir konstruieren lso für s$t zuerst die zugehörigen Z-Werte in Zeit O(n + m). Dnn testen wir für jedes i [m + 1 : l 1] in ufsteigender Reihenfolge, o i + Z[i] = l gilt. Dies ist in Zeit O(n+m) möglich. Der erste Wert, für den ds gilt, ist nch oiger Erläuterung ein Suffix von t, der ein Präfix von s ist. Nch Whl von i, muss dieses dnn uch ds längste Präfix von s und wir hen die gesuchte Lösung unseres Prolems. [Alterntive Lösungsmöglichkeiten mit Suffix-Bäumen oder der Border-Telle.] [SS16] 5

6 Vornme: Nme: Mtrikelnummer: Aufge 5 (8 Punkte) Ein spezielles Alignment für zwei Sequenzen s n undt m ist ein glolesprweises Sequenzen-Alignment (s, t) A(s, t) mit der Einschränkung, dss uf ein Indel (Insertion zw. Deletion) keine Sustitution folgen drf (lso rechts dvon stehen drf), jedoch ein Mtch oder ein Indel. Beispiel: Für s = AAAAC und t = ATTC ist ( AAA AC ATT C) ein spezielles Alignment (llerdings nicht notwendigerweise ein optimles), ( ) ( AAA AC A TT C oder AAA AC A TTC) jedoch nicht. Finde einen möglichst effizienten Algorithmus, der für zwei gegeene Sequenzen s n und t m ein optimles spezielles Alignment zgl. der Alignment-Distnz mit linerer Lückenstrfe findet. Hierei trägt jede Insertion und jede Deletion 2 sowie jede Sustitution 3 zur Alignment-Distnz ei, ein Mtch wie ülich 0. Hinweis: Korrektheitseweis und Lufzeitnlyse nicht vergessen! Wir konstruieren wie eim Gotoh-Algorithmus verschiedene Mtrizen D, E, F und G. Dei ist D[i,j] zw. E[i,j] zw. F[i,j] zw. G[i,j] die Alignment-Distnz eines speziellen Alignments von s 1 s i mit t 1 t j, ds keine weitere Einschränkung esitzt zw. mit einem Indel zw. mit einem Mtch zw. einer Sustitution endet. Für die Rekursionsgleichungen erhlten wir dnn: E[i,j] = min{d[i,j 1]+2,D[i 1,j]+2} F[i,j] = { D[i 1,j 1] flls si = t j sonst G[i,j] = { flls si = t j min{f[i 1,j 1]+3,G[i 1,j 1]+3} sonst D[i,j] = min{e[i,j],f[i,j],g[i,j]} Es stellt sich nun noch die Frge, welche Werte jeweils in der 1. Zeile zw. in der 1. Splte der Mtrizen stehen. Es gilt für i > 0 und j > 0: E[0,j] = 2 j, F[i,0] =, G[i,0] =, E[i,0] = 2 i, F[0,j] =, G[0,j] =, E[0,0] =, F[0,0] = 0, G[0,0] = 0. Die Werte für D ergeen sich us der Minimumsildung. Ein spezielles Alignment selst findet mn wieder üer den Trceck usgehend von D[n, m], woei mn erücksichtigen muss, us welcher Mtrix ds Minimum stmmt. Die Korrektheit folgt us der Ttsche, dss ein optimles spezielles Alignment in der letzten Splte entweder ein Indel, ein Mtch oder eine Sustitution esitzt. Hier werden gemäß der Definition eines speziellen Alignment für lle drei Fälle nch in den oigen Mtrizen E, F und G jeweils eine korrekte Alignment-Distnz für ds entsprechende spezielle Alignment erechnet. Jeder Eintrg der vier Tellen lässt sich in konstnter Zeit ermitteln, von dher wird für ds Erstellen der Tellen Zeit O(nm) enötigt. Ein spezielles Alignment knn mit dem Trceck in Zeit O(n + m) erstellt werden, so dss die Gesmtlufzeit O(nm) ist. [SS16] 6

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2014) Prof Dr Jens Teuner Leitung der Üungen: Mrcel Preuß, Sestin Breß, Mrtin Schwitll, Krolin

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2013) Prof Dr Jens Teuner Leitung der Üungen: Geoffry Bonnin, Sven Kuisch, Moritz Mrtens,

Mehr

edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit bietet, ihre statistischen Meldungen über das Internet auszufüllen und einzureichen.

edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit bietet, ihre statistischen Meldungen über das Internet auszufüllen und einzureichen. Mnuell edatenq Fremdenverkehrs- und Gstgeweresttistik Einleitung edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit ietet, ihre sttistischen Meldungen üer ds Internet uszufüllen und einzureichen.

Mehr

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3 Lehrgng: Digitltechnik ( Grundlgen ) Dtum: Nme: Seite: Inhltsverzeichnis: Im Lehrgng verwendete Gtter ( Üersicht ) Seite 3 Aufu von Zhlensystemen deziml, dul ( Infoseite ) Seite 4 ( Areitsltt ) Seite 5

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm 3 Module in C 5 Glole Vrilen!!!.c Quelldteien uf keinen Fll mit Hilfe der #include Anweisung in ndere Quelldteien einkopieren Bevor eine Funktion us einem nderen Modul ufgerufen werden knn, muss sie deklriert

Mehr

Übungsblatt Nr. 13 Themenübersicht

Übungsblatt Nr. 13 Themenübersicht Technische Universität Dortmund Lehrstuhl Informtik VI Prof. Dr. Jens Teuner Pflichtmodul Informtionssysteme (SS 2015) Prof. Dr. Jens Teuner Leitung der Üungen: Imn Kmehkhosh, Thoms Lindemnn, Mrcel Preuß

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Einführung in die Schaltalgebra

Einführung in die Schaltalgebra Einführung in die chltlger GUNDBEGIFFE: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 ECHENEGELN - - - - - - - - - - - - - - - - - - - - - - - -

Mehr

Keil Telecom Homepage - Hersteller von Isdn Tk Anlagen und Türsprechsystemen für Heim und Bü...

Keil Telecom Homepage - Hersteller von Isdn Tk Anlagen und Türsprechsystemen für Heim und Bü... Keil Telecom Homepge - Hersteller von Isdn Tk Anlgen und Türsprechsystemen für Heim und Bü... Seite 1 von 1 Einutürlutsprecher esonders kleine und kompkte Buform Einu üerll dort wo Pltz knpp ist Briefkästen,

Mehr

Bestimmung der Adsorptionsisotherme von Essigsäure an Aktivkohle

Bestimmung der Adsorptionsisotherme von Essigsäure an Aktivkohle S2-Adsorptionsisothermen_UWW rstelldtum 28.3.214 7:41: Üungen in physiklischer Chemie für Studierende der Umweltwissenschften Versuch Nr.: S2 Version 214 Kurzezeichnung: Adsorptionsisotherme estimmung

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

5.3 Dynamisches Sitzen und Stehen

5.3 Dynamisches Sitzen und Stehen Dynmisches Sitzen und Stehen 5.3 Dynmisches Sitzen und Stehen Test Bewegen Sie sich eim Sitzen und Stehen kontinuierlich um den Mittelpunkt der senkrechten Oerkörperhltung (S. 39) mit neutrler Wirelsäulenschwingung

Mehr

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO)

Teilfachprüfung Mathematik Studiengang: Wirtschaft Neue Diplomprüfungsordnung (NPO) Fchhochschule Düsseldorf SS 2007 Teilfchprüfung Mthemtik Studiengng: Wirtschft Neue Diplomprüfungsordnung (NPO) Prüfungsdtum: 29..2007 Prüfer: Prof. Dr. Horst Peters / Dipl. Volkswirt Lothr Schmeink Prüfungsform:

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003 Personl und Finnzen der öffentlich estimmten Fonds, Einrichtungen, Betriee und Unternehmen (FEU) in privter Rechtsform im Jhr 003 Dipl.-Volkswirt Peter Emmerich A Mitte der 980er-Jhre ist eine Zunhme von

Mehr

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann Michel Buhlmnn Schülekus Mthemtik > Linee Alge > Linee Gleichungen Linee Gleichungssysteme > Teil I: Theoie Linee Gleichungen und linee Gleichungssysteme duchziehen den Mthemtikunteicht in llen Schulfomen

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

17 Doppelbündel-Rekonstruktion mit Semitendinosussehne

17 Doppelbündel-Rekonstruktion mit Semitendinosussehne Kpitel 17 143 17 Doppelündel-Rekonstruktion mit Semitendinosussehne Wolf Petersen 17.1 Einleitung Ds vordere Kreuznd (VKB) esteht us 2 funktionellen Bündeln: einem nteromedilen (AM) und einem posterolterlen

Mehr

Teil V: Formale Sprachen

Teil V: Formale Sprachen Formle Sprchen Teil V: Formle Sprchen 1. Sprchen und Grmmtiken 2. Endliche Automten Frnz-Josef Rdermcher & Uwe Schöning, Fkultät für Ingeneurwissenschften und Informtik, Universität Ulm, 2008/09 Formle

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13 Inhltsverzeichnis Inhltsverzeichnis... 3.Logik... 2 3. Zhlensysteme... 2 3.2 Grundegriffe zweiwertiger Logik... 3 3.3 Rechengesetze für logische Ausdrücke... 9 3.4 Logische Funktionen... 24 3.5 Logische

Mehr

16.3 Unterrichtsmaterialien

16.3 Unterrichtsmaterialien 16.3 Unterrichtsmterilien Vness D.l. Pfeiffer, Christine Glöggler, Stephnie Hhn und Sven Gembll Mteril 1: Alignieren von Nukleotidsequenzen für die Verwndtschftsnlyse Für eine Verwndtschftsnlyse vergleicht

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

Public-Key-Verfahren: Diffie-Hellmann und ElGamal

Public-Key-Verfahren: Diffie-Hellmann und ElGamal Westfälische Wilhelms-Universität Münster Ausreitung Pulic-Key-Verfhren: Diffie-Hellmnn und ElGml im Rhmen des Seminrs Multimedi und Grphen WS 2007/2008 Veselin Conev Themensteller: Prof. Dr. Herert Kuchen

Mehr

Exportmodul Artikel-Nr.: 20208

Exportmodul Artikel-Nr.: 20208 Seite 1 / 5 V5.32 Exportmodul Artikel-Nr.: 20208 Erweiterungsmodul für ds ELV-TimeMster Komplettsystem Hndbuch und Beschreibungen Ab der Version 5 befinden sich die Kurznleitung und ds gesmte Hndbuch ls

Mehr

Ausbildung zum Passagement-Consultant

Ausbildung zum Passagement-Consultant M & MAICONSULTING Mngementbertung Akdemie M MAICONSULTING Mngementbertung & Akdemie MAICONSULTING GmbH & Co. KG Hndschuhsheimer Lndstrße 60 D-69121 Heidelberg Telefon +49 (0) 6221 65024-70 Telefx +49 (0)

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

7. Portfolioinvestitionen und Wechselkursschwankungen. Literatur. Prof. Dr. Johann Graf Lambsdorff Universität Passau SS 2008

7. Portfolioinvestitionen und Wechselkursschwankungen. Literatur. Prof. Dr. Johann Graf Lambsdorff Universität Passau SS 2008 Prof. Dr. Johnn Grf Lmsdorff Universität Pssu SS 2008 Litertur r IS 0 r 0 P 0 P x MP 7. Portfolioinvestitionen und Wechselkursschnkungen + Z Jrcho, H.-J. und P. Rühmnn (2000) : Monetäre Außenirtschft I.

Mehr

Die Brückenlappentechnik zum sicheren Verschluss von Nasenseptumdefekten

Die Brückenlappentechnik zum sicheren Verschluss von Nasenseptumdefekten Die Brückenlppentechnik zum sicheren Verschluss von Nsenseptumdefekten T. Stnge, H.-J. Schultz-Coulon Einleitung Die Rekonstruktion eines defekten Nsenseptums zählt zu den schwierigsten rhinochirurgischen

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

FACHHOCHSCHULE Bielefeld 9. Juli 2007 Fachbereich Elektrotechnik

FACHHOCHSCHULE Bielefeld 9. Juli 2007 Fachbereich Elektrotechnik FACHHOCHSCHLE Bielefeld 9. Juli 2007 Fchbereich Elektrotechnik Professor Dr.Ing.hbil. K. Hofer Klusur zu LEISTNGSELEKTRONIK ND ANTRIEBE (LEA) Berbeitungsduer: Hilfsmittel: 3.0 Zeitstunden Vorlesungsskriptum,

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac F FORMELSAMMLUNG Bruchrechnung Erweitern = Kürzen c c Addition Nenner gleichnmig mchen! + c d = d d + c d = d+c d, speziell + c = +c ei gnzzhligem Nenner: Huptnenner (= kgv der Nenner), zb 4 6 + 3 4 =

Mehr

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und

Schleswig-Holstein 2009 Leistungskurs Mathematik Thema: Analysis. ( x) . (14 P) g mit ( ) Berechnen Sie die Schnittpunkte der Graphen von f a und Ministrium für Bildung und Frun Schlsig-Holstin 9 Listungskurs Mthmtik Thm: Anlysis Aufg Ggn ist di Funktionnschr f mit f ( ) = (, IR ) ) Untrsuchn Si di Funktionnschr f uf Nullstlln, ds Vrhltn im Unndlichn,

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

c dl SPiC (Teil C, SS 11) 13 Zeiger und Felder 13.1 Zeiger Einführung 13 1 Zeigervariable := Behälter für Verweise ( Adresse) Beispiel int x = 5;

c dl SPiC (Teil C, SS 11) 13 Zeiger und Felder 13.1 Zeiger Einführung 13 1 Zeigervariable := Behälter für Verweise ( Adresse) Beispiel int x = 5; Überblick: Teil C Systemnhe Softwreentwicklung Einordnung: Zeiger (Pointer) Literl: Drstellung eines Wertes 0110 0001 12 Progrmmstruktur und Module Vrible: Bezeichnung chr ; eines Dtenobjekts Behälter

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mthemtik I Dr. Wolfgng Metzler Universität Kssel unter Mitwirkung von Dipl.-Mth. Mrtin Steigemnn Sommersemester 2005 ii c 2005 Dr. Wolfgng Metzler, Fchbereich Mthemtik und Informtik der Universität

Mehr

Einschub: Zahlendarstellung und Codes

Einschub: Zahlendarstellung und Codes Einschu: Zhlendrstellung und Codes (Unvollständige Drstellung) DST SS23 - Codes und KMAPs P. Fischer, TI, Uni Mnnheim, Seite Binärzhlen N-stellige Binärzhl:... Einzelne Stellen heißen Bits (inry digits)

Mehr

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung Kids Ernährung für Tipps 10 Spiel mit uns! gesunden Zur Weißt du noch, wie du Rd fhren lerntest? Ds Wichtigste dei wr zu lernen ds Gleichgewicht zu hlten. Sold es gefunden wr, konntest du die Pedle gleichmäßig

Mehr

Beschäftigungssicherheit als Option in Cafeteria-Systemen **

Beschäftigungssicherheit als Option in Cafeteria-Systemen ** Thoms Bürkle: Beschäftigungssicherheit ls Option in Cfeteri-Systemen (ZfP 1/2001) 37 Thoms Bürkle * Beschäftigungssicherheit ls Option in Cfeteri-Systemen ** Bei der Konzeption von Cfeteri-Systemen stnden

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

ROUTER ABSCHIRM REPORT

ROUTER ABSCHIRM REPORT ROUTER ABSCHIRM REPORT Exklusiv von Deutschlnds PC-Sicherheitsexperte Nr. 1 Michel-A. Beisecker Der Router-Aschirm-Report Dmit vernichten Sie die gefährlichsten Schdprogrmme, die Ihren Router edrohen Lieer

Mehr

5.4 CMOS Schaltungen und VLSIDesign

5.4 CMOS Schaltungen und VLSIDesign Kp5.fm Seite 447 Dienstg, 7. Septemer 2 :55 3 5.4 CMOS Schltungen und VLSI Design 447 r u u r id + + A. 5.39: Progrmmierrer Gitterustein 5.4 CMOS Schltungen und VLSIDesign Die Boolesche Alger eginnt mit

Mehr

4.2 Balkensysteme. Aufgaben

4.2 Balkensysteme. Aufgaben Technische Mechnik 2 4.2-1 Prof. r. Wndinger ufgbe 1: 4.2 lkenssteme ufgben er bgebildete lken ist in den Punkten und gelenkig gelgert. Im Punkt greift die Krft n. Im ereich beträgt die iegesteifigkeit

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Hinweise für den schulischen Umgang mit lese-/rechtschreibschwachen Kindern speziell in der Sekundarstufe I

Hinweise für den schulischen Umgang mit lese-/rechtschreibschwachen Kindern speziell in der Sekundarstufe I Hilfe, Legsthenie Hinweise für den schulischen Umgng mit lese-/rechtschreischwchen Kindern speziell in der Sekundrstufe I 2 Brigitt Amnn, Schulpsychologie Bludenz Annelies Fliri, Lehrerin für spezifische

Mehr

12 Schweißnahtberechnung

12 Schweißnahtberechnung 225 12 Schweißnherechnung 12 Schweißnherechnung Die Berechnung der ufreenden Spnnungen in Schweißnähen erfolg im Regelfll mi Hilfe der elemenren Gleichungen der esigkeislehre. Auf weierführende Berechnungsverfhren,

Mehr

Dental-CT bei Kindern Technische Vorgehensweise und exemplarische Befunde

Dental-CT bei Kindern Technische Vorgehensweise und exemplarische Befunde Corneli Schröder, Alexnder Schumm Dentl-CT ei Kindern Technische Vorgehensweise und exemplrische Befunde Die Computertomogrphie der Zhnreihen (Dentl-CT) wird ei Kindern und Jugendlichen selten eingesetzt,

Mehr

Identifizierbarkeit von Sprachen

Identifizierbarkeit von Sprachen FRIEDRICH SCHILLER UNIVERSITÄT JENA Fkultät für Mthemtik und Informtik INSTITUT für INFORMATIK VORLESUNG IM WINTERSEMESTER STOCHASTISCHE GRAMMATIKMODELLE Ernst Günter Schukt-Tlmzzini 06. Quelle: /home/schukt/ltex/folien/sprchmodelle-00/ssm-06.tex

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Institut für Volkswirtschaftslehre und Wirtschaftspolitik. Prof. Dr. Andreas Thiemer. VWL-Semesterprojekt Nr. 4 WS 2007/2008. Bayessche Lemminge

Institut für Volkswirtschaftslehre und Wirtschaftspolitik. Prof. Dr. Andreas Thiemer. VWL-Semesterprojekt Nr. 4 WS 2007/2008. Bayessche Lemminge Institut für Volkswirtschftslehre und Wirtschftspolitik Prof. Dr. ndres Thiemer VWL-Semesterprojekt Nr. 4 WS 007/008 yessche Lemminge Ein Experiment mit Informtionskskden Unter Mitreit von: Olg eder xel

Mehr

Installations und Bedienungsanleitung

Installations und Bedienungsanleitung Instlltions und Bedienungsnleitung EKRUCBS Instlltions und Bedienungsnleitung Deutsch Inhltsverzeichnis Inhltsverzeichnis Für den Benutzer 2 1 Schltflächen 2 2 Sttussymole 2 Für den Instllteur 3 3 Üersicht:

Mehr

McAfee Firewall Enterprise

McAfee Firewall Enterprise Hnduch für den Schnellstrt Revision B McAfee Firewll Enterprise Version 8.3.x In diesem Hnduch für den Schnellstrt finden Sie llgemeine Anweisungen zum Einrichten von McAfee Firewll Enterprise (im Folgenden

Mehr

Motivation. Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume. Überblick. Pseudocode von SEARCH. in binären Suchbäumen. in binären Suchbäumen

Motivation. Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume. Überblick. Pseudocode von SEARCH. in binären Suchbäumen. in binären Suchbäumen Kp. 4.2 inäre Schäme ff Kp. 4.: VL-äme Professor r. Lehrsthl für lgorithm Engineering, LS11 Fkltät für Informtik, TU ortmnd Motition Wrm soll ich hete hier leien? lncierte äme rchen Sie immer wieder! Ws

Mehr

Welchen Laser bei welcher Gefäßanomalie der Haut einsetzen?

Welchen Laser bei welcher Gefäßanomalie der Haut einsetzen? top them Von Angiomen is Telengiektsien Welchen Lser ei welcher Gefäßnomlie der Hut einsetzen? Dr. Susnne Roos, Dr. Syrus Krsi, Prof. Dr. Christin Rulin Lserklinik Krlsruhe Vskuläre Hutveränderungen sind

Mehr

Kapitel 6 E-Mails senden und empfangen

Kapitel 6 E-Mails senden und empfangen Kpitel 6 E-Mils senden und empfngen Sie ist zwr mittlerweile infolge des hohen Spmufkommens ein wenig in Verruf gerten, gehört er immer noch zum Stndrdkommuniktionsmittel des Weürgers: die E-Mil. Zentrle

Mehr

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen 5 2014 Sonderdruck us BWK 5-2014 Wichtige Kennzhlen und effiziente Plnung für die dezentrle Wärmewende Nutzung der Abwärme us Erneuerbre-Energie-Anlgen Wichtige Kennzhlen und effiziente Plnung für die

Mehr

Sie das Gerät aus und überprüfen Sie den Lieferumfang. Netzkabel. Trägerbogen/Plastikkarten-Trägerbogen DVD-ROM

Sie das Gerät aus und überprüfen Sie den Lieferumfang. Netzkabel. Trägerbogen/Plastikkarten-Trägerbogen DVD-ROM Instlltionsnleitung Hier eginnen ADS-2100 Lesen Sie zuerst die Produkt-Siherheitshinweise, evor Sie ds Gerät einrihten. Lesen Sie dnn diese Instlltionsnleitung zur korrekten Einrihtung und Instlltion.

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium 521310620_1001.indd 1 03.12.09 14:50 Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die

Mehr

Großübung Balkenbiegung Biegelinie

Großübung Balkenbiegung Biegelinie Großüung Bkeniegung Biegeinie Es geen die in der Voresung geroffenen Annhmen: - Der Bken is unese gerde. - Ds eri sei üer den Querschni homogen und iner esisch. - Die Besung erfog durch Biegemomene und

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Kapitel 8 Apps installieren und verwalten

Kapitel 8 Apps installieren und verwalten Kpitel 8 Apps instllieren und verwlten In diesem Kpitel sehen wir uns die Stndrdquelle ller Apps einml etws genuer n, den Google Ply Store (kurz: Google Ply oder Ply Store). Er ist der Dreh- und Angelpunkt,

Mehr

Entwurf und Realisierung analoger und digitaler Filter

Entwurf und Realisierung analoger und digitaler Filter Signl- und Messwert- Verrbeitung Dr. K. Schefer Entwurf und Relisierung nloger und digitler Filter Im Rhmen dieses Versuchs wollen wir uns mit der Dimensionierung von nlogen und digitlen Filtern und mit

Mehr

Das Coulombsche Gesetz

Das Coulombsche Gesetz . ei r = 0 befindet sich eine Ldung Q = 4,0nC und bei r = 40cm eine Ldung Q = 5,0nC ortsfest, so dss sie sich nicht bewegen können. Ds Coulombsche Gesetz Q = 4,0nC Q = 5,0nC r Lösung: Wo muss eine Ldung

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme. Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Netzstrategien für Betreiber von Energienetzen Verschmelzung von Technik und Regulierung Teil 4 von 4

Netzstrategien für Betreiber von Energienetzen Verschmelzung von Technik und Regulierung Teil 4 von 4 Orgnistion & Mngement Netzstrtegien für Betreier von Energienetzen Verschmelzung von Technik und Regulierung Teil 4 von 4 Quelle: Eisenhns Fotoli.com Der vierte und letzte Teil der Veröffentlichungsreihe

Mehr

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium

Schützen Sie diejenigen, die Ihnen am Herzen liegen. Risikopremium Schützen Sie diejenigen, die Ihnen m Herzen liegen Risikopremium Verntwortung heißt, weiter zu denken Die richtige Berufswhl, die Gründung einer eigenen Fmilie, die eigenen vier Wände, der Schritt in die

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

bei Problemen die Theorie und die Beispiele am Anfang jeder Lerneinheit durcharbeiten

bei Problemen die Theorie und die Beispiele am Anfang jeder Lerneinheit durcharbeiten Ds knnst du schon º Terme umformen º Gleichungen ufstellen und lösen º Funktionsgrphen zeichnen º Whrscheinlichkeiten erechnen Erfolge mithilfe des Aschlusstests üerprüfen ei Prolemen die Theorie und die

Mehr

Version 3. Installation. Konfiguration. Bedienung. Referenz. SYNCING.NET Technologies GmbH Weipertstr. 8-10 74076 Heilbronn www.syncing.

Version 3. Installation. Konfiguration. Bedienung. Referenz. SYNCING.NET Technologies GmbH Weipertstr. 8-10 74076 Heilbronn www.syncing. Rev. 03 SNT 000.2547 Version 3 Instlltion Konfigurtion Bedienung Referenz SYNCING.NET Technologies GmbH Weipertstr. 8-10 74076 Heilbronn www.syncing.net Inhltsverzeichnis Inhltsverzeichnis Einleitung 5

Mehr

McAfee Firewall Enterprise

McAfee Firewall Enterprise Hnduh für den Shnellstrt Revision C MAfee Firewll Enterprise Version 8.3.x In diesem Hnduh für den Shnellstrt finden Sie kurzgefsste Anweisungen zum Einrihten von MAfee Firewll Enterprise. 1 Üerprüfen

Mehr

Logische Grundschaltungen

Logische Grundschaltungen Elektrotechnisches Grundlgen-Lor II Logische Grundschltungen Versuch Nr. 9 Erforderliche Geräte Anzhl Bezeichnung, Dten GL-Nr. 1 Voltmeter 335 1 Steckrett SB 1 1 Steckrett SB 2 mit 5V Netzteil 1 Steckrett

Mehr

Karlsruher Institut für Technologie

Karlsruher Institut für Technologie Krlsruher Institut für Technologie Lehrstuhl für Progrmmierprdigmen Sprchtechnologie und Compiler WS 2010/2011 Dozent: Prof. Dr.-Ing. G. Snelting Üungsleiter: Mtthis Brun Lösung zu Üungsltt 1 Ausge: 18.04.2012

Mehr

Controlling als strategisches Mittel im Multiprojektmanagement von Rudolf Fiedler

Controlling als strategisches Mittel im Multiprojektmanagement von Rudolf Fiedler von udolf Fiedler Zusmmenfssung: Der Beitrg eshreit die Aufgen des Projektontrollings, insesondere des strtegishen Projektontrollings. Für die wesentlihen Aufgenereihe werden prktikle Instrumente vorgestellt.

Mehr

Seminar zum anorganisch-chemischen Praktikum. Quantitative Analyse. Patrick Schwarz

Seminar zum anorganisch-chemischen Praktikum. Quantitative Analyse. Patrick Schwarz Seminr zum norgnisch-chemischen Prktikum Quntittive Anlyse Ptrick Schwrz itertur M. Scheer, J. Wchter Skript zum Prktikum Anorgnische Chemie I, Institut für Anorgnische Chemie der Universität Regensurg

Mehr

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit Teilnehmer/Apotheke/Ort (Zus/1) Frgeogen 1 zur Areitsmppe Durh Zustzempfehlung zu mehr Kunenzufrieenheit Bitte kreuzen Sie jeweils ie rihtige(n) Antwort(en) in en Felern is n! 1. Worin esteht ie Beeutung

Mehr

QualitŠtskriterien fÿr die betriebliche Gesundheitsfšrderung

QualitŠtskriterien fÿr die betriebliche Gesundheitsfšrderung WH IN U O Gesunde Mitreiter in gesunden Unternehmen Erfolgreiche Prxis etrielicher Gesundheitsfšrderung in Europ QulitŠtskriterien fÿr die etrieliche Gesundheitsfšrderung Vorwort Seit 1996 existiert ds

Mehr

Der Tabelle kann entnommen werden, welche Einschränkungen sich aufgrund der bestehenden Doppelbesteuerungsabkommen

Der Tabelle kann entnommen werden, welche Einschränkungen sich aufgrund der bestehenden Doppelbesteuerungsabkommen DEPARTEMENT FINANZEN UND RESSOURCEN Kntonles Steuermt Aru, 6. Ferur 2013 MERKBLATT Quellenesteuerung von Hypothekrzinsen n Personen ohne Wohnsitz oer Aufenthlt in er Schweiz ( 124 As. 1 StG un Art. 94

Mehr

Sponsored Search Markets

Sponsored Search Markets Sponsored Serch Mrkets ngelehnt n [EK1], Kpitel 15 Seminr Mschinelles Lernen, WS 21/211 Preise Slots b c Interessenten y z 19. Jnur 211 Jn Philip Mtuschek Sponsored Serch Mrkets Folie 1 Them dieses Vortrgs

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

Programmieren in C/C++ und Matlab

Programmieren in C/C++ und Matlab Progrmmieren in C/C und Mtl Sine Schmidt & Sestin Buer Institut für Geowissenschften Christin-Alrechts-Universität zu Kiel Progrmmieren in C/C und Mtl CAU, SS 08 for- / while-schleifen: - numerische Integrlerechnung

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr