Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)"

Transkript

1 Berlin, Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte Allgemeine Hinweise: Es sind keinerlei Hilfsmittel erlut. Benutzen Sie keinen Bleistift, sondern einen Kugelschreier oder Füller in der Fre schwrz oder lu. Beschriften Sie jedes Bltt mit Vor- und Nchnmen sowie Mtrikelnummer. Flls in der Aufgenstellung nicht explizit usgeschlossen, sind lle Antworten zu egründen! Antworten ohne Begründung erhlten 0 Punkte. Viel Erfolg!

2 Nme:... Mtr.-Nr.:... Aufge 1: Endliche Automten (1+6 Punkte) Sei M = ({z 0, z 1, z 2, z 3 }, {0, 1}, δ, {z 0 }, {z 3 }) mit δ gegeen durch: 0, 1 1 0, 1 0, 1 z 0 z 1 z 2 z 3 () Geen Sie einen regulären Ausdruck n, der T (M) eschreit (ohne Begründung). (0 1) 1 (0 1) (0 1) () Geen Sie einen NFA oder DFA M mit T (M ) = {w {0, 1} w / T (M)} n. Wir geen einen NFA M = ({z 0, z 1, z 2, z 3, z 4, z 5, z 6 }, {0, 1}, δ, {z 0, z 4 }, {z 3, z 4, z 5, z 6 }) mit folgendem δ n: 0, 1 0 0, 1 0, 1 z 0 z 1 z 2 z 3 0, 1 0, 1 z 4 z 5 z 6 Begründung: Ds Komplement der Sprche T (M) ist die Sprche, ei der der drittletzte Buchste keine 1 ist. Der NFA M esitzt zwei Strtzustände. Für lle Wörter der Sprche mit mehr ls 2 Buchsten existiert eine kzeptierende Berechnung welche in z 0 eginnt. Mit den Zuständen z 4, z 5 und z 6 werden lle Wörter mit weniger ls drei Buchsten kzeptiert. 2

3 Mtr.-Nr.:... Aufge 2: Rechtskongruenz (6 Punkte) Sei L Σ = {0, 1} eine Sprche. Angenommen es gilt (11, 1) R L und (0, 1) / R L. Beweisen oder widerlegen Sie folgende Aussge: Es existiert eine ntürliche Zhl n 1 mit (1 n, 0) R L. Hinweis: Die Rechtskongruenz R L ist definiert vermöge Die Aussge ist flsch: (x, y) R L ( w Σ : xw L yw L). Wegen (11, 1) R L gilt für jedes Wort w = 1 k 1 w mit w Σ und k N, k 1: 11w L 1w L w Σ : 1 k+1 w L 1 k w L Es folgt lso (1 k+1, 1 k ) R L, k N, k 1. Durch die Trnsitivität und Symmetrie der Äquivlenzreltion R L folgt uch für lle i, j 1 gilt (1 i, 1 j ) R L. Insesondere gilt für jedes n 1: (1 n, 1) R L. Aus (1 n, 1) R L und (1, 0) / R L folgt, dss (1 n, 0) / R L für lle n 1. Alterntiver Beweis: Sei M = (Z, Σ, δ, z 0, E) der Minimlutomt für L, d.h. für jede Äquivlenzklsse us R L enthält M genu einen Zustnd. Sei z der Zustnd für [1] RL, d.h. ˆδ(z 0, 1) = z. D (11, 1) R L gilt 11 [1] RL und somit ist δ(z, 1) = z. Für jedes n 1 gilt nun ˆδ(z 0, 1 n ) = z und somit 1 n [1] RL, d.h. (1 n, 1) R L. Aus (1 n, 1) R L und (1, 0) / R L folgt, dss (1 n, 0) / R L für lle n 1. 3

4 Mtr.-Nr.:... Aufge 3: Minimierung endlicher Automten (6 Punkte) Gegeen sei ein DFA M = (Z, Σ, δ, q 0, E), woei Z = {q 0, q 1, q 2, q 3, q 4 }, Σ = {, } und E = {q 3, q 4 }. Die Üerführungsfunktion δ sei wie folgt gegeen: q 1 q 3 q 0 q 2 q 4 Geen Sie einen minimlen DFA M mit T (M ) = T (M) n. Sie können für die Minimierung von M die folgende Telle enutzen. q 0 q 1 q 2 q 3 q 4 q 0 q 1 q 2 q 3 q 4 q 0 q 1 q 2 q 0 q 1 q 2 q 3 q 4 q 3 q 4 Ein minimler DFA ist entsprechend der oigen Telle ist M = (Z, Σ, δ, q 0, E) woei Z = {q 0, {q 1, q 2 }, {q 3, q 4 }}, Σ = {, } und E = {{q 3, q 4 }}. Die Üerführungsfunktion δ ist wie folgt definiert: 4

5 , q 0 {q 1, q 2 } {q 3, q 4 } 5

6 Mtr.-Nr.:... Aufge 4: Reguläre Sprchen (9 Punkte) Sei L Σ. Für ein Symol Σ definieren wir Beweisen oder widerlegen Sie: L/ := {w Σ w L}. () Wenn L/ regulär ist, so ist uch L regulär. (2 Punkte) Flsch: L = { n n n 1} ist eknntermßen nicht regulär. Allerdings ist L/ = regulär. () Wenn L regulär ist, so ist uch L/ regulär. (7 Punkte) Whr. Beweis vi Stz von Myhill-Nerode. Seien x, y Σ sodss (x, y) R L. Wir zeigen (x, y) R L/ : Sei z Σ elieig. Es gilt: xz L/ xz L yz L yz L/ Definition von L/ d (x, y) R L Definition von L/. Somit ist R L R L/. Aus der Regulrität von L folgt dmit, dss der Index von R L/ endlich ist und somit L/ regulär ist. Alterntiver Beweis üer Automtenmodifiktion: Sei M = (Z, Σ, δ, z 0, E) ein DFA mit T (M) = L und sei Z = {z Z δ(z, ) E} die Menge der Zustände us denen mit Lesen eines s in einen Endzustnd üergegngen wird. Wir zeigen nun, dss M = (Z, Σ, δ, z 0, Z ) die Sprche L/ kzeptiert, d.h. T (M ) = L/. : Sei w T (M ), d.h. ˆδ(z 0, w) = z mit z Z. Somit ist ˆδ(z 0, w) = δ(ˆδ(z 0, w), ) = δ(z, ) E und dher w L. Nch Definition von L/ gilt nun w L/. : Sei w L/. Also ist w L = T (M). Somit gilt ˆδ(z 0, w) E. Sei z = ˆδ(z 0, w) der vorletzte esuchte Zustnd. Es gilt δ(z, ) E und somit z Z. Dher ist ˆδ(z 0, w) Z und somit w T (M ). 6

7 Mtr.-Nr.:... Aufge 5: Büchi-Automten (4 Punkte) Geen Sie für die folgende Sprche einen nichtdeterministischen Büchi-Automten n (ohne Begründung). L = {x {, } ω in x kommen zwischen je zwei s ungerde viele s vor.} δ : M = ({z 0, z 1, z 2 }, {, }, δ, {z 0 }, {z 0, z 1, z 2 }) z 0 z 1 z 2, Oiger Automt ist für den Fll zwischen je zwei ufeinnderfolgenden s ungerde viele s vorkommen. Die Sprche L knn ntürlich uch so interpretiert werden, ds zwischen llen Pren von s ungerde viele s vorkommen. In diesem Fll knn es mx. 2 s geen. Der Automt sieht in dem Fll wie folgt us: z 0 z 1 z 2 z 2 Hinweis: Büchi Automten sind im SoSe 2014 nicht prüfungsrelevnt. 7

8 Mtr.-Nr.:... Aufge 6: Grmmtiken (1+2+6 Punkte) Sei G = ({S, A, B, C}, {,, c}, P, S) eine Grmmtik mit P = {S AC, A ABC BC, CB BC, BB, BB C cc, cc ccc}. () Geen Sie den größtmöglichen Typ der Grmmtik G ezüglich der Chomsky-Hierrchie n. Hinweis: Der größtmögliche Typ einer Grmmtik ist i, wenn sie vom Typ i ist er nicht vom Typ i + 1. () Geen Sie die von der Grmmtik G erzeugte Sprche L(G) n (ohne Begründung). (c) Zeigen Sie, dss L(G) nicht kontextfrei ist, indem Sie ds Pumping-Lemm für kontextfreie Sprchen enutzen. Hinweis: Pumping-Lemm für kontextfreie Sprchen: Ist eine Sprche L kontextfrei, so existiert eine ntürliche Zhl n derrt, dss sich lle z L der Länge z n so in der Form z = uvwxy für gewisse u, v, w, x, y Σ zerlegen lssen, dss gilt: (1) vx 1, (2) vwx n und (3) für lle i 0 ist uv i wx i y L. () Die Grmmtik G ist vom Typ 0, d es die verkürzende Regel BB git. () L(G) = { 2m m c 4m+2 m 1}. (c) Angenomen, L(G) wäre kontextfrei, so existierte ein n mit den Eigenschften des Pumping-Lemms für kontextfreie Sprchen. Wähle z = 2n n c 4n+2. Wegen z = 7n + 2 > n müsste es eine Zerlegung z = uvwxy mit vwx n und vx 1 geen. Bechte, dss weder v noch x zwei oder drei verschiedene Buchsten enthält, weil sonst in v i oder x i eine Wiederholung von Teilwörtern entsteht und somit ds so geildete Wort uv i wx i y nicht in der Sprche liegt. Wenn v und x uschließlich us einer Art von Buchste estehen, dnn liegt ds Wort uwy uch nicht in der Sprche, denn mindestens ein Buchste von einer Art fehlt und mindestens eine Art Buchste leit komplett erhlten im Vergleich zu uvwxy. Somit ist die Bedingung # (uwy) = 2 # (uwy) oder # c (uwy) = 4 # (uwy) + 2 verletzt. 8

9 Mtr.-Nr.:... Aufge 7: Polynomzeitreduktionen (2+8 Punkte) Ds Dominting Set-Prolem ist ereits us der Vorlesung eknnt. Dominting Set Einge: Ein ungerichteter Grph G = (V, E) und ein k N. Frge: Besitzt G eine dominierende Knotenmenge V der Größe höchstens k, d. h. V V, V k : u V : u V (u ht mindestens einen Nchrn in V )? Ein Grph G = (V, E) wird iprtit gennnt, flls es eine Zerlegung von V in V 1 und V 2 mit V 1 V 2 = git, sodss jede Knte einen Endknoten in V 1 und einen in V 2 ht. Entsprechend ist ds Biprtite Dominting Set-Prolem wie folgt definiert: Biprtite Dominting Set Einge: Ein iprtiter Grph G = (V 1 V 2, E) und ein k N. Frge: Besitzt G eine dominierende Knotenmenge der Größe höchstens k? Aus der Vorlesung ist eknnt, dss Dominting Set NP-vollständig ist. Betrchten Sie folgende Reduktion von Dominting Set uf Biprtite Dominting Set. Reduktion: Sei der Grph G = (V, E) und k N eine Einge für Dominting Set. Wir konstruieren einen Grph G = (V 1 V 2, E ) in 3 Schritten: 1. Füge in V 1 und V 2 jeweils eine Kopie von V ein. Bezeichne mit v 1 zw. v 2 die Kopie des Knotens v V in V 1 zw. V Für jede Knte {u, v} E füge die Knten {u 1, v 2 } und {v 1, u 2 } ein. Füge zusätzlich die Knte {u 1, u 2 } für lle Knoten u V ein. 3. Füge einen Knoten z 1 zu V 1 hinzu und uch einen Knoten z 2 zu V 2. Füge die Knte {z 1, z 2 } hinzu und uch die Knte {u 1, z 2 } für lle u V. Wir definieren nun die Polynomzeitreduktion f durch f(g, k) = (G, k + 1). () Geen Sie denjenigen Grph G n, welcher durch oige Reduktion für den wie folgt gegeenen Grphen G konstruiert wird. Geen Sie in eiden Grphen eine dominierende Menge minimler Größe n (ohne Begründung, einzeichnen genügt). v w G: u t G : v w u t 9

10 G : v 1 v 2 w 1 w 2 z 2 u 1 u 2 z 1 t 1 t 2 () Üerprüfen Sie die oige Reduktion f uf Korrektheit und korrigieren Sie diese gegeenenflls. Beweisen Sie nschließend die Korrektheit der (eventuell korrigierten) Reduktion, d. h. zeigen Sie (G, k) : (G, k) Dominting Set f(g, k) Biprtite Dominting Set. Beweisen Sie druf ufuend, dss Biprtite Dominting Set NP-vollständig ist. Die Reduktion f ist korrekt. Beweis der Korrektheit: : Sei (G, k) Dominting Set, dnn existiert eine dominierende Knotenmenge V mit V k. Wir zeigen nun, dss V 1 := {v 1 V 1 v V } {z 2 } eine dominierende Knotenmenge in G ist. Durch Konstruktionsschritt 3 dominiert z 2 den Knoten z 1 sowie lle Knoten us V 1. Für jeden Knoten v V \ V existiert ein Knoten u V sodss {u, v} E. Per Konstruktionsschritt 2 existiert eine Knte {u 1, v 2 } E und somit ist u 2 dominiert. Weiterhin ist {u 1, u 2 } E, d.h. lle Kopien dominierender Knoten in V 2 werden durch V 1 dominiert. Somit dominiert V 1 lle Knoten in G. : Sei (G, k + 1) Biprtite Dominting Set, dnn existiert eine dominierende Menge V mit V k + 1. Flls z 1 V, ersetze ihn durch z 2. Flls z 1 V, so muss z 2 ereits in V sein, d z 1 sonst nicht dominiert würde. Dmit werden (durch z 2 ) lle Knoten in V 1 {z 1, z 2 } dominiert. Wählen wir nun die zugehörige Knotenmenge V in G (lso V = {v V v 1 V v 2 V }), so ist diese per Konstruktion nun uch für G eine dominierende Knotenmenge mit höchstens k Knoten: Sei u V \ V ein elieiger Knoten. D u 2 durch V dominiert wird und nch Konstruktion von V gilt u 2 / V, git es einen Knoten v 1 V mit {v 1, u 2 } E. Es gilt nun v V und nch Konstruktionsschritt 2 gilt {u, v} E, somit ist u in G durch v dominiert. Beweis der NP-Vollständigkeit: Die oige Reduktion knn in O( V 2 ) Schritten und somit in polynomieller Zeit usgeführt werden. Aus der eknnten NP-Schwere von Dominting Set folgt mit der een gezeigten polynomiellen Reduktion, dss Biprtite Dominting Set NP-schwer ist. Als Spezilfll von Dominting Set liegt uch Biprtite Dominting Set in NP, ist insgesmt lso NP-vollständig. 10

11 Mtr.-Nr.:... Aufge 8: Vermischtes (9 Punkte) Bentworten Sie die folgenden Frgen zw. ewerten Sie die Aussgen zgl. ihres Whrheitsgehltes. Begründen Sie ihre Antworten jeweils kurz in 2-3 Sätzen. ) Wäre ds P vs. NP -Prolem gelöst, wenn mn zeigt, dss es eine kontextfreie Sprche L git, sodss L p m L für lle L NP \ {, Σ }? ) Unter der Annhme P = NP gilt: Jede NP-schwere Sprche knn in Polynomzeit uf einer deterministischen Turingmschine entschieden werden. Jede Sprche in P knn polynomiell uf St reduziert werden. Für jede endliche nichtleere Sprche A gilt, dss L p m A für lle L NP. c) D Typ-2 Sprchen nicht unter Schnitt geschlossen sind, knn es keine zwei Typ-2 Sprchen A, B geen, sodss uch A B eine Typ-2 Sprche ist. d) Es git unendlich viele Typ-1 Sprchen, die durch reguläre Ausdrücke eschrieen werden können. () Nein, denn mit dem CYK-Algorithmus existiert ein Algorithmus mit polynomieller Lufzeit für ds Wortprolem kontextfreier Sprchen. Also lssen sich lle kontextfreien Sprchen in Polynomzeit uf lle nichttrivilen Sprchen in NP reduzieren. Dies gilt unhängig von der Frge P vs. NP. () Nein, d es uch NP-schwere Sprchen git, die nicht in NP liegen. J, dies gilt, und uch unhängig dvon, o P = NP oder nicht, d P NP und St NP-schwer ist. Lut Definition von NP-Schwere lässt sich jede Sprche in NP polynomiell uf St reduzieren. J, dies gilt. Unter der Annhme P = NP liegen lle Sprchen L NP ereits in P, lso existiert ein Polynomzeitlgorithmus uf einer deterministischen Turingmschine, der L entscheidet. Ein Algorithmus zur Polynomzeitreduktion von L uf A könnte mittels dieses Algorithmus zunächst entscheiden, o die Einge in der Sprche L liegt, und nschließend ein Wort w A usgeen, flls die Einge in L liegt, nsonsten ein Wort w / A. D A endlich und nicht leer ist, existieren solche zwei festen Wörter finden. (c) Die Aussge ist nicht korrekt. Ist zum Beispiel die Sprche A die leere Menge, so ist unhängig von der Sprche B der Schnitt wieder leer und somit uch kontextfrei. (d) Jede reguläre Sprche knn durch einen regulären Ausdruck eschrieen werden. D lle regulären Sprchen uch Typ-1 Sprchen sind und es offensichtlich unendlich viele reguläre Sprchen git (z.b. {}, {}, {},...), ist die Aussge korrekt. 11

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden.

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden. Aufgensmmlung GTI Hinweise. Dies ist eine Aufgensmmlung zum Lernen für die Klusur, keine Proeklusur. Die Zeitduer, die für die Lösung vorgesehen ist, ist lso nicht uf drei Stunden normiert. Für die Klusur

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Nme Vornme Mtrikelnummer Lösungsvorschlg Universität Krlsruhe Institut für Theoretische Informtik o. Prof. Dr. P. Snders 8. März 2006 Klusur: Informtik III Aufgbe 1. Multiple Choice 10 Punkte Aufgbe 2.

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2003/04 ILKD Prof. Dr. D. Wgner 14. April 2004 2. Klusur zur Vorlesung Informtik III Wintersemester 2003/2004 Lösung! Bechten Sie: Bringen

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 2011/12 Minimierung von DFAs Frge Wie können wir feststellen, o ein DFA M = (Z, Σ, δ, q 0,

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur Grundlgen der Theoretischen Infomtik SS 213 Institut für Informtik Prof. Dr. Ulrich Furch Dr. Mnfred Jckel Dr. Björn Pelzer Christin Schwrz Nchklusur Modul Grundlgen der Theoretischen Informtik 4IN118/INLP1

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung Technische Universität München Sommer 2016 Prof. J. Esprz / Dr. M. Luttenerger, S. Sickert Lösung Einführung in die theoretische Informtik Klusur Bechten Sie: Soweit nicht nders ngegeen, ist stets eine

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm Reguläre δ: Σ (Q Q Ω) Beispiel δ 0 δ 0 1 2 1 2 0 1 2 δ Formle Automt Reguläre Definition Ein nicht-deterministischer, endlicher Automt esteht us einer

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten Fkultät IV Deprtment Mthemtik Lehrstuhl für Mthemtische Logik und Theoretische Informtik Prof. Dr. Dieter Spreen Dipl.Inform. Christin Uhrhn Grundlgen der Theoretischen Informtik, WS11/12 Minimle Automten

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informtik Sommersemester 27 Üungsltt 3 Üungsltt Wir unterscheiden zwischen Üungs- und Agelättern.

Mehr

DEA1 Deterministische Version

DEA1 Deterministische Version Endliche Automten 4 Deterministische endliche Automten Zu dem nichtdeterministischen Automten EA git es eine deterministische Version. EA Akzeptor für Wörter üer X = { } mit mindestens einem führenden.

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Nico Döttling Dirk Achench Tois Nilges Vorlesung Theoretische Grundlgen der Informtik Üungsltt Nr. svorschlg Aufge (K) (4 Punkte): Semi-Thue-Systeme

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Vielen Dnk n Jn Wgener für die erweiterten Aufgenlösungen Einführung in die theoretische Informtik Sommersemester 2017 Üungsltt

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlgen der Informtik Vorlesungsprüfung vom 02.03.2007 Gruppe B Lösung Nme: Mtrikelnummer: Zuerst itte Nme und Mtrikelnummer uf ds Titelltt schreien. Es sind keine Unterlgen und keine Temreit erlut.

Mehr

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 2. November 2017 Rndll Munroe, https://xkcd.com/851_mke_it_better/, CC-BY-NC 2.5 Mrkus Krötzsch, 2. November 2017 Formle Systeme

Mehr

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift

Mehr

Automaten und formale Sprachen Bemerkungen zu den Folien

Automaten und formale Sprachen Bemerkungen zu den Folien Inhltsverzeichnis Automten und formle Sprchen Bemerkungen zu den Folien 1 Wiederholung Mengentheorie 3 Beispiele für die Potenzmenge (Folie 28)........................... 3 Beispiele für ds Kreuzprodukt

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Weihnachtsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16

Weihnachtsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16 Krlsruher Institut für Technologie Institut für Theoretische Informtik Prof. Dr. Peter Snders L. Hüschle-Schneider, T. Mier Weihnchtsltt zu Theoretische Grundlgen der Informtik im WS 2015/16 http://lgo2.iti.kit.edu/tgi2015.php

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

L = L(a(a b) b b(a b) a)

L = L(a(a b) b b(a b) a) Lösungen zur Proeklusur mit Kommentren Aufge 1. Ein Wort w {,} liegt genu dnn in L, wenn es entweder mit nfängt und mit endet oder umgekehrt. Also erhält mn L = L(( ) ( ) ). Ein DEA, der die Sprche L kzeptiert,

Mehr

Deterministische endliche Automaten

Deterministische endliche Automaten Endliche Automten Idee: endlicher Automt A ht endlich viele innere Zustände liest Einge wєσ* zeichenweise von links nch rechts git zum Schluß eine J/Nein Antwort A Lesekopf w 1 w 2 w n gelesenes Symol

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2004/05 ILKD Prof. Dr. D. Wgner 24. Ferur 2005 1. Klusur zur Vorlesung Informtik III Wintersemester 2004/2005 Lösung! Bechten Sie: Bringen

Mehr

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016)

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Technische Universität Berlin, Berlin, 28.07.2016 Name:... Matr.-Nr.:... Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Einlesezeit: Bearbeitungszeit: Max.

Mehr

TU Berlin Nachklausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2012)

TU Berlin Nachklausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2012) Berlin, 05. Oktober 2012 Name:... Matr.-Nr.:... TU Berlin Nachklausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2012) 1 2 3 4 5 6 7 Σ Bearbeitungszeit: 60 min.

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlgen der Theoretischen Informtik / Einführung in die Theoretische Informtik I Bernhrd Beckert Institut für Informtik Sommersemester 2007 B. Beckert Grundlgen d. Theoretischen Informtik:

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ).

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ. x Σ.x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ). F3

Mehr

1.1 Grundlagen: Reguläre Ausdrücke

1.1 Grundlagen: Reguläre Ausdrücke 11 Grundlgen: Reguläre Ausdrücke Progrmmtext enutzt ein endliches Alphet Σ von Einge-Zeichen, zb ASCII :-) Die Menge der Textschnitte einer Token-Klsse ist i regulär Reguläre Sprchen knn mn mithile regulärer

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 1 15. April 2014 Inhlt der gnzen Vorlesung Automten uf endlichen Wörtern uf undendlichen Wörtern uf endlichen Bäumen Spiele Erreichrkeitsspiele Ehrenfeucht-Frïssé Spiele

Mehr

Kontextsensitive Sprachen. Christian Scheideler Universität Paderborn WS 2014

Kontextsensitive Sprachen. Christian Scheideler Universität Paderborn WS 2014 Kontextsensitive Sprchen Christin Scheideler Universität Pderorn WS 2014 Kontextsensitive Sprchen Definition 5.1.4 Eine Grmmtik heißt kontextsensitiv oder vom Typ Chomsky-1 flls für jede Regel u v gilt

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 011/1 Inhlt der Vorlesung Themen dieser VL: Welche Rechenmodelle sind däqut? Welche Proleme

Mehr

Grundbegriffe der Informatik Aufgabenblatt 6

Grundbegriffe der Informatik Aufgabenblatt 6 Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude

Mehr

Institut für Kryptographie und Sicherheit Dr. Jörn Müller-Quade. Musterlösung zur Hauptklausur Informatik III Wintersemester 2008/2009

Institut für Kryptographie und Sicherheit Dr. Jörn Müller-Quade. Musterlösung zur Hauptklausur Informatik III Wintersemester 2008/2009 Institut für Kryptogrphie und Sicherheit Dr. Jörn Müller-Qude Musterlösung zur Huptklusur Informtik III Wintersemester 2008/2009 Nme: Mtrikelnummer: Seite 1 Aufge 1 (5 + 5 = 10 Punkte) () Gegeen sei der

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

Automaten und Formale Sprachen 7. Vorlesung

Automaten und Formale Sprachen 7. Vorlesung Automten und Formle Sprchen 7. Vorlesung Mrtin Dietzfelinger Bis nächste Woche: Folien studieren. Detils, Beispiele im Skript, Seiten 70 99. Definitionen lernen, Beispiele nsehen, Frgen vorereiten. Üungsufgen

Mehr

Grundlagen der Informatik II Prüfung SS Aufg./15 pages 2. ) = a n ba m1 ba m k

Grundlagen der Informatik II Prüfung SS Aufg./15 pages 2. ) = a n ba m1 ba m k Grundlgen der Informtik II Prüfung 23.7.212 SS 212 1 Aufg./15 pges 2 Aufge 1. Endliche Automten (1 Punkte) / 1 Gegeen seien die folgenden Sprchen L und ihr Komplement L: k L = w {, } w = n ( m i ) = n

Mehr

Formal Languages and Automata

Formal Languages and Automata Forml Lnguges nd Automt Aufgensmmlung Jn Hldik und Stephn Schulz 10. Novemer 2014 1 Üungsufgen 1.1 Endliche Automten 1.1.1 Aufge Sei Σ = {, }. Geen Sie für die folgenden Sprchen einen DFA n L 0 = {w Σ

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Kürzeste Wege. möglich ist 6. Füge v zu S hinzu und setze d[v] d [v] (u,v) E. Datenstrukturen und Algorithmen 14. Elementare Graphalgorithmen

Kürzeste Wege. möglich ist 6. Füge v zu S hinzu und setze d[v] d [v] (u,v) E. Datenstrukturen und Algorithmen 14. Elementare Graphalgorithmen Algorithmus von Dijkstr: 1. Es sei S ie Menge er enteckten Knoten. Invrinte: Merke optimle Lösung für S: Für lle v S sei [v] = δ(s,v) ie Länge es kürzesten Weges von s nch v 3. Zu Beginn: S={s} un [s]=

Mehr

Reguläre Ausdrücke, In12 G8

Reguläre Ausdrücke, In12 G8 Reguläre Ausdrücke, In2 G8 Beweise, dss A* unendlich viele Elemente esitzt. Hinweis: Indirekter Beweis R A = {0,} Bilde A 3, A 4 A = {,, c} Bilde A 2, A 3 A = {,, c} Gi die Menge ller Wörter der Länge

Mehr

Berechenbarkeitstheorie 2. Vorlesung

Berechenbarkeitstheorie 2. Vorlesung Berechenrkeitstheorie Dr. Frnzisk Jhnke Institut für Mthemtische Logik und Grundlgenforschung WWU Münster WS 15/16 Alle Folien unter Cretive Commons Attriution-NonCommercil 3.0 Unported Lizenz. Deterministischer

Mehr

18. Algorithmus der Woche Der Euklidische Algorithmus

18. Algorithmus der Woche Der Euklidische Algorithmus 18. Algorithmus der Woche Der Euklidische Algorithmus Autor Friedrich Eisenrnd, Universität Dortmund Heute ehndeln wir den ältesten ereits us Aufzeichnungen us der Antike eknnten Algorithmus. Er wurde

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Wohe 7 19. Mi 2014 Inhlt der heutigen Vorlesung Alternierende Automten Definition Verindung zu regulären Sprhen Komplementtion Engel und Teufel Ws ist eine nihtdeterministishe

Mehr

Die Dreiecke ADM A und BCM C sind kongruent aufgrund

Die Dreiecke ADM A und BCM C sind kongruent aufgrund Westfälische Wilhelms-Universität Münster Mthemtisches Institut pl. Prof. Dr. Lutz Hille Dr. Krin Hlupczok Üungen zur Vorlesung Elementre Geometrie Sommersemester 010 Musterlösung zu ltt 4 vom 3. Mi 010

Mehr

1 Grundlagen der Theorie formaler Sprachen

1 Grundlagen der Theorie formaler Sprachen 1 Grundlgen der Theorie formler Sprchen Wir eginnen dmit, dss wir in diesem Kpitel zunchst einige grundlegende Begriffe und Methoden us der Theorie formler Sprchen, insesondere der regulären Sprchen, wiederholen.

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung . Üungsltt (mit en) 3. VU Formle Modellierung Mrion Brndsteidl, Gernot Slzer 3. Mi 3 (Korrektur 4.6.) Aufge (.3 Punkte) Sei A der folgende Mely-Automt. u/ h/ h/ h/ u/ h/ 3 4 u/ u/ () Geen Sie die Ausge

Mehr

Formale Sprachen. Endliche Automaten - Kleene. Reguläre Sprachen. Rudolf FREUND, Marion OSWALD. Endliche Automaten. Endliche Automaten: Beispiel

Formale Sprachen. Endliche Automaten - Kleene. Reguläre Sprachen. Rudolf FREUND, Marion OSWALD. Endliche Automaten. Endliche Automaten: Beispiel Formle Sprchen Reguläre Sprchen Endliche Automten - Kleene STEPHEN KLEENE (99-994) Rudolf FREUND, Mrion OSWALD 956: Representtion of events in nerve nets nd finite utomt. In: C.E. Shnnon und J. McCrthy

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundegriffe der Informtik Üung Simon Wcker Krlsruher Institut für Technologie Wintersemester 2015/2016 GBI Grundegriffe der Informtik Krlsruher Institut für Technologie 1 / 9 Regex-Bäume Anzhl A = {,

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.2

Algorithmen und Datenstrukturen 1 Kapitel 4.2 Endliche Automten Algorithmen und Dtenstrukturen 1 Kpitel 4.2 Roert Giegerich Technische Fkultät roert@techfk.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Roert Giegerich Endliche Automten

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

7 Modellierung von Abläufen

7 Modellierung von Abläufen 7 Modellierung von Aläufen In diesem Kpitel geht es drum, ds dynmische Verhlten von Systemen zu eschreien, z.b. die Wirkung von Bedienopertionen uf rele Automten oder uf die Benutzungsoerflächen von Softwre-Systemen

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlgen der Mthemtik, WS 2014/15 Thoms Timmermnn 3. Dezember 2014 Wiederholung: Konstruktion der gnzen Zhlen (i) Betrchten formle Differenzen b := (, b) mit, b N 0 (ii) Setzen b c d, flls +

Mehr

Endliche Automaten 7. Endliche Automaten

Endliche Automaten 7. Endliche Automaten Endliche Automten 7 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

Analysis I. Vorlesung 3

Analysis I. Vorlesung 3 Prof. Dr. H. Brenner Osnrüc WS 2013/2014 Anlysis I Vorlesung 3 Körper Wir werden nun die Eigenschften der reellen Zhlen esprechen. Grundlegende Eigenschften von mthemtischen Struuren werden ls Axiome ezeichnet.

Mehr

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Kapitel: Endliche Automaten & reguläre Sprachen. Endliche Automaten und reguläre Sprachen 1 / 125

Kapitel: Endliche Automaten & reguläre Sprachen. Endliche Automaten und reguläre Sprachen 1 / 125 Kpitel: Endliche Automten & reguläre Sprchen Endliche Automten und reguläre Sprchen 1 / 125 Endliche Automten Endliche Automten erluen eine Beschreiung von Hndlungsläufen: Wie ändert sich ein Systemzustnd

Mehr

Teil V: Formale Sprachen

Teil V: Formale Sprachen Formle Sprchen Teil V: Formle Sprchen 1. Sprchen und Grmmtiken 2. Endliche Automten Frnz-Josef Rdermcher & Uwe Schöning, Fkultät für Ingeneurwissenschften und Informtik, Universität Ulm, 2008/09 Formle

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag

Übungen zur Vorlesung Grundlagen der Mathematik II Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 2015 Bltt 6 26.05.2015 Üungen zur Vorlesung Grundlgen der Mthemtik II Lösungsvorschlg 21. ) Ein Qudrt mit der Seitenlänge + und dmit dem

Mehr

mathematik und informatik

mathematik und informatik Prof. Dr. André Schulz Kurs 0657 Grundlgen der Theoretischen Informtik A LESEPROBE mthemtik und informtik Ds Werk ist urheerrechtlich geschützt. Die ddurch egründeten Rechte, insesondere ds Recht der Vervielfältigung

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Potenzautomat. Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit

Potenzautomat. Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit 1 Potenzutomt Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit D(S, x) = d(s, x) s S für lle S P(Z), x I; F P = {S P(Z) S F }. Potenzutomt

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 6 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle ysteme, utomten, Prozesse 2010 M rockschmidt, F Emmes, C Fuhs, C Otto, T tröder Hinweise: Die Husufgben sollen in Gruppen von je 2 tudierenden us dem gleichen Tutorium berbeitet

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr