Berechenbarkeitstheorie 4. Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Berechenbarkeitstheorie 4. Vorlesung"

Transkript

1 1 Berechenbrkeitstheorie Dr. Institut für Mthemtische Logik und Grundlgenforschung WWU Münster WS 15/16 Alle Folien unter Cretive Commons Attribution-NonCommercil 3.0 Unported Lizenz.

2 Reguläre Ausdrücke Formlismus zum Beschreiben von formlen Sprchen ein Regulärer Ausdruck (RA) ist ein Wort über dem Alphbet Σ {, ε, (, ), +,, } 2 Syntx (1) Σ {, ε}: ist RA (2) Wenn A, B Reg. Ausdrücke, dnn uch (A + B) (3) Wenn A, B Reg. Ausdrücke, dnn uch A B (kurz AB) (4) Wenn A Reg. Ausdruck, dnn uch A (5) Wenn A Reg. Ausdruck, dnn uch (A) Bsp ((b + bb) b + ε) ist RA ( + b)b( b) ist kein RA Induktive Definition korrekt, d RA durch die Anwendung der (umgekehrten) Regeln immer kürzer werden

3 Semntik Regulärer Ausdrücke Für jeden RA R definieren wir induktiv eine Sprche L(R): (1) R =, dnn L(R) = R = ε, dnn L(R) = {ε} R =, und Σ, dnn L(R) = {} (2) R = (A + B) und A, B sind RA, dnn L(R) = L(A) L(B) (3) R = (AB) und A, B sind RA, dnn L(R) = L(A) L(B) (4) R = A und A ist RA, dnn L(R) = L(A) (5) R = (A) und A ist RA, dnn L(R) = L(A) 3 Reihenfolge der Opertoren: vor vor + Bsp. R = ( + b) b( + b) L(R) = {w {, b} w enthält Teilwort b}

4 Stz von Kleene Stz 5 {L RA R mit L(R) = L} = REG Beweis (Orgnistion) 4 1. Teil: 2. Teil: heute Wir konstruieren zu einem RA R einen NEA N mit L(R) = L(N) ds zeigt {L RA R mit L(R) = L} REG Wir konstruieren zu einem DEA M einen RA R mit L(M) = L(R) ds zeigt {L RA R mit L(R) = L} REG

5 Vom DEA zum RA Anstz Wenn L REG, dnn existiert ein DEA M der L erkennt. M = (Q, Σ, δ, 1, F ) mit Q = {1, 2,..., n} Ziel: Konstriere RA R mit L(R) = L 5 R k ij := RA für lle Wörter die von Zustnd i nch j führen ohne einen Zustnd > k zu benutzen. Anfngs- und Endzustnd i, j dürfen > k sein! b c b b, c c 4, b, c Bsp R 0 22 = c + ε R 2 24 = c b R 3 24 = (c b + c (b + c))

6 Von den Termen zum RA Annhme: Ich kenne lle Terme R k ij w L(M) genu dnn, wenn δ (1, w) = j und j F }{{} w R n 1j oberer Index n heißt keine Beschränkung 6 verbinde für lle kzeptierende Zustände die R k ij Terme R := R n 1f 1 + R n 1f 2 + R n 1f k wobei F = {f 1, f 2,..., f k }

7 Konstruktion der R k ij Terme Rekursive Konstuktion Bsisfll (R 0 ij ): R 0 ij := { nur direkte Übergänge flls i j und i { δ(i, ) = j} ε flls i = j und i { δ(i, ) = i} 7 Rekursion (R k ij ): ich kenne bereits lle R k 1 ij Bsp. von einem Luf us Rij 6 x x y z z y y y y z z j } {{ } R6j 5 i }{{}}{{} Ri6 5 }{{} R66 5 R66 5 R k knn ich mit Termen R k 1 beschreiben

8 Rekursion für R k ij 1. Möglichkeit: der Luf eines Wortes besucht nicht den Zustnd k R k ij R k 1 ij 2. Möglichkeit: der Luf eines Wortes besucht einml oder mehrmls den Zustnd k R k ij R k 1 ik (Rk 1 kk ) R k 1 kj es gibt keine ndere Möglichkeit, deshlb 8 R k ij = R k 1 ij + R k 1 ik (Rk 1 kk ) R k 1 kj Berechnung mit nsteigendem k (k = 0,..., n) ller R k ij Terme Dynmisches Progrmmieren

9 Beispiel b, c 1 2, b c { Rij 0 := flls i j und i { δ(i, ) = j} ε flls i = j und i { δ(i, ) = i} 9 R 0 11 = b + ε R 0 12 = + c R 0 21 = c R 0 22 = ( + b + ε) R k ij = Rk 1 ij + R k 1 ik (Rk 1 kk ) R k 1 kj R 1 11 = (b + ε) + (b + ε)(b + ε) (b + ε) = b R 1 12 = ( + c) + (b + ε)(b + ε) ( + c) = b ( + c) R 1 21 = c + c(b + ε) (b + ε) = cb R 1 22 = ( + b + ε) + c(b + ε) ( + c) = ( + b + ε) + cb ( + c) R = R 2 12 = b ( + c)+ b ( + c) [( + b + ε) + cb ( + c)] [( + b + ε) + cb ( + c)]

10 Fzit Reguläre Sprchen vom DEA erknnt (nch Def.) 10 Stz von Kleene Potenzutomt äquivlent zu RA Formlismus zum Beschreiben formler Sprchen äquivlent zum NEA Berechnungsmodell mit Nichtdeterminismus ε-übergängen

11 Minimierung von DEAs M 1 M 2 11 L(M 1 ) = { k k ist ungerde} L(M 2 ) = { k k ist ungerde} Definition Zwei DEAs M 1 und M 2 heißen äquivlent, gdw. L(M 1 ) = L(M 2 ) Frge: Welches ist der kleinste DEA für eine Sprche L? minimle Anzhl von Zuständen

12 Äquivlenz von Zuständen Definition Sei M = (Q, Σ, δ, q 0, F ) ein DEA, dnn heißen zwei Zustände p, q Q äquivlent (Schreibweise p q) gdw. z Σ : δ (p, z) F δ (q, z) F Zwei nicht äquivlente Zustände nennen wir uch trennbr. Bsp. q 1 q 2 q 4 q 3 12 q 1 und q 2 sind trennbr (z.b. durch ds Trennwort ) q 1 und q 3 sind äquivlent

13 Lemm 2 Die Reltion ist eine Äquivlenzreltion. Erinnerung: p q wenn z Σ : Symmetrie δ (p, z) F δ (q, z) F δ (p, z) F δ (q, z) F δ (q, z) F δ (p, z) F 13 Reflexivität p Q: δ (p, z) F δ (p, z) F Trnsitivität [ δ (p, z) F δ (q, z) F δ (q, z) F δ (r, z) F ] δ (p, z) F δ (r, z) F die Zustndsmenge Q zerfällt in Äquivlenzklssen Äquivlenzklsse die q Q enthält [q] := {p Q p q} Für zwei Zustände p, q us einer Klsse gilt 1. p F q F, 2. Σ, dss δ(p, ) δ(q, ).

14 Der kollbierte Automt Definition Der kollbierte Automt M = (Q, Σ, δ, q 0, F ) ist ein DEA mit Q = {[q] q Q}, δ ([q], ) = [δ(q, )], q 0 = [q 0 ], F = {[q] q F }. Außerdem werden lle nicht erreichbren Zustände gestrichen. Definition ist korrekt, denn Alle Elemente us [q] beschreiben den gleichen Folgezustnd bzgl. δ p q δ(p, ) δ(q, ) Akzeptierte Klssen sind wohldefiniert p 1, p 2 [q] δ(p 1, ε) F δ(p 2, ε) F p 1 F p 2 F 14

15 M Beispiel: Der kollbierte Automt b b q 1 q 2 q 4 q 3 b b Alle Zustndspre trennbr bis uf q 1 q 3, q 2 q 4. zwei Klssen: [q 1 ] = {q 1, q 3 } und [q 2 ] = {q 2, q 4 }, d.h. Q = {[q 1 ], [q 2 ]} nur [q 2 ] enthält kz. Zustände, deshlb F = {[q 2 ]} [q 1 ] enthält Strtzustnd, deshlb q 0 = [q 1 ] 15 Kollbierter Automt: b [q 1 ] [q 2 ] b

16 Lemm 2 Sei M der kollbierte Automt von M, dnn gilt L(M) = L(M ). Beweis wir betrchten ein w Σ, w = x 1 x 2 x k, mit x i Σ sei (s 1, s 2,..., s k+1 ) der w-luf in M (s i Q) Zur Erinnerung 1. q 0 = s 1, 2. δ(s i, x i ) = s i+1 für lle 1 i k. 16 ([s 1 ], [s 2 ],..., [s k+1 ]) ist der w-luf in M, denn 1. q 0 = [q 0 ] = [s 1 ], 2. δ ([s i ], x i ) = [δ(s i, x i )] = [s i+1 ] für lle 1 i k. [s k+1 ] F s k+1 F w-luf kzeptierend in M gdw. w-luf kzeptierend in M w L(M) w L(M )

17 Tble-Filling Algorithmus Algorithmus zum effizienten Finden ller äquivlenten Zustände Dtenstruktur: Tbelle T, mit Q Zeilen und Splten, Q = {1, 2, 3,..., n}. Invrinte: Enthält T [p, q] die Mrkierung 1 dnn sind p und q trennbr (p q) Tbelle T wird nch und nch mit 1en gefüllt bis eine Abruchbedingung eintritt m Ende notieren lle unmrkierten Einträge T [p, q] äquivlente Zustndspre p, q 17

18 Tble-Filling Algorithmus Wir füllen nur die Hälfte der Tbelle T us (T [p, q] mit p < q) Algorithm 1: TbleFilling Algorithmus 1 Initilisiere T 0; 2 for ll (p, q) Q Q do 3 if (p F und q F ) oder (p F und q F ) then T [p, q] = 1; 4 end 5 repet 6 for ll (p, q) Q Q mit T [p, q] 1 do 7 if Σ: T [δ(p, ), δ(q, )] == 1 then T [p, q] = 1; 8 end 9 until keine neue Mrkierung gesetzt; 18

19 Tble-Filling Algorithmus Wir füllen nur die Hälfte der Tbelle T us (T [p, q] mit p < q) Algorithm 1: TbleFilling Algorithmus 1 Initilisiere T 0; Initilisierung 2 for ll (p, q) Q Q do 3 if (p F und q F ) oder (p F und q F ) then T [p, q] = 1; 4 end 5 repet 6 for ll (p, q) Q Q mit T [p, q] 1 do 7 if Σ: T [δ(p, ), δ(q, )] == 1 then T [p, q] = 1; 8 end 9 until keine neue Mrkierung gesetzt; Abbruchbedingung Bedingung zum Setzen neuer Mrken 18

20 Tble-Filling Algorithmus Beispiel 19

21 Tble-Filling Algorithmus Beispiel 1 b b 3 b 2 4,b Keine weiteren Veränderungen 1 3 und

22 Korrektheit TF-Algorithmus Zu zeigen: 1. nur trennbre Pre wurden mrkiert (Invrinte bleibt erhlten) 2. lle trennbren Pre wurden mrkiert 1. 2 Möglichkeiten wie mrkiert wurde Bei der Initilisierung: if (p F und q F ) oder (p F und q F ) then T [p, q] = 1 p, q trennbr mit ε 20 In der repet Schleife: if Σ: T [δ(p, ), δ(q, )] == 1 then T [p, q] = 1 δ(p, ), δ(q, ) trennbr mit w Σ (Invrinte) p, q trennbr mit w

23 2. Alle trennbren Pre wurden mrkiert Schlechtes Pr: trennbr ber nicht mrkiert Annhme: sei (p, q) schlechtes Pr mit kürzestem Trennwort w und kein schlechtes Pr besitzt ein Trennwort kürzer ls w w ε, denn sonst wäre (p, q) während der Initilisierung mrkiert worden w = u mit Σ p = δ(p, ) und q = δ(q, ) w = } {{ } u δ (p, u) = δ (q, u) = 21 OBdA δ (p, w) F δ (q, w) F T [p, q ] 1, denn sonst wäre während der Ausführung T [p, q] = 1 gesetzt ber: (p, q ) trennbr mit u, und u < w Widerspruch zur Annhme, d.h. es gibt kein schlechtes Pr!

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

Berechenbarkeitstheorie 2. Vorlesung

Berechenbarkeitstheorie 2. Vorlesung Berechenrkeitstheorie Dr. Frnzisk Jhnke Institut für Mthemtische Logik und Grundlgenforschung WWU Münster WS 15/16 Alle Folien unter Cretive Commons Attriution-NonCommercil 3.0 Unported Lizenz. Deterministischer

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2011 Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 011 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Snder Bruggink Automten und Formle Sprchen 1 Reguläre Sprchen Wir eschäftigen uns

Mehr

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht

2 2 Reguläre Sprachen. 2.6 Minimale DFAs und der Satz von Myhill-Nerode. Übersicht Formle Systeme, Automten, Prozesse Übersicht 2 2.1 Reguläre Ausdrücke 2.2 Endliche Automten 2.3 Nichtdeterministische endliche Automten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.7 Berechnung

Mehr

Minimierung von DFAs. Minimierung 21 / 98

Minimierung von DFAs. Minimierung 21 / 98 Minimierung von DFAs Minimierung 21 / 98 Ein Beispiel: Die reguläre Sprche L({, } ) Wie stellt mn fest, o ein Wort ds Suffix esitzt? Ein erster Anstz: Speichere im ktuellen Zustnd die eiden zuletzt gelesenen

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

2.6 Reduktion endlicher Automaten

2.6 Reduktion endlicher Automaten Endliche Automten Jörg Roth 153 2.6 Reduktion endlicher Automten Motivtion: Wir sind n Automten interessiert, die mit möglichst wenigen Zuständen uskommen. Automten, die eine Sprche mit einem Minimum n

Mehr

Finite-State Technology

Finite-State Technology Finite-Stte Technology Teil IV: Automten (2. Teil) 1 Definition eines -NEA Ein -NEA ist ein Quintupel A = (Q,, δ, q0, F), wobei Q = eine endliche Menge von Zuständen = eine endliche Menge von Eingbesymbolen

Mehr

Minimalität des Myhill-Nerode Automaten

Minimalität des Myhill-Nerode Automaten inimlität des yhill-nerode Automten Wir wollen zeigen, dss der im Beweis zum yhill-nerode Stz konstruierte DEA für die reguläre Sprche L immer der DEA mit den wenigsten Zuständen für L ist. Sei 0 der konstruierte

Mehr

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 2. November 2017 Rndll Munroe, https://xkcd.com/851_mke_it_better/, CC-BY-NC 2.5 Mrkus Krötzsch, 2. November 2017 Formle Systeme

Mehr

Potenzautomat. Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit

Potenzautomat. Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit 1 Potenzutomt Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit D(S, x) = d(s, x) s S für lle S P(Z), x I; F P = {S P(Z) S F }. Potenzutomt

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

DEA1 Deterministische Version

DEA1 Deterministische Version Endliche Automten 4 Deterministische endliche Automten Zu dem nichtdeterministischen Automten EA git es eine deterministische Version. EA Akzeptor für Wörter üer X = { } mit mindestens einem führenden.

Mehr

Teil III. Reguläre Sprachen und endliche Automaten Teil 3: Die Nerode-Relation

Teil III. Reguläre Sprachen und endliche Automaten Teil 3: Die Nerode-Relation Teil III Reguläre Sprchen und endliche Automten Teil 3: Die Nerode-Reltion Aleitungen und die Nerode-Reltion L Aleitung einer Sprche Sei Σ ein Alphet, L Σ, x Σ. Aleitung von L nch x: D x L := {z Σ xz L}

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlgen der Theoretischen Informtik 3. Endliche Automten (II) 28.04.2016 Vioric Sofronie-Stokkermns e-mil: sofronie@uni-koblenz.de 1 Übersicht 1. Motivtion 2. Terminologie 3. Endliche Automten und reguläre

Mehr

Endliche Automaten 7. Endliche Automaten

Endliche Automaten 7. Endliche Automaten Endliche Automten 7 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten Fkultät IV Deprtment Mthemtik Lehrstuhl für Mthemtische Logik und Theoretische Informtik Prof. Dr. Dieter Spreen Dipl.Inform. Christin Uhrhn Grundlgen der Theoretischen Informtik, WS11/12 Minimle Automten

Mehr

Formale Sprachen. Endliche Automaten - Kleene. Reguläre Sprachen. Rudolf FREUND, Marion OSWALD. Endliche Automaten. Endliche Automaten: Beispiel

Formale Sprachen. Endliche Automaten - Kleene. Reguläre Sprachen. Rudolf FREUND, Marion OSWALD. Endliche Automaten. Endliche Automaten: Beispiel Formle Sprchen Reguläre Sprchen Endliche Automten - Kleene STEPHEN KLEENE (99-994) Rudolf FREUND, Mrion OSWALD 956: Representtion of events in nerve nets nd finite utomt. In: C.E. Shnnon und J. McCrthy

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

Wintersemester 2016/2017 Scheinklausur Formale Sprachen und Automatentheorie

Wintersemester 2016/2017 Scheinklausur Formale Sprachen und Automatentheorie Wintersemester 2016/2017 Scheinklusur Formle Sprchen und Automtentheorie 21.12.2016 Üungsgruppe, Tutor: Anzhl Zustzlätter: Zugelssene Hilfsmittel: Keine. Bereitungszeit: 60 Minuten Hinweise: Lesen Sie

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm Reguläre δ: Σ (Q Q Ω) Beispiel δ 0 δ 0 1 2 1 2 0 1 2 δ Formle Automt Reguläre Definition Ein nicht-deterministischer, endlicher Automt esteht us einer

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 2011/12 Minimierung von DFAs Frge Wie können wir feststellen, o ein DFA M = (Z, Σ, δ, q 0,

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

... in unserem Fall: Scanner. Generator. Spezifikation. Spezifikation von Token-Klassen: Reguläre Ausdrücke;

... in unserem Fall: Scanner. Generator. Spezifikation. Spezifikation von Token-Klassen: Reguläre Ausdrücke; in unserem Fll: Speziiktion Genertor Scnner Speziiktion von Token-Klssen: Reguläre Ausdrücke; Generierte Implementierung: Endliche Automten + X :-) 11 in unserem Fll: 0[1-9][0-9]* Genertor 0 [1 9] [0 9]

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

4. Übungsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16

4. Übungsblatt zu Theoretische Grundlagen der Informatik im WS 2015/16 Krlsruher Institut für Technologie Institut für Theoretische Informtik Prof. Dr. Peter Snders L. Hüschle-Schneider, T. Mier 4. Üungsltt zu Theoretische Grundlgen der Informtik im WS 2015/16 http://lgo2.iti.kit.edu/tgi2015.php

Mehr

Übung Grundbegriffe der Informatik

Übung Grundbegriffe der Informatik Üung Grundegriffe der Informtik 11. Üung Krlsruher Institut für Technologie Mtthis Jnke, Geäude 50.34, Rum 249 emil: mtthis.jnke ät kit.edu Mtthis Schulz, Geäude 50.34, Rum 247 emil: schulz ät ir.uk.de

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Vorkurs Theoretische Informatik

Vorkurs Theoretische Informatik Vorkurs Theoretische Informtik Einführung in reguläre Sprchen Areitskreis Theoretische Informtik Freitg, 05.10.2018 Fchgruppe Informtik Üersicht 1. Chomsky-Hierchie 2. Automten NEA DEA 3. Grmmtik und Automten

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

1.5. Abbildung. DEFINITION injektiv, surjektiv, bijektiv Eine Abbildung f ist injektiv, falls es zu jedem y Y höchstens ein x X gibt mit

1.5. Abbildung. DEFINITION injektiv, surjektiv, bijektiv Eine Abbildung f ist injektiv, falls es zu jedem y Y höchstens ein x X gibt mit CHAPTER. MENGEN UND R ELATIONEN.5. ABBILDUNG.5. Abbildung Eine Abbildung (oder Funktion ist eine Reltion f über X Y mit der Eigenschft: für jedes x us X gibt es genu ein y Y mit (x,y f. Die übliche Schreibweise

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 1 15. April 2014 Inhlt der gnzen Vorlesung Automten uf endlichen Wörtern uf undendlichen Wörtern uf endlichen Bäumen Spiele Erreichrkeitsspiele Ehrenfeucht-Frïssé Spiele

Mehr

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden.

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden. Aufgensmmlung GTI Hinweise. Dies ist eine Aufgensmmlung zum Lernen für die Klusur, keine Proeklusur. Die Zeitduer, die für die Lösung vorgesehen ist, ist lso nicht uf drei Stunden normiert. Für die Klusur

Mehr

Einführung in den Compilerbau

Einführung in den Compilerbau Einführung in den Compileru Lexiklische Anlyse II Dr. Armin Wolf 3. Vorlesung SoSe 2010, Universität Potsdm Einführung in den Compileru 1 Lexiklische Anlyse Beispiel Geg.: T mit T = {0,1,2,4,7} (vom Strtzustnd

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Wohe 7 19. Mi 2014 Inhlt der heutigen Vorlesung Alternierende Automten Definition Verindung zu regulären Sprhen Komplementtion Engel und Teufel Ws ist eine nihtdeterministishe

Mehr

Lösungen zum Ergänzungsblatt 4

Lösungen zum Ergänzungsblatt 4 en zum Ergänzungsltt 4 Letzte Änderung: 23. Novemer 2018 Theoretische Informtik I WS 2018 Crlos Cmino Vorereitungsufgen Vorereitungsufge 1 Sei M = ({p, q, r}, {, }, δ, p, {q, r}) ein DEA mit folgender

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

Gliederung. Kapitel 1: Endliche Automaten

Gliederung. Kapitel 1: Endliche Automaten Gliederung 0. Motivtion und Einordnung 1. Endliche Automten 2. Formle Sprchen 3. Berechnungstheorie 4. Komplexitätstheorie 1.1. 1.2. Minimierungslgorithmus 1.3. Grenzen endlicher Automten 1/1, S. 1 2017

Mehr

Nichtdeterministische endliche Automaten. Nichtdetermistische Automaten J. Blömer 1/12

Nichtdeterministische endliche Automaten. Nichtdetermistische Automaten J. Blömer 1/12 Nichtdeterministische endliche Automten Nichtdetermistische Automten J. Blömer 1/12 Nichtdeterministische endliche Automten In mnchen Modellierungen ist die Forderung, dss δ eine Funktion von Q Σ Q ist,

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Nme Vornme Mtrikelnummer Lösungsvorschlg Universität Krlsruhe Institut für Theoretische Informtik o. Prof. Dr. P. Snders 8. März 2006 Klusur: Informtik III Aufgbe 1. Multiple Choice 10 Punkte Aufgbe 2.

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Automaten und Formale Sprachen 7. Vorlesung

Automaten und Formale Sprachen 7. Vorlesung Automten und Formle Sprchen 7. Vorlesung Mrtin Dietzfelinger Bis nächste Woche: Folien studieren. Detils, Beispiele im Skript, Seiten 70 99. Definitionen lernen, Beispiele nsehen, Frgen vorereiten. Üungsufgen

Mehr

Ergänzungsblatt 7. Letzte Änderung: 30. November Vorbereitungsaufgaben

Ergänzungsblatt 7. Letzte Änderung: 30. November Vorbereitungsaufgaben Theoretische Informtik I WS 2018 Crlos Cmino Ergänzungsltt 7 Letzte Änderung: 30. Novemer 2018 Vorereitungsufgen Vorereitungsufge 1 Wiederholen Sie die Begriffe us Üungsltt 0, Aschnitt 4. 1. Welche der

Mehr

Ergänzungsblatt 6. Letzte Änderung: 24. November 2018

Ergänzungsblatt 6. Letzte Änderung: 24. November 2018 Ergänzungsltt 6 Letzte Änderung: 24. Novemer 2018 Theoretische Informtik I WS 2018 Crlos Cmino Erinnerung: Die Besprechungstermine für die Ergänzungen 7 is 10 fllen is uf Weiteres us. Aufgen, Lösungen

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Klusur 09082011 Prof Dr Dr hc W Thoms Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Sind Tokens erst einmal klassifiziert, kann man die Teilwörter vorverarbeiten:

Sind Tokens erst einmal klassifiziert, kann man die Teilwörter vorverarbeiten: Sind Tokens erst einml klssifiziert, knn mn die Teilwörter vorverreiten: Wegwerfen irrelevnter Teile wie Leerzeichen, Kommentren, Aussondern von Prgms, dh Direktiven n den Compiler, die nicht Teil des

Mehr

Vorlesung Theoretische Informatik Sommersemester 2018 Dr. B. Baumgarten

Vorlesung Theoretische Informatik Sommersemester 2018 Dr. B. Baumgarten Vorlesung Theoretische Informtik Sommersemester 28 Dr. B. Bumgrten Üungen zur Wiederholung quer durch den Stoff Mit Lösungseispielen Vollständigkeit wird nicht grntiert, und einige sind klusuruntypisch

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlgen der Mthemtik, WS 2014/15 Thoms Timmermnn 3. Dezember 2014 Wiederholung: Konstruktion der gnzen Zhlen (i) Betrchten formle Differenzen b := (, b) mit, b N 0 (ii) Setzen b c d, flls +

Mehr

Deterministische endliche Automaten

Deterministische endliche Automaten Endliche Automten Idee: endlicher Automt A ht endlich viele innere Zustände liest Einge wєσ* zeichenweise von links nch rechts git zum Schluß eine J/Nein Antwort A Lesekopf w 1 w 2 w n gelesenes Symol

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informtik Sommersemester 27 Üungsltt 3 Üungsltt Wir unterscheiden zwischen Üungs- und Agelättern.

Mehr

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch FORMALE SYSTEME 6. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 27. Oktober 2016 Rückblick Mrkus Krötzsch, 27. Oktober 2016 Formle Systeme Folie 2 von 29 Wiederholung: Opertionen uf Automten

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Theoretische Informatik WS 2014/2015

Theoretische Informatik WS 2014/2015 Prof. Dr. Andres Podelski Mtthis Heizmnn Alexnder Nutz Christin Schilling Probeklusur zur Vorlesung Theoretische Informtik WS 2014/2015 Die Klusur besteht us diesem Deckbltt und sieben Blättern mit je

Mehr

Berechenbarkeitstheorie 1. Vorlesung

Berechenbarkeitstheorie 1. Vorlesung Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Zentrale Themen

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Formale Sprachen und Automaten. Schriftlicher Test

Formale Sprachen und Automaten. Schriftlicher Test Formle Sprchen und Automten Prof. Dr. Uwe Nestmnn - 23. Ferur 2017 Schriftlicher Test Studentenidentifiktion: NACHNAME VORNAME MATRIKELNUMMER S TUDIENGANG Informtik Bchelor, Aufgenüersicht: AUFGABE S EITE

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlgen der Theoretischen Informtik 3. Endliche Automten 6.05.2015 Vioric Sofronie-Stokkermns e-mil: sofronie@uni-kolenz.de 1 Üersicht 1. Motivtion 2. Terminologie 3. Endliche Automten und reguläre Sprchen

Mehr

Reguläre Sprachen. Reguläre Ausdrücke NFAs

Reguläre Sprachen. Reguläre Ausdrücke NFAs Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Dr Snder Bruggink Üungsleitung: Jn Stückrth Wir eschäftigen uns jetzt einige Wochen mit regulären Sprchen deterministische

Mehr

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Editierdistanz Autor: Sven Schuierer

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Editierdistanz Autor: Sven Schuierer Algorithmen und Dtenstrukturen (Th. Ottmnn und P. Widmyer) Folien: Editierdistnz Autor: Sven Schuierer Institut für Informtik Georges-Köhler-Allee Albert-Ludwigs-Universität Freiburg 1 Editier-Distnz Gegeben:

Mehr

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet

S 1. Definition: Ein endlicher Automat ist ein 5-Tupel. Das endliche Eingabealphabet Der endliche Automt Modell: Eingend rechtsseitig unegrenzt F F F F F F F F F F F F F F Lesekopf S 1 Definition: Ein endlicher Automt ist ein 5-Tupel A = ( Σ;S;F;s 0 ; ϕ ) Dei ist Σ= {e 1;e 2...e n} Ds

Mehr

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus

Klausur Formale Sprachen und Automaten Grundlagen des Compilerbaus Klusur Formle Sprchen und Automten Grundlgen des Compilerus 25. Novemer 2014 Nme: Unterschrift: Mtrikelnummer: Kurs: Note: Aufge erreichre erreichte Nr. Punkte Punkte 1 10 2 10 3 12 4 11 5 9 6 6 7 11 8

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

Scheinklausur: Theoretische Informatik I

Scheinklausur: Theoretische Informatik I +//+ Scheinklusur: Theoretische Informtik I WS / Hinweise: Hlten Sie die Klusur geschlossen, is der Beginn durch die Aufsichtspersonen ngezeigt wird Betrugsversuche oder Stören hen sofortigen Ausschluss

Mehr

Endliche Automaten. Endliche Automaten 1 / 115

Endliche Automaten. Endliche Automaten 1 / 115 Endliche Automten Endliche Automten 1 / 115 Endliche Automten Endliche Automten erluen eine Beschreiung von Hndlungsläufen: Wie ändert sich ein Systemzustnd in Ahängigkeit von veränderten Umgeungsedingungen?

Mehr

Gliederung. Kapitel 1: Endliche Automaten

Gliederung. Kapitel 1: Endliche Automaten Gliederung. Einleitung und Grundegriffe. Endliche utomten 2. Formle Sprchen 3. Berechenrkeitstheorie 4. Komplexitätstheorie E: diversion.. Grundlgen.2..3. Grenzen endlicher utomten /2, S. 28 Prof. Steffen

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.2

Algorithmen und Datenstrukturen 1 Kapitel 4.2 Endliche Automten Algorithmen und Dtenstrukturen 1 Kpitel 4.2 Roert Giegerich Technische Fkultät roert@techfk.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Roert Giegerich Endliche Automten

Mehr

mathematik und informatik

mathematik und informatik Prof. Dr. André Schulz Kurs 0657 Grundlgen der Theoretischen Informtik A LESEPROBE mthemtik und informtik Ds Werk ist urheerrechtlich geschützt. Die ddurch egründeten Rechte, insesondere ds Recht der Vervielfältigung

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien DFA Reguläre Grmmtik (Folie 89) Stz. Jede von einem endlichen Automten kzeptierte Sprche ist regulär. Beweis. Nch Definition, ist eine

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ. x Σ.x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ). F3

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA Dnk Vorleung Grundlgen der Theoretichen Informtik / Einführung in die Theoretiche Informtik I Bernhrd Beckert Diee Vorleungmterilien ieren gnz weentlich uf den Folien zu den Vorleungen von Ktrin Erk (gehlten

Mehr

1.1 Grundlagen: Reguläre Ausdrücke

1.1 Grundlagen: Reguläre Ausdrücke 11 Grundlgen: Reguläre Ausdrücke Progrmmtext enutzt ein endliches Alphet Σ von Einge-Zeichen, zb ASCII :-) Die Menge der Textschnitte einer Token-Klsse ist i regulär Reguläre Sprchen knn mn mithile regulärer

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlgen der Theoretischen Informtik / Einführung in die Theoretische Informtik I Bernhrd Beckert Institut für Informtik Sommersemester 2007 B. Beckert Grundlgen d. Theoretischen Informtik:

Mehr

Übungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht garantiert, und einige sind umfangreicher als klausurtypisch.

Übungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht garantiert, und einige sind umfangreicher als klausurtypisch. Vorlesung Theoretische Informtik Sommersemester 2017 Dr. B. Bumgrten Üungen zur Wiederholung quer durch den Stoff Vollständigkeit wird nicht grntiert, und einige sind umfngreicher ls klusurtypisch. 1.

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 2 Grundlgen der Theoretischen Informtik Till Mosskowski Fkultät für Informtik Otto-von-Guericke-Universität Mgdeurg Gegeen sei eine Kleene Alger üer K. Wir etrchten nun n n Mtrizen üer K. Die Menge ller

Mehr

Prof. Dr. Javier Esparza Garching b. München, den Klausur Einführung in die theoretische Informatik Sommer-Semester 2017

Prof. Dr. Javier Esparza Garching b. München, den Klausur Einführung in die theoretische Informatik Sommer-Semester 2017 Prof. Dr. Jvier Esprz Grching. München, den 10.08.17 Klusur Einführung in die theoretische Informtik Sommer-Semester 2017 Bechten Sie: Soweit nicht nders ngegeen, ist stets eine Begründung zw. der Rechenweg

Mehr

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012 Institut für Theoretische Informtik Lehrstuhl Prof. Dr. D. Wgner Huptklusur zur Vorlesung Theoretische Grundlgen der Informtik Wintersemester 2011/2012 Hier Aufkleber mit Nme und Mtrikelnr. nbringen Vornme:

Mehr

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013) Berlin, 17.07.2013 Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) 1 2 3 4 5 6 7 8 Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Nico Döttling Dirk Achench Tois Nilges Vorlesung Theoretische Grundlgen der Informtik Üungsltt Nr. svorschlg Aufge (K) (4 Punkte): Semi-Thue-Systeme

Mehr

Automaten und Formale Sprachen SoSe 2013 in Trier

Automaten und Formale Sprachen SoSe 2013 in Trier Automaten und Formale Sprachen SoSe 2013 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 2. Juni 2013 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

Diskrete Mathematik. Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl

Diskrete Mathematik. Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl OLC mputational gic Diskrete Mathematik Arne Dür Kurt Girstmair Simon Legner Georg Moser Harald Zankl Fakultät für Mathematik, Informatik und Physik @ UIBK Sommersemester 2011 GM (MIP) Diskrete Mathematik

Mehr

Grundlagen des Maschinellen Lernens Kap 3: Lernverfahren in anderen Domänen

Grundlagen des Maschinellen Lernens Kap 3: Lernverfahren in anderen Domänen . Motivtion 2. Lernmodelle Teil I 2.. Lernen im Limes 2.2. Fllstudie: Lernen von Ptternsprchen 3. Lernverfhren in nderen Domänen 3.. 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume über regulären Ptterns

Mehr

Zwei Bemerkungen zum Schluss

Zwei Bemerkungen zum Schluss Man könnte sich fragen, ob eine Typ-3 Sprache inhärent mehrdeutig sein kann (im Sinn von Einheit 8). Die Antwort lautet: NEIN. Zwei Bemerkungen zum Schluss Denn für jede Typ-3 Sprache gibt es einen DEA,

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr