Endliche Automaten 7. Endliche Automaten

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Endliche Automaten 7. Endliche Automaten"

Transkript

1 Endliche Automten 7 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte Modellierung, Model-Checking, Lexiklische Anlyse, XML-Prser, Kontrollnweisungen, Spezifiktion von Kommuniktionsbläufen, Beschreibung von Rechnersystemen und deren Systemprogrmmierung,... S. Kuske: Wörter und Endliche Automten; 05.November 2007

2 Endliche Automten 8 Tktweises Arbeiten Eingbe: ein Wort w Funktionsweise Lesen von w Zeichen für Zeichen von links nch rechts In jedem Tkt wird ein Zeichen gelesen. In jedem Tkt befindet sich der endliche Automt in einem seiner endlich vielen Zustände. Ds Eingbewort w wird kzeptiert, flls sich der Automt nch dem Lesen von w in einem Endzustnd befindet. S. Kuske: Wörter und Endliche Automten; 05.November 2007

3 Endliche Automten 9 Zustände Komponenten ußer Betrieb betriebsbereit heizen Eingbelphbet (Menge von potenziellen Ereignissen) {n, us, < 20, 20 } S. Kuske: Wörter und Endliche Automten; 05.November 2007

4 Endliche Automten 10 Zustndsüberführungen ußer Betrieb n us betriebsbereit < heizen Strtzustnd ußer Betrieb n us betriebsbereit < heizen S. Kuske: Wörter und Endliche Automten; 05.November 2007

5 Endliche Automten 11 Endzustände ußer Betrieb n us betriebsbereit < heizen S. Kuske: Wörter und Endliche Automten; 05.November 2007

6 1 Endlicher Automt Ein endlicher Automt ist ein System A = (Z, I, d, s 0, F ) mit Z: endliche Menge von Zuständen, I: endliches Eingbelphbet, d Z I Z: Zustndsüberführung, s 0 Z: Strtzustnd, F Z: Endzustände. S. Kuske: Endliche Automten; 12.November 2007

7 Endlicher Automt 2 Gegeben: A = (Z, I, d, s 0, F ) Grphische Drstellung s d(s, x), s F S. Kuske: Endliche Automten; 12.November 2007

8 Endlicher Automt 3,...,z Beispiel 1 e n s 0 s 1 s d 2 s 3 S. Kuske: Endliche Automten; 12.November 2007

9 Endlicher Automt 4 Beispiel 2,b s 0 s c 1 s 2 Akzeptiert u.. ds Wort bc: (s 0, bc) (s 0, bc) (s 1, bc) (s 1, c) (s 2, λ) (s 0, bc) (s 1, bc) (s 1, bc) (s 1, c) (s 2, λ) S. Kuske: Endliche Automten; 12.November 2007

10 Endlicher Automt 5 Fortgesetzte Zustndsüberführung Die fortgesetzte Zustndsüberführung verrbeitet Wörter sttt Zeichen. Gegeben: A = (Z, I, d, s 0, F ) Für lle s, s, s Z, x I, w I : d (s, λ) = {s}, d (s, wx) = s d (s,w) d(s, x). S. Kuske: Endliche Automten; 12.November 2007

11 Endlicher Automt 6,...,z Beispiel e n s 0 s 1 s d 2 s 3 d (s 0, end) = s d (s 0,en) d(s, d) = 1. s {s 0,s 2 } d(s, d) = d(s 0, d) d(s 2, d) = {s 0 } {s 3 } = {s 0, s 3 } 1. d (s 0, en) = s d (s 0,e) d(s, n) = 2. s {s 0,s 1 } d(s, n) = d(s 0, n) d(s 1, n) = {s 0 } {s 2 } = {s 0, s 2 } 2. d (s 0, e) = s d (s 0,λ) d(s, e) = s {s 0 } d(s, e) = d(s 0, e) = {s 0, s 1 } S. Kuske: Endliche Automten; 12.November 2007

12 Endlicher Automt 7 Erknnte Sprche Die erknnte Sprche besteht us llen Wörtern, die der Automt usgehend vom Strtzustnd lesen knn, so dss nch dem Lesen ein Endzustnd erreicht wird. Erknnte Sprche Gegeben: A = (Z, I, d, s 0, F ) L(A) = {w I d (s 0, w) F } S. Kuske: Endliche Automten; 12.November 2007

13 Endlicher Automt 8 Beispiele,...,z A: e n s 0 s 1 s d 2 s 3 L(A) = {wend w {,..., z} } S. Kuske: Endliche Automten; 12.November 2007

14 Endlicher Automt 9 Beispiele A:,b s 0 s c 1 s 2 L(A) = { n n N} { n wc n 1, w {, b} } = {} ({}{} {, b} {c}) S. Kuske: Endliche Automten; 12.November 2007

15 Endlicher Automt 10 Teilwortsuche mit endlichen Automten Eingbe: u, v A Ausgbe: Alle Stellen in v, n denen u vorkommt. Idee: Konstruiere einen endlichen Automten, der lle Anfngswörter (Präfixe) von v erkennt, die uf u enden. S. Kuske: Endliche Automten; 12.November 2007

16 Deterministische endliche Automten 11 Deterministische endliche Automten Definition Ein deterministischer endlicher Automt (DEA) ist ein System A = (Z, I, d, s 0, F ) mit Z: endliche Menge von Zuständen, I: endliches Eingbelphbet, d: Z I Z: Abbildung s 0 Z: Strtzustnd, F Z: Endzustände. S. Kuske: Endliche Automten; 12.November 2007

17 Deterministische endliche Automten 12 Beispiel b b b s 0 s 1 s 2 S. Kuske: Endliche Automten; 12.November 2007

18 Deterministische endliche Automten 13 Fortgesetzte Zustndsüberführung A = (Z, I, d, s 0, F ): DEA Für lle s, s, s Z, x I, w I : d (s, λ) = s; d (s, wx) = d(d (s, w), x). S. Kuske: Endliche Automten; 12.November 2007

19 Deterministische endliche Automten 14 Beispiel b b b s 0 s 1 s 2 d (s 1, b) = d(d (s 1, ), b) = d(d(d (s 1, ), ), b) = d(d(d(d (s 1, λ), ), ), b) = d(d(d(s 1, ), ), b) = d(d(s 2, ), b) = d(s 0, b) = s 0 S. Kuske: Endliche Automten; 12.November 2007

20 Deterministische endliche Automten 15 Erknnte Sprche Erknnte Sprche Gegeben: A = (Z, I, d, s 0, F ) L(A) = {w I d (s 0, w) F } S. Kuske: Endliche Automten; 12.November 2007

21 Deterministische endliche Automten 16 Erknnte Sprche: Beispiel b b b s 0 s 1 s 2 {w {, b} count(, w) mod 3 = 0} S. Kuske: Endliche Automten; 12.November 2007

22 Verrbeitung von Wörtern in itertiver Drstellung 17 Sei Verrbeitung von Wörtern in itertiver A = (Z, I, d, s 0, F ) Drstellung w = 1 n mit i I für i = 1,..., n (n = 0 impl. w = λ) s, s Z Dnn s d (s, w) Es ex. t 0,..., t n Z, so dss t i d(t i 1, i ) (i = 1,..., n). S. Kuske: Endliche Automten; 12.November 2007

23 Verrbeitung von Wörtern in itertiver Drstellung 18 Verrbeitung im Zustndsgrph t 1 0 t 2 n 1 t n S. Kuske: Endliche Automten; 12.November 2007

24 Wortproblem 19 Wortproblem Gegeben: eine Sprche L I (z.b. ls endlicher Automt). Eingbe: Ein Wort w I. Ausgbe: J, flls w L Nein, sonst. Stz (schnelle Worterkennung) Für von endlichen Automten erknnte Sprchen ist ds Wortproblem in linerer Zeit lösbr. S. Kuske: Endliche Automten; 12.November 2007

25 1 Potenzutomt Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit D(S, x) = d(s, x) s S für lle S P(Z), x I; F P = {S P(Z) S F }. S. Kuske: Endliche Automten; 19.November 2007

26 Potenzutomt 2 Beispiel:, b c s 0 s 1 s 2, b, c c b, c b, c, b, c s 0 s 0, s 2 s 0, s 1, s 2 s 0, s 1 b c b s 2 c c s 1, s 2 s 1, b, b S. Kuske: Endliche Automten; 19.November 2007

27 Potenzutomt 3 Ein optimierter Potenzutomt, b c s 0 s 1 s 2, b, c b, c, b, c s 0 s 0, s 1 c s 2 b c s 1, b (Alle Zustände, die von s 0 nicht erreichbr sind, wurden gestrichen.) S. Kuske: Endliche Automten; 19.November 2007

28 Potenzutomt 4 Äquivlenz von nichtdeterministischen und deterministischen endlichen Automten Stz (Äquivlenz) Sei A = (Z, I, d, s 0, F ) ein endlicher Automt. Dnn gilt L(A) = L(P(A)). S. Kuske: Endliche Automten; 19.November 2007

29 Potenzutomt 5 Schnelle Worterkennung Stz Für von endlichen Automten erknnte Sprchen ist ds Wortproblem in linerer Zeit lösbr. S. Kuske: Endliche Automten; 19.November 2007

30 Potenzutomt 6 Beweisskizze Sei A = (Z, I, d, s 0, F ) ein endlicher Automt. 1. Flls A nichtdeterministisch ist, A := P(A). (Dies muss höchstens einml durchgeführt werden.) 2. Sei w = 1 n ( i I, i = 1,..., n). Verrbeite w mit A: t 1 0 t 2 n 1 t n (Zeitverbruch: n Schritte, d Folgezustände eindeutig sind.) 3. J, flls t n F ; sonst nein. S. Kuske: Endliche Automten; 19.November 2007

31 Model-Checking (beispielhft) 7 Model-Checking (beispielhft) ußer Betrieb n us betriebsbereit 20 kleiner 20 heizen L(heting) : L forbidden : Menge ller möglichen Abläufe Alle verbotenen Abläufe S. Kuske: Endliche Automten; 19.November 2007

32 Model-Checking (beispielhft) 8 Heting ist korrekt bezüglich L forbidden, flls L(heting) L forbidden =. Knn mn einen endlichen Automten für den Schnitt konstruieren? Knn mn feststellen, ob ein beliebiger, gegebener endlicher Automt die leere Sprche erkennt? S. Kuske: Endliche Automten; 19.November 2007

33 Produktutomt (Prllelschltung zweier endlicher Automten) 9 Produktutomt (Prllelschltung zweier endlicher Automten) Gegeben: deterministische endliche Automten A 1 = (Z 1, I, d 1, s 01, F 1 ), A 2 = (Z 2, I, d 2, s 02, F 2 ) Produktutomt A 1 A 2 = (Z 1 Z 2, I, d, (s 01, s 02 ), F 1 F 2 ) mit d((s 1, s 2 ), x) = (d 1 (s 1, x), d 2 (s 2, x)) für lle (s 1, s 2 ) Z 1 Z 2 und x I. S. Kuske: Endliche Automten; 19.November 2007

34 Produktutomt (Prllelschltung zweier endlicher Automten) 10 Produktutomt erkennt Schnitt Stz Seien A 1 = (Z 1, I, d 1, s 01, F 1 ), A 2 = (Z 2, I, d 2, s 02, F 2 ) deterministische endliche Automten. Dnn gilt L(A 1 A 2 ) = L(A 1 ) L(A 2 ). S. Kuske: Endliche Automten; 19.November 2007

35 Leerheitsproblem 13 Leerheitsproblem Eingbe: eine Sprche L (z.b. in Form eines endlichen Automten). Ausgbe: J, flls L = Nein sonst. S. Kuske: Endliche Automten; 19.November 2007

36 Leerheitsproblem 14 Beispiel Eingbe:, b s 0 s b 1 s 2 s 3 b s 4, b, b Ausgbe: J S. Kuske: Endliche Automten; 19.November 2007

37 Leerheitsproblem 15 Stz (Lösbrkeit des Leerheitsproblems) Für von endlichen Automten erknnte Sprchen ist ds Leerheitsproblem lösbr. S. Kuske: Endliche Automten; 19.November 2007

38 Leerheitsproblem 16 Gesucht: Algorithmus, der für jeden endlichen Automten A die folgende Funktion leer berechnet: { J, flls L(A) = leer(a) = Nein sonst Überlegung L(A) = genu dnn, wenn es keinen Weg in A vom Strtzustnd zu einem Endzustnd gibt. S. Kuske: Endliche Automten; 19.November 2007

39 Leerheitsproblem 17 Idee 1. Smmle lle vom Strtzustnd erreichbren Zustände uf. 2. L(A) = genu dnn, wenn sich in der Menge der gesmmelten Zustände kein Endzustnd befindet. S. Kuske: Endliche Automten; 19.November 2007

40 Leerheitsproblem 18 Algorithmus (Skizze) Gegeben: DEA A = (Z, I, d, s 0, F ). 1. (Aufsmmeln der erreichbren Zustände) () R 0 := {s 0 }; i := 0; R 1 = R 0 {d(s 0, x) x I}; (b) while R i+1 R i do i := i + 1; R i+1 := R i {d(s, x) s R i, x I} (end of while) 2. (Entscheiden) If R i F = then J else Nein S. Kuske: Endliche Automten; 19.November 2007

41 Leerheitsproblem 19, b Beispiel s 0 s b 1 s 2 s 3 b s 4, b, b 1. R 0 = {s 0 } R 1 = {s 0 } {s 1, s 4 } = {s 0, s 1, s 4 } R 2 = {s 0, s 1, s 4 } {s 1, s 4 } = {s 0, s 1, s 4 } 2. {s 0, s 1, s 4 } {s 2, s 3 } =, d.h., die erk. Sprche ist leer. S. Kuske: Endliche Automten; 19.November 2007

42 Leerheitsproblem 20 Korrektheit Termintion (Algorithmus hält.) Es existiert ein m N: R m = R m+1. Prtielle Korrektheit (Algorithmus liefert bei Hlten korrektes Resultt.) Sei m N die kleinste Zhl mit R m = R m+1. Dnn enthält R m lle von s 0 erreichbren Zustände, d.h. R m = {d (s 0, w) w I }. S. Kuske: Endliche Automten; 19.November 2007

43 Vrinten endlicher Automten 2 Endliche Automten mit λ-übergängen können ktuellen Zustnd wechseln, ohne ein Zeichen zu lesen; sind prktisch (vereinfchen oft die Modellierung mit endlichen Automten); sind äquivlent zu DEA s. S. Kuske: 10.Dezember 2007

44 Vrinten endlicher Automten 3 Verllgemeinerte endliche Automten lesen in jedem Schritt ein Wort sttt eines Zeichens; sind nützlich für die Modellierung mit endlichen Automten ( Abkürzen möglich); sind äquivlent zu DEA s. S. Kuske: 10.Dezember 2007

45 Vrinten endlicher Automten 4 Minimle endliche Automten Jeder DEA A knn in einen äquivlenten DEA Min(A) übersetzt werden, dessen Anzhl von Zuständen miniml ist. Min(A) ist bis uf Zustndsnmen eindeutig. Minimierungsverfhren knn benutzt werden, um zu entscheiden, ob zwei endliche Automten äquivlent sind, d.h., ob sie dieselbe Sprche erkennen. S. Kuske: 10.Dezember 2007

Potenzautomat. Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit

Potenzautomat. Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit 1 Potenzutomt Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit D(S, x) = d(s, x) s S für lle S P(Z), x I; F P = {S P(Z) S F }. Potenzutomt

Mehr

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006 1 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte Modellierung,

Mehr

DEA1 Deterministische Version

DEA1 Deterministische Version Endliche Automten 4 Deterministische endliche Automten Zu dem nichtdeterministischen Automten EA git es eine deterministische Version. EA Akzeptor für Wörter üer X = { } mit mindestens einem führenden.

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden.

Endliche Automaten können wahlweise graphisch oder tabellarisch angegeben werden. Aufgensmmlung GTI Hinweise. Dies ist eine Aufgensmmlung zum Lernen für die Klusur, keine Proeklusur. Die Zeitduer, die für die Lösung vorgesehen ist, ist lso nicht uf drei Stunden normiert. Für die Klusur

Mehr

Berechenbarkeitstheorie 2. Vorlesung

Berechenbarkeitstheorie 2. Vorlesung Berechenrkeitstheorie Dr. Frnzisk Jhnke Institut für Mthemtische Logik und Grundlgenforschung WWU Münster WS 15/16 Alle Folien unter Cretive Commons Attriution-NonCommercil 3.0 Unported Lizenz. Deterministischer

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Formale Sprachen. Endliche Automaten - Kleene. Reguläre Sprachen. Rudolf FREUND, Marion OSWALD. Endliche Automaten. Endliche Automaten: Beispiel

Formale Sprachen. Endliche Automaten - Kleene. Reguläre Sprachen. Rudolf FREUND, Marion OSWALD. Endliche Automaten. Endliche Automaten: Beispiel Formle Sprchen Reguläre Sprchen Endliche Automten - Kleene STEPHEN KLEENE (99-994) Rudolf FREUND, Mrion OSWALD 956: Representtion of events in nerve nets nd finite utomt. In: C.E. Shnnon und J. McCrthy

Mehr

7 Modellierung von Abläufen 7.1 Endliche Automaten

7 Modellierung von Abläufen 7.1 Endliche Automaten 7 Modellierung von Aläufen 7. Endliche Automten Mod-7. Endlicher Automt: Formler Klkül zur Spezifiktion von relen oder strkten Mschinen. Sie regieren uf äußere Ereignisse, ändern ihren inneren Zustnd,

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Endliche Automaten und ihre Verwendung in der morphologischen Verarbeitung. Hans Uszkoreit

Endliche Automaten und ihre Verwendung in der morphologischen Verarbeitung. Hans Uszkoreit Vorlesung CL Endliche Automten und ihre Verwendung in der morphologischen Verrbeitung Hns Uszkoreit WS 00/01 Automten Automten in der weiteren Bedeutung des Wortes sind ein zentrles Konzept ber nicht forml

Mehr

Grundlagen des Maschinellen Lernens Kap 3: Lernverfahren in anderen Domänen

Grundlagen des Maschinellen Lernens Kap 3: Lernverfahren in anderen Domänen . Motivtion 2. Lernmodelle Teil I 2.. Lernen im Limes 2.2. Fllstudie: Lernen von Ptternsprchen 3. Lernverfhren in nderen Domänen 3.. 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume über regulären Ptterns

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III Nme Vornme Mtrikelnummer Lösungsvorschlg Universität Krlsruhe Institut für Theoretische Informtik o. Prof. Dr. P. Snders 8. März 2006 Klusur: Informtik III Aufgbe 1. Multiple Choice 10 Punkte Aufgbe 2.

Mehr

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch

FORMALE SYSTEME. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. November Markus Krötzsch FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 2. November 2017 Rndll Munroe, https://xkcd.com/851_mke_it_better/, CC-BY-NC 2.5 Mrkus Krötzsch, 2. November 2017 Formle Systeme

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten

Inhalt. Endliche Automaten. Automaten und Formale Sprachen. Franz Binder. Endliche Automaten. Deterministische Automaten Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm Reguläre δ: Σ (Q Q Ω) Beispiel δ 0 δ 0 1 2 1 2 0 1 2 δ Formle Automt Reguläre Definition Ein nicht-deterministischer, endlicher Automt esteht us einer

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunktion eines NFA (Folien 107 und 108) Wie sieht die Üerführungsfunktion us? δ : Z Σ P(Z) Ds heißt, jedem Pr us Zustnd

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.2

Algorithmen und Datenstrukturen 1 Kapitel 4.2 Endliche Automten Algorithmen und Dtenstrukturen 1 Kpitel 4.2 Roert Giegerich Technische Fkultät roert@techfk.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Roert Giegerich Endliche Automten

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 1 15. April 2014 Inhlt der gnzen Vorlesung Automten uf endlichen Wörtern uf undendlichen Wörtern uf endlichen Bäumen Spiele Erreichrkeitsspiele Ehrenfeucht-Frïssé Spiele

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlgen der Theoretischen Informtik / Einführung in die Theoretische Informtik I Bernhrd Beckert Institut für Informtik Sommersemester 2007 B. Beckert Grundlgen d. Theoretischen Informtik:

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch FORMALE SYSTEME 6. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 27. Oktober 2016 Rückblick Mrkus Krötzsch, 27. Oktober 2016 Formle Systeme Folie 2 von 29 Wiederholung: Opertionen uf Automten

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Institut für Kryptogrphie und Sicherheit Prof. Dr. Jörn Müller-Qude Nico Döttling Dirk Achench Tois Nilges Vorlesung Theoretische Grundlgen der Informtik Üungsltt Nr. svorschlg Aufge (K) (4 Punkte): Semi-Thue-Systeme

Mehr

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten Fkultät IV Deprtment Mthemtik Lehrstuhl für Mthemtische Logik und Theoretische Informtik Prof. Dr. Dieter Spreen Dipl.Inform. Christin Uhrhn Grundlgen der Theoretischen Informtik, WS11/12 Minimle Automten

Mehr

Deterministische endliche Automaten

Deterministische endliche Automaten Endliche Automten Idee: endlicher Automt A ht endlich viele innere Zustände liest Einge wєσ* zeichenweise von links nch rechts git zum Schluß eine J/Nein Antwort A Lesekopf w 1 w 2 w n gelesenes Symol

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ : x Σ : x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ).

Mehr

Theoretische Informatik. Äquivalenzsatz und Anwendungen

Theoretische Informatik. Äquivalenzsatz und Anwendungen Theoretische Informtik Äquivlenzstz und Anwendungen Reguläre Sprchen reguläre Ausdrücke NFA DFA regulärer Ausdruck Äquivlenzstz für reguläre Sprchen flex Reguläre Ausdrücke Gegeben: Regulärer Ausdruck

Mehr

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion

Reduktion. Seien A Σ und B Γ. Man sagt A ist reduzierbar auf B (A B) gdw. von speziellem Interesse: Polynomialzeitreduktion Reduktion Seien A Σ und B Γ. Mn sgt A ist reduzierr uf B (A B) gdw. f : Σ Γ. x Σ.x A f(x) B Í* * A B von speziellem Interesse: Polynomilzeitreduktion ( pol ), logrithmische-pltz- Reduktion ( log ). F3

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 2011/12 Minimierung von DFAs Frge Wie können wir feststellen, o ein DFA M = (Z, Σ, δ, q 0,

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 011/1 Inhlt der Vorlesung Themen dieser VL: Welche Rechenmodelle sind däqut? Welche Proleme

Mehr

14 E N D L I C H E AU T O M AT E N erstes beispiel: ein getränkeautomat

14 E N D L I C H E AU T O M AT E N erstes beispiel: ein getränkeautomat 14 E N D L I H E AU T O M AT E N 14.1 erstes beispiel: ein getränkeutomt Als erstes Beispiel betrchten wir den folgenden primitiven Getränkeutomten (siehe Abbildung 14.1). Mn knn nur 1-Euro-Stücke einwerfen

Mehr

L = L(a(a b) b b(a b) a)

L = L(a(a b) b b(a b) a) Lösungen zur Proeklusur mit Kommentren Aufge 1. Ein Wort w {,} liegt genu dnn in L, wenn es entweder mit nfängt und mit endet oder umgekehrt. Also erhält mn L = L(( ) ( ) ). Ein DEA, der die Sprche L kzeptiert,

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

mathematik und informatik

mathematik und informatik Prof. Dr. André Schulz Kurs 0657 Grundlgen der Theoretischen Informtik A LESEPROBE mthemtik und informtik Ds Werk ist urheerrechtlich geschützt. Die ddurch egründeten Rechte, insesondere ds Recht der Vervielfältigung

Mehr

3 Hyperbolische Geometrie

3 Hyperbolische Geometrie Ausgewählte Kpitel der Geometrie 3 Hperbolische Geometrie [... ] Im Folgenden betrchten wir nun spezielle gebrochen-linere Abbildungen, nämlich solche, für die (mit den Bezeichnungen ϕ,b,c,d wie oben die

Mehr

LR(k)-Parser. CYK-Algorithmus ist zu langsam.

LR(k)-Parser. CYK-Algorithmus ist zu langsam. LR(k)-Prser Ziele: Effizienter (und deterministischer) Test, ob ein gegebenes Wort w in der Sprche L(G) enthlten ist. Flls j: Konstruktion des Syntxbums Flls nein: Hinweise zum Fehler CYK-Algorithmus ist

Mehr

Reguläre Ausdrücke, In12 G8

Reguläre Ausdrücke, In12 G8 Reguläre Ausdrücke, In2 G8 Beweise, dss A* unendlich viele Elemente esitzt. Hinweis: Indirekter Beweis R A = {0,} Bilde A 3, A 4 A = {,, c} Bilde A 2, A 3 A = {,, c} Gi die Menge ller Wörter der Länge

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informtik Sommersemester 27 Üungsltt 3 Üungsltt Wir unterscheiden zwischen Üungs- und Agelättern.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

Formalisierung von Sicherheitseigenschaften im µ-kalkül

Formalisierung von Sicherheitseigenschaften im µ-kalkül Formlisierung von Sicherheitseigenschften im µ-klkül Huptseminr: Nchweis von Sicherheitseigenschften für JvCrd durch pproximtive rogrmmuswertung Michel Whler (whler@in.tum.de) Überblick Einführungsbeispiel:

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur Grundlgen der Theoretischen Infomtik SS 213 Institut für Informtik Prof. Dr. Ulrich Furch Dr. Mnfred Jckel Dr. Björn Pelzer Christin Schwrz Nchklusur Modul Grundlgen der Theoretischen Informtik 4IN118/INLP1

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Endliche Automaten. Stoyan Mutafchiev. Programming Systems Lab, Universität des Saarlandes, Saarbrücken

Endliche Automaten. Stoyan Mutafchiev. Programming Systems Lab, Universität des Saarlandes, Saarbrücken Endliche Automten Stoyn Mutfchiev Progrmming Systems L, Universität des Srlndes, Srrücken Astrct Gegenstnd dieser Areit ist der endliche Automt, sowie die Aschlusseigenschften der Sprchen, die von endlichen

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundegriffe der Informtik Einheit 14: Endliche Automten Thoms Worsch Krlsruher Institut für Technologie, Fkultät für Informtik Wintersemester 2009/2010 1/56 Üerlick Erstes Beispiel: ein Getränkeutomt

Mehr

Name... Matrikel-Nr... Studiengang...

Name... Matrikel-Nr... Studiengang... Proeklusur zum ersten Teil der Vorlesung Berechenrkeitstheorie WS 2015/16 30. Novemer 2015 Dr. Frnzisk Jhnke, Dr. Dniel Plcín Bereitungszeit: 80 Minuten Nme... Mtrikel-Nr.... Studiengng... 1. So oder so

Mehr

1.1 Grundlagen: Reguläre Ausdrücke

1.1 Grundlagen: Reguläre Ausdrücke 11 Grundlgen: Reguläre Ausdrücke Progrmmtext enutzt ein endliches Alphet Σ von Einge-Zeichen, zb ASCII :-) Die Menge der Textschnitte einer Token-Klsse ist i regulär Reguläre Sprchen knn mn mithile regulärer

Mehr

2.6 Unendliche Reihen

2.6 Unendliche Reihen 2.6 Unendliche Reihen In normierten Räumen steht ds wichtige Werkzeug der Bildung von unendlichen Reihen zur Verfügung. Mn denke in diesem Zusmmenhng drn, dss mn in der Anlysis Potenz- und Fourierreihen

Mehr

Grundlagen der Informatik II Übungsblatt: 2, WS 17/18 mit Lösungen

Grundlagen der Informatik II Übungsblatt: 2, WS 17/18 mit Lösungen PD. Dr. Prdyumn Shukl Mrlon Brun Micel Wünsche Dr. Friederike Pfeiffer-Bohnen Dr. Luks König Institut für ngewndte Informtik und Formle Beschreibungsverfhren Grundlgen der Informtik II Übungsbltt: 2, WS

Mehr

Theoretische Informatik

Theoretische Informatik Vorlesung Theoretische Informtik Version: März 23 Mrin Mrgrf Inhltsverzeichnis Einführung 4. Ds Problem Clique.................................. 5.2 Wort-, Entscheidungs-, Optimierungsprobleme und formle

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001

Grundlagen zu Datenstrukturen und Algorithmen Schmitt, Schömer SS 2001 Grundlgen zu Dtenstrukturen und Algorithmen Schmitt, Schömer SS 001 http://www.mpi-sb.mpg.de/~sschmitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für ds 4. Übungsbltt Letzte

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

Lineare Algebra I 5. Tutorium mit Lösungshinweisen

Lineare Algebra I 5. Tutorium mit Lösungshinweisen Fchbereich Mthemtik Prof Dr JH Bruinier Mrtin Fuchssteiner Ky Schwieger TECHNISCHE UNIVERSITÄT DARMSTADT AWS 07/08 0607 (T ) Linere Algebr I 5 Tutorium mit Lösungshinweisen Welche Gruppen kennen Sie? Welche

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundegriffe der Informtik Üung Simon Wcker Krlsruher Institut für Technologie Wintersemester 2015/2016 GBI Grundegriffe der Informtik Krlsruher Institut für Technologie 1 / 9 Regex-Bäume Anzhl A = {,

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013) Berlin, 17.07.2013 Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) 1 2 3 4 5 6 7 8 Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert. Lösung Technische Universität München Sommer 2016 Prof. J. Esprz / Dr. M. Luttenerger, S. Sickert Lösung Einführung in die theoretische Informtik Klusur Bechten Sie: Soweit nicht nders ngegeen, ist stets eine

Mehr

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich:

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich: Vorlesung 4 Zhlenbereiche 4.1 Rtionle Zhlen Wir hben gesehen, dss nicht jedes Eleent us Z ein ultipliktives Inverses besitzt. Dies führt zur Einführung der rtionlen Zhlen Q, obei der Buchstbe Q für Quotient

Mehr

Uneigentliche Integrale & mehrdim. Differenzialrechnung

Uneigentliche Integrale & mehrdim. Differenzialrechnung Mthemtik I für Biologen, Geowissenschftler und Geoökologen Uneigentliche Integrle & mehrdimensionle Differenzilrechnung 25. Jnur 2010 Uneigentliche Integrle Unendlich Integrnd divergiert Grenze Prtielle

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA Dnk Vorleung Grundlgen der Theoretichen Informtik / Einführung in die Theoretiche Informtik I Bernhrd Beckert Diee Vorleungmterilien ieren gnz weentlich uf den Folien zu den Vorleungen von Ktrin Erk (gehlten

Mehr

5.2 BASIC MSC (BMSC) BASIC MSC. Kommunikation zwischen Instanzen. Message Sequence Charts

5.2 BASIC MSC (BMSC) BASIC MSC. Kommunikation zwischen Instanzen. Message Sequence Charts BASIC MSC Ein System besteht us Instnzen. Eine Instnz ist eine bstrkte Einheit, deren Interktion mit nderen Instnzen oder mit der Umgebung mn (teilweise) beobchten knn. Instnzen kommunizieren untereinnder

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlgen der Informtik Vorlesungsprüfung vom 02.03.2007 Gruppe B Lösung Nme: Mtrikelnummer: Zuerst itte Nme und Mtrikelnummer uf ds Titelltt schreien. Es sind keine Unterlgen und keine Temreit erlut.

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Wohe 7 19. Mi 2014 Inhlt der heutigen Vorlesung Alternierende Automten Definition Verindung zu regulären Sprhen Komplementtion Engel und Teufel Ws ist eine nihtdeterministishe

Mehr

Grundbegriffe der Informatik Aufgabenblatt 6

Grundbegriffe der Informatik Aufgabenblatt 6 Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude

Mehr

Kurze Einführung in Baumsprachen

Kurze Einführung in Baumsprachen Kurze Einführung in Bumsprchen Die folgende Einführung in Bumsprchen ist ein miniml ngepsster Ausschnitt us der Bchelor-Arbeit von Peter Bücker (peter.buecker@uni-duesseldorf.de), geschrieben bei Jun.-Prof.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthemtik für Informtiker I (Wintersemester 00/00) Aufgbenbltt (. Oktober 00)

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Vielen Dnk n Jn Wgener für die erweiterten Aufgenlösungen Einführung in die theoretische Informtik Sommersemester 2017 Üungsltt

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

Protokoll zur Vorlesung Theoretische Informatik I

Protokoll zur Vorlesung Theoretische Informatik I Protokoll zur Vorlesung Theoretishe Informtik I! " # $ % # & ' ( % ) * + & " & & &, " ' % + - + # + & '. / 0 1 # 0 & 2 & # & 3 4 & 5 # 0 + & 6 & ' + 7 7 3 8 4 & 7 + + + % ( % 6 # 9 & 5 # 0 + & 3 8. : &

Mehr