1.1 Grundlagen: Reguläre Ausdrücke

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1.1 Grundlagen: Reguläre Ausdrücke"

Transkript

1 11 Grundlgen: Reguläre Ausdrücke Progrmmtext enutzt ein endliches Alphet Σ von Einge-Zeichen, zb ASCII :-) Die Menge der Textschnitte einer Token-Klsse ist i regulär Reguläre Sprchen knn mn mithile regulärer Ausdrücke speziizieren Die Menge E Σ der (nicht-leeren) regulären Ausdrücke ist die kleinste Menge E mit: ǫ E (ǫ neues Symol nicht us Σ); E ür lle Σ; (e 1 e 2 ), (e 1 e 2 ), e 1 E soern e 1, e 2 E 125

2 11 Grundlgen: Reguläre Ausdrücke Progrmmtext enutzt ein endliches Alphet Σ von Einge-Zeichen, zb ASCII :-) Die Menge der Textschnitte einer Token-Klsse ist i regulär Reguläre Sprchen knn mn mithile regulärer Ausdrücke speziizieren Die Menge E Σ der (nicht-leeren) regulären Ausdrücke ist die kleinste Menge E mit: ǫ E (ǫ neues Symol nicht us Σ); E ür lle Σ; (e 1 e 2 ), (e 1 e 2 ), e 1 E soern e 1, e 2 E 126

3 Stephen Kleene, Mdison Wisconsin,

4 Beispiele: (( ) ) ( ) (( ) ( )) Achtung: Wir unterscheiden zwischen Zeichen, 0,, und Met-Zeichen (,, ), Um (hässliche) Klmmern zu spren, enutzen wir Opertor-Präzedenzen: und lssen weg :-) Rele Speziiktions-Sprchen ieten zusätzliche Konstrukte wie: 128

5 Beispiele: (( ) ) ( ) (( ) ( )) Achtung: Wir unterscheiden zwischen Zeichen, 0,, und Met-Zeichen (,, ), Um (hässliche) Klmmern zu spren, enutzen wir Opertor-Präzedenzen: > > und lssen weg :-) Rele Speziiktions-Sprchen ieten zusätzliche Konstrukte wie: e? (ǫ e) e + (e e ) und verzichten u ǫ :-) 129

6 Beispiele: (( ) ) ( ) (( ) ( )) Achtung: Wir unterscheiden zwischen Zeichen, 0,, und Met-Zeichen (,, ), Um (hässliche) Klmmern zu spren, enutzen wir Opertor-Präzedenzen: > > und lssen weg :-) Rele Speziiktions-Sprchen ieten zusätzliche Konstrukte wie: e? (ǫ e) e + (e e ) und verzichten u ǫ :-) 130

7 Speziiktionen enötigen eine Semntik :-) Im Beispiel: Speziiktion Semntik { n n 0} {, } {} Für e E Σ deinieren wir die speziizierte Sprche [[e]] Σ induktiv durch: [[ǫ]] = {ǫ} [[]] [[e ]] = {} = ([[e]]) [[e 1 e 2 ]] = [[e 1 ]] [[e 2 ]] [[e 1 e 2 ]] = [[e 1 ]] [[e 2 ]] 131

8 Bechte: Die Opertoren (_),, sind die entsprechenden Opertionen u Wort-Mengen: (L) = {w 1 w k k 0, w i L} L 1 L 2 = {w 1 w 2 w 1 L 1, w 2 L 2 } 132

9 Bechte: Die Opertoren (_),, sind die entsprechenden Opertionen u Wort-Mengen: (L) = {w 1 w k k 0, w i L} L 1 L 2 = {w 1 w 2 w 1 L 1, w 2 L 2 } Reguläre Ausdrücke stellen wir intern ls mrkierte geordnete Bäume dr: (ǫ) * ǫ Innere Knoten: Opertor-Anwendungen; Blätter: einzelne Zeichen oder ǫ 133

10 Finger-Üung: Zu jedem regulären Ausdruck e können wir einen Ausdruck e (evt mit? ) konstruieren so dss: [[e]] = [[e ]]; Flls [[e]] = {ǫ}, dnn ist e ǫ; Flls [[e]] = {ǫ}, dnn enthält e kein ǫ Konstruktion: Wir deinieren eine Trnsormtion T von regulären Ausdrücken durch: 134

11 Finger-Üung: Zu jedem regulären Ausdruck e können wir einen Ausdruck e (evt mit? ) konstruieren so dss: [[e]] = [[e ]]; Flls [[e]] = {ǫ}, dnn ist e ǫ; Flls [[e]] = {ǫ}, dnn enthält e kein ǫ Konstruktion: Wir deinieren eine Trnsormtion T von regulären Ausdrücken durch: 135

12 T [ǫ] T [] = ǫ = T [e 1 e 2 ] = cse (T [e 1 ], T [e 2 ]) o (ǫ,ǫ) : ǫ (e 1,ǫ) : e 1? (ǫ, e 2 ) : e 2? (e 1, e 2 ): (e 1 e 2 ) T [e 1 e 2 ] = cse (T [e 1 ], T [e 2 ]) o (ǫ,ǫ) : ǫ T [e ] = cse T [e] o ǫ : ǫ e 1 : e 1 T [e?] = cse T [e] o ǫ : ǫ e 1 : e 1? (e 1,ǫ) : e 1 (ǫ, e 2 ) : e 2 (e 1, e 2 ): (e 1 e 2 ) 136

13 Unsere Anwendung: Identiier in Jv: le = [-za-z_\$] di = [0-9] Id = {le} ({le} {di})* Bemerkungen: le und di sind Zeichenklssen Deinierte Nmen werden in {, } eingeschlossen Zeichen werden von Met-Zeichen durch \ unterschieden 137

14 Unsere Anwendung: Identiier in Jv: le = [-za-z_\$] di = [0-9] Id = {le} ({le} {di})* Bemerkungen: le und di sind Zeichenklssen Deinierte Nmen werden in {, } eingeschlossen Zeichen werden von Met-Zeichen durch \ unterschieden 138

15 Unsere Anwendung: Identiier in Jv: le = [-za-z_\$] di = [0-9] Id = {le} ({le}{di})* Gleitkommzhlen: Flot = {di}* (\{di}{di}\) {di}*((ee)(\+\-)?{di}+)? Bemerkungen: le und di sind Zeichenklssen Deinierte Nmen werden in {, } eingeschlossen Zeichen werden von Met-Zeichen durch \ unterschieden 139

16 12 Grundlgen: Endliche Automten Beispiel: ǫ ǫ Knoten: Knten: Zustände; Üergänge; Beschritungen: konsumierter Input :-) 140

17 12 Grundlgen: Endliche Automten Beispiel: ǫ ǫ Knoten: Knten: Zustände; Üergänge; Beschritungen: konsumierter Input :-) 141

18 Michel O Rin, Stnord University Dn S Scott, Crnegy Mellon University, Pittsurgh 142

19 Forml ist ein nicht-deterministischer endlicher Automt mit ǫ-üergängen (ǫ-nfa) ein Tupel A = (Q, Σ, δ, I, F) woei: Q Σ I Q F Q δ eine endliche Menge von Zuständen; ein endliches Einge-Alphet; die Menge der Anngszustände; die Menge der Endzustände und die Menge der Üergänge (die Üergngs-Reltion) ist 143

20 Forml ist ein nicht-deterministischer endlicher Automt mit ǫ-üergängen (ǫ-nfa) ein Tupel A = (Q, Σ, δ, I, F) woei: Q Σ I Q F Q δ eine endliche Menge von Zuständen; ein endliches Einge-Alphet; die Menge der Anngszustände; die Menge der Endzustände und die Menge der Üergänge (die Üergngs-Reltion) ist Für ǫ-nfas ist: δ Q (Σ {ǫ}) Q Git es keine ǫ-üergänge (p, ǫ, q), ist A ein NFA Ist δ : Q Σ Q eine Funktion und #I = 1, heißt A deterministisch (DFA) 144

21 Forml ist ein nicht-deterministischer endlicher Automt mit ǫ-üergängen (ǫ-nfa) ein Tupel A = (Q, Σ, δ, I, F) woei: Q Σ I Q F Q δ eine endliche Menge von Zuständen; ein endliches Einge-Alphet; die Menge der Anngszustände; die Menge der Endzustände und die Menge der Üergänge (die Üergngs-Reltion) ist Für ǫ-nfas ist: δ Q (Σ {ǫ}) Q Git es keine ǫ-üergänge (p,ǫ, q), ist A ein NFA Ist δ : Q Σ Q eine Funktion und #I = 1, heißt A deterministisch (DFA) 145

22 Akzeptierung Berechnungen sind Pde im Grphen kzeptierende Berechnungen ühren von I nch F Ein kzeptiertes Wort ist die Beschritung eines kzeptierenden Pdes ǫ ǫ 146

23 Akzeptierung Berechnungen sind Pde im Grphen kzeptierende Berechnungen ühren von I nch F Ein kzeptiertes Wort ist die Beschritung eines kzeptierenden Pdes ǫ ǫ 147

24 Dzu deinieren wir den trnsitiven Aschluss δ von δ ls kleinste Menge δ mit: (p,ǫ, p) δ und (p, xw, q) δ soern (p, x, p 1 ) δ und (p 1, w, q) δ eschreit ür je zwei Zustände, mit welchen Wörtern mn vom einen zum ndern kommt :-) δ Die Menge ller kzeptierten Worte, dh die von A kzeptierte Sprche können wir kurz eschreien ls: L(A) = {w Σ i I, F : (i, w, ) δ } 148

25 Stz: Für jeden regulären Ausdruck e knn (in linerer Zeit :-) ein ǫ-nfa konstruiert werden, der die Sprche [[e]] kzeptiert Idee: Der Automt verolgt (konzepionell mithile einer Mrke ), wohin mn in mit der Einge w gelngen knn e 149

26 Beispiel: () () * 150

27 Beispiel: w = : * 151

28 Beispiel: w = : * 152

29 Beispiel: w = : * 153

30 Beispiel: w = : * 154

31 Beispiel: w = : * 155

32 Beispiel: w = : * 156

33 Beispiel: w = : * 157

34 Beispiel: w = : * 158

35 Beispiel: w = : * 159

36 Bechte: Gelesen wird nur n den Blättern Die Nvigtion im Bum erolgt ohne Lesen, dh mit ǫ-üergängen Für eine ormle Konstruktion müssen wir die Knoten im Bum ezeichnen Dzu enutzen wir (hier) einch den drgestellten Teilusdruck :-) Leider git es eventuell mehrere gleiche Teilusdrücke :-( == Wir numerieren die Blätter durch 160

37 im Beispiel: * 161

38 im Beispiel: *

39 im Beispiel: *

40 Die Konstruktion: Zustände: r, r r Knoten von e; Anngszustnd: e; Endzustnd: e ; Üergngsreltion: Für Blätter r i x enötigen wir: ( r, x, r ) Die ürigen Üergänge sind: 164

41 r Üergänge r 1 r 2 ( r,ǫ, r 1 ) ( r,ǫ, r 2 ) (r 1,ǫ, r ) (r 2,ǫ, r ) r 1 r 2 ( r,ǫ, r 1 ) (r 1,ǫ, r 2 ) (r 2,ǫ, r ) r r 1 r 1? Üergänge ( r,ǫ, r ) ( r,ǫ, r 1 ) (r 1,ǫ, r 1 ) (r 1,ǫ, r ) ( r,ǫ, r ) ( r,ǫ, r 1 ) (r 1,ǫ, r ) 165

42 Diskussion: Die meisten Üergänge dienen dzu, im Ausdruck zu nvigieren :-( Der Automt ist i nichtdeterministisch :-( Strtegie: == (1) Beseitigung der ǫ-üergänge; (2) Beseitigung des Nichtdeterminismus :-) 166

43 Diskussion: Die meisten Üergänge dienen dzu, im Ausdruck zu nvigieren :-( Der Automt ist i nichtdeterministisch :-( Strtegie: == (1) Beseitigung der ǫ-üergänge; (2) Beseitigung des Nichtdeterminismus :-) 167

44 Beseitigung von ǫ-üergängen: Zwei einche Ansätze: p q 1 q 2 q Wir enutzen hier den zweiten Anstz Zur Konstruktion von Prsern werden wir später den ersten enutzen :-) 168

45 Beseitigung von ǫ-üergängen: Zwei einche Ansätze: p q 1 q 2 q Wir enutzen hier den zweiten Anstz Zur Konstruktion von Prsern werden wir später den ersten enutzen :-) 169

46 1 Schritt: empty[r] = t gdw ǫ [[r]] im Beispiel: *

47 1 Schritt: empty[r] = t gdw ǫ [[r]] im Beispiel: *

48 1 Schritt: empty[r] = t gdw ǫ [[r]] im Beispiel: *

49 1 Schritt: empty[r] = t gdw ǫ [[r]] im Beispiel: t *

50 1 Schritt: empty[r] = t gdw ǫ [[r]] im Beispiel: t *

Deterministische endliche Automaten

Deterministische endliche Automaten Endliche Automten Idee: endlicher Automt A ht endlich viele innere Zustände liest Einge wєσ* zeichenweise von links nch rechts git zum Schluß eine J/Nein Antwort A Lesekopf w 1 w 2 w n gelesenes Symol

Mehr

DEA1 Deterministische Version

DEA1 Deterministische Version Endliche Automten 4 Deterministische endliche Automten Zu dem nichtdeterministischen Automten EA git es eine deterministische Version. EA Akzeptor für Wörter üer X = { } mit mindestens einem führenden.

Mehr

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge

Frank Heitmann 2/71. 1 Betrachten wir Σ für ein Alphabet Σ, so ist Σ die Menge Formle Grundlgen der Informtik Kpitel 2 und reguläre Sprchen Frnk Heitmnn heitmnn@informtik.uni-hmurg.de 7. April 24 Frnk Heitmnn heitmnn@informtik.uni-hmurg.de /7 Alphet und Wörter - Zusmmengefsst Die

Mehr

7 Modellierung von Abläufen 7.1 Endliche Automaten

7 Modellierung von Abläufen 7.1 Endliche Automaten 7 Modellierung von Aläufen 7. Endliche Automten Mod-7. Endlicher Automt: Formler Klkül zur Spezifiktion von relen oder strkten Mschinen. Sie regieren uf äußere Ereignisse, ändern ihren inneren Zustnd,

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Woche 9 13. Juni 2014 Inhlt der heutigen Vorlesung Büchi Automten co-büchi Automten Komplementierung für deterministische Büchi Automten Ein Ziel: den Stz von Büchi-Elgot-Trkhtenrot

Mehr

mathematik und informatik

mathematik und informatik Prof. Dr. André Schulz Kurs 0657 Grundlgen der Theoretischen Informtik A LESEPROBE mthemtik und informtik Ds Werk ist urheerrechtlich geschützt. Die ddurch egründeten Rechte, insesondere ds Recht der Vervielfältigung

Mehr

Automaten, Spiele, und Logik

Automaten, Spiele, und Logik Automten, Spiele, und Logik Wohe 7 19. Mi 2014 Inhlt der heutigen Vorlesung Alternierende Automten Definition Verindung zu regulären Sprhen Komplementtion Engel und Teufel Ws ist eine nihtdeterministishe

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlgen der Theoretischen Informtik / Einführung in die Theoretische Informtik I Bernhrd Beckert Institut für Informtik Sommersemester 2007 B. Beckert Grundlgen d. Theoretischen Informtik:

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

1 Grundlagen der Theorie formaler Sprachen

1 Grundlagen der Theorie formaler Sprachen 1 Grundlgen der Theorie formler Sprchen Wir eginnen dmit, dss wir in diesem Kpitel zunchst einige grundlegende Begriffe und Methoden us der Theorie formler Sprchen, insesondere der regulären Sprchen, wiederholen.

Mehr

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA

vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimalautomat: minimaler vollständiger DFA Ws isher geschh NFA A = (X, Q, δ, I, F ) vollständig (Vervollständigung) deterministisch, DFA (Potenzmengenkonstruktion) Minimlutomt: minimler vollständiger DFA Für jede Sprche L X sind die folgenden Aussgen

Mehr

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt

RWTH Aachen Lehrgebiet Theoretische Informatik Rossmanith Dreier Hark Kuinke. SS 2017 Blatt RWTH Achen Lehrgeiet Theoretische Informtik Rossmnith Dreier Hrk Kuinke SS 2017 Bltt 4 22.5.2017 Lösungsvorschlg zur Vorlesung Formle Sprchen, Automten und Prozesse Aufge T11 1. L, d L, er / L. L, d für

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Gleichmächtigkeit von DEA und NDEA Dnk Vorleung Grundlgen der Theoretichen Informtik / Einführung in die Theoretiche Informtik I Bernhrd Beckert Diee Vorleungmterilien ieren gnz weentlich uf den Folien zu den Vorleungen von Ktrin Erk (gehlten

Mehr

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013)

Klausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2013) Berlin, 17.07.2013 Nme:... Mtr.-Nr.:... Klusur TheGI 2 Automten und Komplexität (Niedermeier/Hrtung/Nichterlein, Sommersemester 2013) 1 2 3 4 5 6 7 8 Σ Bereitungszeit: mx. Punktezhl: 60 min. 60 Punkte

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 3 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informtik Sommersemester 27 Üungsltt 3 Üungsltt Wir unterscheiden zwischen Üungs- und Agelättern.

Mehr

Franz Binder. Vorlesung im 2006W

Franz Binder. Vorlesung im 2006W Formle Reguläre und Formle Institut für Alger Johnnes Kepler Universität Linz Vorlesung im 2006W http://www.lger.uni-linz.c.t/students/win/ml Formle Inhlt Reguläre Reguläre Formle Zustndsdigrmm δ: Σ (Q

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.2

Algorithmen und Datenstrukturen 1 Kapitel 4.2 Endliche Automten Algorithmen und Dtenstrukturen 1 Kpitel 4.2 Roert Giegerich Technische Fkultät roert@techfk.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Roert Giegerich Endliche Automten

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet.

Was nicht bewertet werden soll, streichen Sie bitte durch. Werden Täuschungsversuche beobachtet, so wird die Präsenzübung mit 0 Punkten bewertet. Prof Dr Dr hc W Thoms Formle Systeme, Automten, Prozesse SS 2011 Musterlösung - Präsenzüung Dniel Neider, Crsten Otto Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen): Informtik Bchelor Informtik

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur

Prof. Dr. Ulrich Furbach Dr. Manfred Jackel Dr. Björn Pelzer Christian Schwarz. Nachklausur Grundlgen der Theoretischen Infomtik SS 213 Institut für Informtik Prof. Dr. Ulrich Furch Dr. Mnfred Jckel Dr. Björn Pelzer Christin Schwrz Nchklusur Modul Grundlgen der Theoretischen Informtik 4IN118/INLP1

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Endliche Automaten. Stoyan Mutafchiev. Programming Systems Lab, Universität des Saarlandes, Saarbrücken

Endliche Automaten. Stoyan Mutafchiev. Programming Systems Lab, Universität des Saarlandes, Saarbrücken Endliche Automten Stoyn Mutfchiev Progrmming Systems L, Universität des Srlndes, Srrücken Astrct Gegenstnd dieser Areit ist der endliche Automt, sowie die Aschlusseigenschften der Sprchen, die von endlichen

Mehr

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch

FORMALE SYSTEME. 6. Vorlesung: Reguläre Ausdrücke. TU Dresden, 27. Oktober Markus Krötzsch FORMALE SYSTEME 6. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch TU Dresden, 27. Oktober 2016 Rückblick Mrkus Krötzsch, 27. Oktober 2016 Formle Systeme Folie 2 von 29 Wiederholung: Opertionen uf Automten

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

mathematik und informatik

mathematik und informatik RR Prof. Dr. André Schulz Modul 31321 Grundlgen der Informtik 01657 Grundlgen der Theoretischen Informtik A 01658 Grundlgen der Theoretischen Informtik B LESEPROBE mthemtik und informtik Der Inhlt dieses

Mehr

Potenzautomat. Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit

Potenzautomat. Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit 1 Potenzutomt Gegeben: A = (Z, I, d, s 0, F ) P(A) = (P(Z), I, D, {s 0 }, F P ) P(Z) = {S S Z}: Potenzmenge von Z; D : P(Z) I P(Z) mit D(S, x) = d(s, x) s S für lle S P(Z), x I; F P = {S P(Z) S F }. Potenzutomt

Mehr

Endliche Automaten 7. Endliche Automaten

Endliche Automaten 7. Endliche Automaten Endliche Automten 7 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte

Mehr

Der deterministische, endliche Automat. Formale Grundlagen der Informatik 1 Kapitel 3 Mehr zu regulären Sprachen

Der deterministische, endliche Automat. Formale Grundlagen der Informatik 1 Kapitel 3 Mehr zu regulären Sprachen Der deterministische, endliche Automat Formale Grundlagen der Informatik 1 Kapitel 3 Mehr zu regulären Sprachen Frank Heitmann heitmann@informatik.uni-hamurg.de 8. April 2014 Definition (DFA) Ein deterministischer,

Mehr

Formal Languages and Automata

Formal Languages and Automata Forml Lnguges nd Automt Aufgensmmlung Jn Hldik und Stephn Schulz 10. Novemer 2014 1 Üungsufgen 1.1 Endliche Automten 1.1.1 Aufge Sei Σ = {, }. Geen Sie für die folgenden Sprchen einen DFA n L 0 = {w Σ

Mehr

Theoretische Informatik. Äquivalenzsatz und Anwendungen

Theoretische Informatik. Äquivalenzsatz und Anwendungen Theoretische Informtik Äquivlenzstz und Anwendungen Reguläre Sprchen reguläre Ausdrücke NFA DFA regulärer Ausdruck Äquivlenzstz für reguläre Sprchen flex Reguläre Ausdrücke Gegeben: Regulärer Ausdruck

Mehr

7 Modellierung von Abläufen

7 Modellierung von Abläufen 7 Modellierung von Aläufen In diesem Kpitel geht es drum, ds dynmische Verhlten von Systemen zu eschreien, z.b. die Wirkung von Bedienopertionen uf rele Automten oder uf die Benutzungsoerflächen von Softwre-Systemen

Mehr

Dank. 1 Determinierte endliche Automaten (DEAs) 2 Indeterminierte endliche Automaten (NDEAs) 3 Automaten mit epsilon-kanten

Dank. 1 Determinierte endliche Automaten (DEAs) 2 Indeterminierte endliche Automaten (NDEAs) 3 Automaten mit epsilon-kanten Dnk Vorleung Grundlgen der Theoretichen Informtik / Einführung in die Theoretiche Informtik I Bernhrd Beckert Diee Vorleungmterilien ieren gnz weentlich uf den Folien zu den Vorleungen von Ktrin Erk (gehlten

Mehr

Zusammenhänge zwischen Sprachen und Automaten:

Zusammenhänge zwischen Sprachen und Automaten: Kellerutomten Jörg Roth 273 4 Kellerutomten Zusmmenhänge zwischen prchen und utomten: $ x 12 v 9 q r 1 x Wir hen isher einen utomtentyp kennen gelernt, den endlichen utomten. Endliche utomten erkennen

Mehr

Kapitel: Endliche Automaten & reguläre Sprachen. Endliche Automaten und reguläre Sprachen 1 / 125

Kapitel: Endliche Automaten & reguläre Sprachen. Endliche Automaten und reguläre Sprachen 1 / 125 Kpitel: Endliche Automten & reguläre Sprchen Endliche Automten und reguläre Sprchen 1 / 125 Endliche Automten Endliche Automten erluen eine Beschreiung von Hndlungsläufen: Wie ändert sich ein Systemzustnd

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundegriffe der Informtik Einheit 14: Endliche Automten Thoms Worsch Krlsruher Institut für Technologie, Fkultät für Informtik Wintersemester 2009/2010 1/56 Üerlick Erstes Beispiel: ein Getränkeutomt

Mehr

Informatik II SS Pumping Lemma für reguläre Sprachen (1/2) Pumping Lemma für reguläre Sprachen (2) Beweis

Informatik II SS Pumping Lemma für reguläre Sprachen (1/2) Pumping Lemma für reguläre Sprachen (2) Beweis Pumping Lemm für reguläre Sprhen (1/2) Informtik II SS 2004 Teil 6: Sprhen, Compiler un Theorie 2 Ds Pumping Lemm ist eine Methoe, um herus zu finen, o eine Sprhe niht regulär. Prof. Dr. Dieter Hogrefe

Mehr

Teil V: Formale Sprachen

Teil V: Formale Sprachen Formle Sprchen Teil V: Formle Sprchen 1. Sprchen und Grmmtiken 2. Endliche Automten Frnz-Josef Rdermcher & Uwe Schöning, Fkultät für Ingeneurwissenschften und Informtik, Universität Ulm, 2008/09 Formle

Mehr

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004

2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2003/04 ILKD Prof. Dr. D. Wgner 14. April 2004 2. Klusur zur Vorlesung Informtik III Wintersemester 2003/2004 Lösung! Bechten Sie: Bringen

Mehr

Grundlagen des Maschinellen Lernens Kap 3: Lernverfahren in anderen Domänen

Grundlagen des Maschinellen Lernens Kap 3: Lernverfahren in anderen Domänen . Motivtion 2. Lernmodelle Teil I 2.. Lernen im Limes 2.2. Fllstudie: Lernen von Ptternsprchen 3. Lernverfhren in nderen Domänen 3.. 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume über regulären Ptterns

Mehr

1. Formale Sprachen Formale Sprachen

1. Formale Sprachen Formale Sprachen 1. Formle Sprchen Formle Sprchen 1. Formle Sprchen 1.1. Ws ist eine formle Sprche? Wenn mn einen Gednken in einer ntürlichen Sprche usdrücken will, kommt es im wesentlichen uf 2 Aspekte n: 1. Der korrekte

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Name... Matrikel Nr... Studiengang...

Name... Matrikel Nr... Studiengang... Proeklusur zur Vorlesung Berechenrkeitstheorie WS 201/1 1. Jnur 201 Prof. Dr. André Schulz Bereitungszeit: 120 Minuten [So oder so ähnlich wird ds Deckltt der Klusur ussehen.] Nme... Mtrikel Nr.... Studiengng...

Mehr

Algorithmen und Datenstrukturen - Maschinenmodelle -

Algorithmen und Datenstrukturen - Maschinenmodelle - Algorithmen und Dtenstrukturen - Mschinenmodelle - Alexnder Sczyr Technische Fkultät sczyr@techfk.uni-bielefeld.de Vorlesung, Universität Bielefeld, Winter 04/05 / 90 Kpitel 3 - Mschinenmodelle Premle

Mehr

Endliche Automaten und ihre Verwendung in der morphologischen Verarbeitung. Hans Uszkoreit

Endliche Automaten und ihre Verwendung in der morphologischen Verarbeitung. Hans Uszkoreit Vorlesung CL Endliche Automten und ihre Verwendung in der morphologischen Verrbeitung Hns Uszkoreit WS 00/01 Automten Automten in der weiteren Bedeutung des Wortes sind ein zentrles Konzept ber nicht forml

Mehr

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht

2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der

Mehr

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006 1 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte Modellierung,

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung

2. Übungsblatt (mit Lösungen) 3.0 VU Formale Modellierung . Üungsltt (mit en) 3. VU Formle Modellierung Mrion Brndsteidl, Gernot Slzer 3. Mi 3 (Korrektur 4.6.) Aufge (.3 Punkte) Sei A der folgende Mely-Automt. u/ h/ h/ h/ u/ h/ 3 4 u/ u/ () Geen Sie die Ausge

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informtik I Prof.-Dr. Peter Brezny Institut für Softwrewissenschft Universität Wien, Liechtensteinstrße 22 1090 Wien Tel. : 01/4277 38825 -mil : brezny@pr.univie.c.t Sprechstunde: Dienstg,

Mehr

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen und endliche Automaten 2 Reguläre Sprchen und endliche Automten Sei Σ = {, b,...} ein endliches Alphbet. Ein endliches Wort über Σ ist eine Folge w = 0... n 1, wobei i Σ für i = 0,...,n 1. Wir schreiben w für die Länge von w,

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederun 1. Motivtion / Grundlen 2. Sortierverfhren 3. Elementre Dtenstrukturen / Anwendunen 4. Bäume / Grphen 5. Hshin 6. Alorithmische Geometrie 3/1, Folie 1 2010 Prof. Steffen Lne - HD/FbI - Dtenstrukturen

Mehr

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23 1/23 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich

Mehr

Automaten und Formale Sprachen ε-automaten und Minimierung

Automaten und Formale Sprachen ε-automaten und Minimierung Automaten und Formale Sprachen ε-automaten und Minimierung Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag 2 Danksagung

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

Endliche Automaten. aus. Abbildung 1: Modell eines einfachen Lichtschalters

Endliche Automaten. aus. Abbildung 1: Modell eines einfachen Lichtschalters Endliche Automaten In der ersten Vorlesungswoche wollen wir uns mit endlichen Automaten eschäftigen. Um uns diesen zu nähern, etrachten wir zunächst einen einfachen Lichtschalter. Dieser kann an oder aus

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 29.10.2007 Reguläre Sprachen Ein (deterministischer) endlicher Automat

Mehr

Formale Sprachen und endliche Automaten

Formale Sprachen und endliche Automaten Formale Sprachen und endliche Automaten Formale Sprachen Definition: 1 (Alphabet) Ein Alphabet Σ ist eine endliche, nichtleere Menge von Zeichen oder Symbolen. Ein Wort über dem Alphabet Σ ist eine endliche

Mehr

Modul 3: Schaltnetze. Informatik I. Modul 3: Schaltnetze. Schaltnetze. Formale Grundlagen. Huntingtonsche Axiome.

Modul 3: Schaltnetze. Informatik I. Modul 3: Schaltnetze. Schaltnetze. Formale Grundlagen. Huntingtonsche Axiome. Herstsemester 2, Institut für Informtik IFI, UZH, Schweiz Modul 3: Schltnetze Informtik I Modul 3: Schltnetze Einführung in die formlen Grundlgen logischer Beschreiungen Boolesche Alger, Schltlger Vorussetzende

Mehr

Kontextsensitive Sprachen. Christian Scheideler Universität Paderborn WS 2014

Kontextsensitive Sprachen. Christian Scheideler Universität Paderborn WS 2014 Kontextsensitive Sprchen Christin Scheideler Universität Pderorn WS 2014 Kontextsensitive Sprchen Definition 5.1.4 Eine Grmmtik heißt kontextsensitiv oder vom Typ Chomsky-1 flls für jede Regel u v gilt

Mehr

Kurze Einführung in Baumsprachen

Kurze Einführung in Baumsprachen Kurze Einführung in Bumsprchen Die folgende Einführung in Bumsprchen ist ein miniml ngepsster Ausschnitt us der Bchelor-Arbeit von Peter Bücker (peter.buecker@uni-duesseldorf.de), geschrieben bei Jun.-Prof.

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

Theoretische Informatik

Theoretische Informatik Vorlesung Theoretische Informtik Version: März 23 Mrin Mrgrf Inhltsverzeichnis Einführung 4. Ds Problem Clique.................................. 5.2 Wort-, Entscheidungs-, Optimierungsprobleme und formle

Mehr

Informatik II SS Überblick. Wiederholung von Informatik I. Überblick. Wiederholung von Informatik I Begriffe/Einordnung

Informatik II SS Überblick. Wiederholung von Informatik I. Überblick. Wiederholung von Informatik I Begriffe/Einordnung Üerlick Informtik II SS 2006 Kpitel 6: Automten und Sprchen Wiederholung von Informtik I Begriffe/Einordnung Regulär (Typ 3) Reguläre Sprchen und Ausdrücke Endlicher Automt Kontextfrei (Typ 2) Kontextfreie

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Universität Krlsruhe Theoretische Informtik Fkultät für Informtik WS 2004/05 ILKD Prof. Dr. D. Wgner 24. Ferur 2005 1. Klusur zur Vorlesung Informtik III Wintersemester 2004/2005 Lösung! Bechten Sie: Bringen

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 2

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 2 Prof. J. Esprz Tehnishe Universität Münhen S. Sikert, J. Krämer KEINE ABGABE Einführung in die theoretishe Informtik Sommersemester 2017 Üungsltt 2 Üungsltt Wir untersheiden zishen Üungs- und Agelättern.

Mehr

LR(k)-Parser. CYK-Algorithmus ist zu langsam.

LR(k)-Parser. CYK-Algorithmus ist zu langsam. LR(k)-Prser Ziele: Effizienter (und deterministischer) Test, ob ein gegebenes Wort w in der Sprche L(G) enthlten ist. Flls j: Konstruktion des Syntxbums Flls nein: Hinweise zum Fehler CYK-Algorithmus ist

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

definiert ist, heißt an der Stelle x0

definiert ist, heißt an der Stelle x0 1 Stetigkeit 1 Stetigkeit Bei der Behndlung der bschnittsweise deinierten Funktionen km es vor, dss der Grph dieser Funktion n der Nhtstelle einen Sprung ht. Andere dgegen hben keine Sprungstelle! Doch

Mehr

Übung zur Vorlesung Formale Systeme, Automaten und Prozesse

Übung zur Vorlesung Formale Systeme, Automaten und Prozesse RWTH Ahen Lehrgeiet Theoretishe Informtik Emmes Kneis Lnger Rossmnith SS 2009 Üungsltt 1 22.04.2009 Üung zur Vorlesung Formle Systeme, Automten und Prozesse Tutorufge T1 Es seien v, w Σ, so dß vw = wv.

Mehr

Karlsruher Institut für Technologie

Karlsruher Institut für Technologie Krlsruher Institut für Technologie Lehrstuhl für Progrmmierprdigmen Sprchtechnologie und Compiler WS 2010/2011 Dozent: Prof. Dr.-Ing. G. Snelting Üungsleiter: Mtthis Brun Lösung zu Üungsltt 1 Ausge: 18.04.2012

Mehr

Grundbegriffe der Informatik Aufgabenblatt 6

Grundbegriffe der Informatik Aufgabenblatt 6 Mtr.nr.: Nchnme: Vornme: Grundbegriffe der Informtik Aufgbenbltt 6 Tutorium: Nr. Nme des Tutors: Ausgbe: 2. Dezember 2015 Abgbe: 11. Dezember 2015, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Gebäude

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

5.1 Charakterisierung relativ kompakter und kompakter

5.1 Charakterisierung relativ kompakter und kompakter Kpitel 5 Kompkte Mengen 5.1 Chrkterisierung reltiv kompkter und kompkter Mengen X sei im weiteren ein Bnchrum. Definition 5.1. Eine Menge K X heißt kompkt, wenn us jeder offenen Überdeckung von K eine

Mehr

h a h a! Endliche Automaten Motivation Eingabe des Automaten Beispiel: Ein Lachautomat h a! Endliche Automaten (Finite-State Automata) sind É bersicht

h a h a! Endliche Automaten Motivation Eingabe des Automaten Beispiel: Ein Lachautomat h a! Endliche Automaten (Finite-State Automata) sind É bersicht Endlice Automten Motivtion ersict Endlice Automten ls Berecnungsmodell Beispiel-Automt: Der Lcutomt Vereiten von Eingeketten Akzepieren von Eingeketten Mengenteoretisce Formlisierung Endlice Automten in

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Darstellung von Ebenen

Darstellung von Ebenen Drstellung von Ebenen. Ebenengleichung in Prmeterform: Sei E eine Ebene. Dnn lässt sich die Ebene drstellen durch eine Gleichung der Form p u x = p + r v u + s v (r, s R). p u v Der Vektor p heißt Stützvektor

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Kegelschnitte. Geschichte der Kegelschnitte

Kegelschnitte. Geschichte der Kegelschnitte Kegelschnitte Kegelschnitte ds sind geometrische Figuren, die sich ergeen, wenn mn einen Kegel und eine Eene einnder schneiden lässt. Wir unterscheiden 3 Tpen von Kegelschnitten: Prel, Ellipse und Hperel.

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

f(ξ k )(x k x k 1 ) k=1

f(ξ k )(x k x k 1 ) k=1 Integrlrechnung Definition des bestimmten Integrls Die Integrtion ist die Umkehropertion zur Differentition. Grundufgbe der Integrlrechnung ist die Bestimmung von Flächen. Will mn beispielsweise den Inhlt

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 18. Juni HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 18. Juni HA-Lösung. TA-Lösung ehnishe niversität Münhen ommer 2016 Prof. J. Esprz / Dr. M. Luttenerger,. ikert 18. Juni 2016 HA-Lösung A-Lösung Einführung in die theoretishe Informtik Aufgenltt 8 Behten ie: oweit niht explizit ngegeen,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Satz von Kleene. (Stephen C. Kleene, ) Wiebke Petersen Einführung CL 2

Satz von Kleene. (Stephen C. Kleene, ) Wiebke Petersen Einführung CL 2 Satz von Kleene (Stephen C. Kleene, 1909-1994) Jede Sprache, die von einem deterministischen endlichen Automaten akzeptiert wird ist regulär und jede reguläre Sprache wird von einem deterministischen endlichen

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr