Relationen: Äquivalenzrelationen, Ordnungsrelationen

Größe: px
Ab Seite anzeigen:

Download "Relationen: Äquivalenzrelationen, Ordnungsrelationen"

Transkript

1 TH Mittelhessen, Sommersemester 202 Lösungen zu Üungsltt 9 Fchereich MNI, Diskrete Mthemtik 2. Juni 202 Prof. Dr. Hns-Rudolf Metz Reltionen: Äquivlenzreltionen, Ordnungsreltionen Aufge. Welche der folgenden Reltionen uf der Menge {0,, 2, 3} sind Äquivlenzreltionen? Welches sind in diesen Fällen die Äquivlenzklssen? R = {(0, 0), (, ), (2, 2), (3, 3)} R 2 = {(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)} R 3 = {(0, 0), (, ), (, 2), (2, ), (2, 2), (3, 3)} R 4 = {(0, 0), (, ), (, 3), (2, 2), (2, 3), (3, ), (3, 2), (3, 3)} R 5 = {(0, 0), (0, ), (0, 2), (, 0), (, ), (, 2), (2, 0), (2, 2), (3, 3)} Lösung: Eine Äquivlenzreltion ist eine Reltion, die reflexiv, symmetrisch und trnsitiv ist. reflexiv symmetrisch trnsitiv R j j j R 2 nein j nein R 3 j j j R 4 j j nein R 5 j nein nein Bei einer Reltion uf einer Menge mit wenig Elementen lssen sich die Eigenschften leicht n dem Grphen lesen. R : Äquivlenzreltion. 0 Äquivlenzklssen: [0] = {0}, [] = {}, [2] = {2} und [3] = {3}. Copyright c 202 Prof. Dr. Hns-Rudolf Metz. All rights reserved.

2 R 2 : Keine Äquivlenzreltion R 3 : Äquivlenzreltion. 0 Äquivlenzklssen: [0] = {0}, [] = [2] = {, 2} und [3] = {3}. R 4 : Keine Äquivlenzreltion R 5 : Keine Äquivlenzreltion. 0 Aufge 2. Gesucht ist die kleinste Äquivlenzreltion uf der Menge {,, c, d, e}, die die Reltion {(, ), (, c), (d, e)} enthält. 2

3 Lösung: Zunächst stellen wir den Grphen der Reltion R = {(, ), (, c), (d, e)} dr. c d e Die kleinste Äquivlenzreltion, die R umfßt, muß ufgrund der Reflexivität Schlingen n llen Ecken hen; lso nehmen wir diese hinzu. c d e D eine Äquivlenzreltion symmetrisch ist, müssen wir ei Ecken, die durch Pfeile verunden sind, Pfeile in eiden Richtungen hen; lso nehmen wir die entsprechenden Pfeile hinzu. c d e Dmit wir schließlich uch noch Trnsitivität hen, muß R c und c R gelten. Dmit ekommen wir den Grphen der kleinsten Äquivlenzreltion, die unsere ursprüngliche Reltion R umfßt. c d e Hinzugekommen sind lso insgesmt die folgenden Pfeile: 3

4 c d e Wenn wir die Pre ufschreien, die zu R hinzukommen, erhlten wir ls kleinste Äquivlenzreltion, die R enthält, R {(, ), (, ), (c, c), (d, d), (e, e), (, ), (, c), (c, ), (c, ), (e, d)}. Besser schreien, so dß die einzelnen Schritte nchvollziehr sind, knn mn ds mit R R R {(, c), (c, )}, woei mit R die Digonlreltion gemeint ist. R = {(, ), (, ), (c, c), (d, d), (e, e)} Aufge 3. Im folgenden sind drei Reltionen durch ihre gerichteten Grphen gegeen. Stellen Sie fest, o es sich um Ordnungen hndelt. Sind diese prtiell oder totl? c d c d c d Lösung: Eine Ordnung ist eine Reltion, die reflexiv, ntisymmetrisch und trnsitiv ist. reflexiv ntisymmetrisch trnsitiv linker Grph j j nein mittlerer Grph j j nein rechter Grph j j j Nur der Grph rechts stellt eine Ordnung dr. D es Elemente git, die nicht vergleichr sind (zum Beispiel steht weder in Reltion zu c noch steht c in Reltion zu ), ist es eine prtielle Ordnung. 4

5 Aufge 4. Auf jeder der folgenden Mengen ist durch die Teilrkeitsreltion eine prtielle Ordnung gegeen. Zeichnen Sie die zugehörigen Hsse-Digrmme. () () {, 2, 3, 4, 5, 6, 7, 8} () {, 2, 3, 5, 7,, 3} (c) {, 2, 3, 6, 2, 24, 36, 48} (d) {, 2, 4, 8, 6, 32, 64} Lösung: () (c)

6 (d) Aufge 5. Zu den folgenden Hsse-Digrmmen sollen die zugehörigen prtiellen Ordnungen ls Mengen von geordneten Pren ngegeen werden. c d d e c d e f g c Lösung:. Linker Grph: R = {(, ), (, ), (, c), (, d), (, ), (, c), (, d), (c, c), (d, d)}. 2. Mittlerer Grph: R = {(, ), (, ), (, c), (, d), (, e), (, ), (, d), (, e), (c, c), (c, e), (d, d), (e, e)}. 3. Rechter Grph: R = {(, ), (, d), (, e), (, f), (, g), (, ), (, d), (, e), (, f), (, g), (c, c), (c, d), (c, e), (c, f), (c, g), (d, d), (e, e), (f, f), (g, d), (g, e), (g, f), (g, g)}. 6

7 Aufge 6. Auf der Menge {, 2, 3, 6, 8, 2, 24, 36} ist durch die Teilrkeitsreltion eine prtielle Ordnung gegeen. Finden Sie eine dzu komptile totle Ordnung. Lösung: Zunächst wird ds Hsse-Digrmm gezeichnet Topologisches Sortieren liefert eine totle Ordnung (von mehreren möglichen), zum Beispiel Aufge 7. Es sei A = N N und R A A, d.h. R sei eine Reltion uf der Menge der geordneten Pre von positiven gnzen Zhlen. Dei sei ((, ), (c, d)) R genu dnn, wenn d = c ist. Zeigen Sie, dß R eine Äquivlenzreltion ist. Welche Elemente sind in der Äquivlenzklsse [(, 2)] enthlten? Wie knn mn die Äquivlenzklssen von R interpretieren? Lösung: Ds Pr (, ) steht genu dnn in Reltion zu dem Pr (c, d), wenn d = c ist, (, ) R (c, d) d = c. Dmit eine Reltion eine Äquivlenzreltion ist, muß sie reflexiv, symmetrisch und trnsitiv sein.. Reflexivität Zu zeigen: Für lle Pre (, ) us A gilt (, ) R (, ). Es ist (, ) R (, ) =, und diese Gleichung gilt für elieige, N. 2. Symmetrie Zu zeigen: (, ) R (c, d) (c, d) R (, ) für elieige Pre (, ) und (c, d) us A. 7

8 Es gilt 3. Trnsitivität (, ) R (c, d) d = c c = d (c, d) R (, ). Zu zeigen: (, ) R (c, d) und (c, d) R (e, f) impliziert (, ) R (e, f) für elieige Pre (, ), (c, d) und (e, f) us A. Es gilt Durch Multipliktion folgt (, ) R (c, d) d = c, (c, d) R (e, f) cf = de. dcf = cde. Wird diese Gleichung durch dc geteilt, ergit sich f = e. Die Division ist zulässig, d dc 0 ist, weil d und c ntürliche Zhlen (lso ungleich Null) sind. Nun ist er f = e (, ) R (e, f), womit wir die Gültigkeit der Impliktion hergeleitet hen. Insgesmt hen wir dmit gezeigt, dß R eine Äquivlenzreltion ist. Die Äquivlenzklsse [(, 2)] esteht us llen Pren (, ), die in Reltion zu (, 2) stehen. Wegen (, 2) R (, ) = 2 2 = sind dies lle Pre, die Zähler und Nenner eines Bruches ilden, der gleich /2 ist. Die Äquivlenzklsse [(, 2)] ist lso { [(, 2)] = (, ), N und = } 2 = {(, 2), (2, 4), (3, 6), (4, 8),...}. Wie knn mn die Äquivlenzklssen von R llgemein interpretieren? D (x, y) R (, ) x = y x y = gilt, ist die von (x, y) erzeugte Äquivlenzklsse gleich der Menge ller Pre (, ), so dß die Brüche x/y und / den gleichen Wert hen, lso { [(x, y)] = (, ), N und = x }. y 8

9 Zu jeder positiven rtionlen Zhl r git es eine Äquivlenzklsse, in der lle Drstellungen von r (mit positivem Zähler und Nenner) enthlten sind. Die Drstellungen sind ls Pre geschrieen. Umgekehrt git es zu jeder Äquivlenzklsse eine entsprechende positive rtionle Zhl. D.h. es git eine ijektive Aildung zwischen der Menge der Äquivlenzklssen und der Menge der positiven rtionlen Zhlen so, dß [(, )] r r =. Definiert mn Rechenopertionen uf der Menge der Äquivlenzklssen, knn mn die rtionlen Zhlen konstruieren (Detils siehe Litertur). 9

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlgen der Mthemtik, WS 2014/15 Thoms Timmermnn 3. Dezember 2014 Wiederholung: Konstruktion der gnzen Zhlen (i) Betrchten formle Differenzen b := (, b) mit, b N 0 (ii) Setzen b c d, flls +

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen.

Minimalautomat. Wir stellen uns die Frage nach dem. kleinsten DFA für eine reguläre Sprache L, d.h. nach einem DFA mit möglichst wenigen Zuständen. Rechtslinere Sprchen Minimlutomt Es git lso sehr verschiedene endliche Beschreiungen einer regulären Sprche (DFA, NFA, rechtslinere Grmmtiken, reguläre Ausdrücke). Diese können ineinnder üersetzt werden.

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist

6-1 Elementare Zahlentheorie. mit 1 b n und 0 a b (zusammen mit der Ordnung ) nennt man die n-te Farey-Folge, zum Beispiel ist 6- Elementre Zhlentheorie 6 Frey-Folgen Die Menge F n der rtionlen Zhlen mit n und (zusmmen mit der Ordnung ) nennt mn die n-te Frey-Folge, zum Beispiel ist F = { < < < < < < < < < < } Offensichtlich gilt:

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip.

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kurzer Einschub: das Schubfachprinzip. Reguläre Sprchen Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 0 Ds Pumping-Lemm Wir hen is jetzt vier Formlismen kennengelernt, mit denen wir eine reguläre Sprche ngeen können:

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

Relationen: Verkettungen, Wege, Hüllen

Relationen: Verkettungen, Wege, Hüllen FH Gießen-Frieerg, Sommersemester 00 Lösungen zu Üungsltt 9 Diskrete Mthemtik (Informtik) 9./. Juni 00 Prof. Dr. Hns-Ruolf Metz Reltionen: Verkettungen, Wege, Hüllen Aufge. Es ezeihne R ie Reltion {(,

Mehr

Minimierung von DFAs. Minimierung 21 / 98

Minimierung von DFAs. Minimierung 21 / 98 Minimierung von DFAs Minimierung 21 / 98 Ein Beispiel: Die reguläre Sprche L({, } ) Wie stellt mn fest, o ein Wort ds Suffix esitzt? Ein erster Anstz: Speichere im ktuellen Zustnd die eiden zuletzt gelesenen

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Vorkurs Mathematik. Vorlesung 3. Die rationalen Zahlen

Vorkurs Mathematik. Vorlesung 3. Die rationalen Zahlen Prof. Dr. H. Brenner Osnrück WS 2014/2015 Vorkurs Mthemtik Vorlesung 3 Die rtionlen Zhlen Definition 3.1. Unter einer rtionlen Zhl versteht mn einen Ausdruck der Form, woei, Z und 0 sind, und woei zwei

Mehr

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz.

6. Übungsblatt. (i) Von welchem Typ ist die Grammatik G? Begründen Sie Ihre Antwort kurz. Vorlesung Theoretische Informtik Sommersemester 2015 Prof. S. Lnge 6. Üungsltt 1. Aufge Es sei die folgende Grmmtik G = [Σ, V, S, R] gegeen. Dei seien Σ = {, } und V = {S, B}, woei S ds Strtsymol ist.

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Spiele und logische Komplexitätsklassen

Spiele und logische Komplexitätsklassen Spiele und logische Komplexitätsklssen Mrtin Horsch 26. Jnur 2006 Inhlt des Seminrvortrges Ehrenfeucht-Frïssé-Spiel mit k Mrken Formeln mit k Vrilen und logische Komplexitätsklssen k-vrileneigenschft logischer

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 ORTHOGONALITÄT Mthemtik: Mg. Schmid Wolfgng Areitsltt 5. Semester ARBEITSBLATT 5 ORTHOGONALITÄT Ws versteht mn zunächst einml unter orthogonl? Dies ist nur ein nderes Wort für norml oder im rechten Winkel. Ws uns hier

Mehr

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z

Eine Relation R in einer Menge M ist transitiv, wenn für alle x, y, z M gilt: (x R y y R z) x R z Reltionen, 11 Reltionen Reltion ist einfch gesgt eine Beziehung zwischen Elementen von Mengen. In der Geometrie sind z.b. die Reltionen "ist gleich", "ist senkrecht zu", "ist prllel zu" eknnt. Die letzten

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE

ARBEITSBLATT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-ACHSE Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-8 FLÄCHE ZWISCHEN FUNKTION UND X-CHSE Wie wir die Fläche zwischen einer Funktion und der -chse erechnen, hen wir rechentechnische ereits geklärt.

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

2.1.4 Polynomalgebren und ihre Restklassenalgebren

2.1.4 Polynomalgebren und ihre Restklassenalgebren 2.1. GRUNDLAGEN 59 2) Ist R ein kommuttiver Ring mit Eins, so ist der Polynomring R[X] eine R-Alger. 2) Ist A eine R-Alger und I A ein Idel, so ist A/I eine R-Alger und ν I ein R- Algerenhomomorphismus.

Mehr

Grundbegriffe der Informatik Aufgabenblatt 5

Grundbegriffe der Informatik Aufgabenblatt 5 Grundegriffe der Informtik Aufgenltt 5 Mtr.nr.: Nchnme: Vornme: Tutorium: Nr. Nme des Tutors: Ausge: 20. Novemer 2013 Age: 29. Novemer 2013, 12:30 Uhr im GBI-Briefksten im Untergeschoss von Geäude 50.34

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mthemtisches Institut Prof. Dr. F. Vllentin Dr. A. Gundert Einführung in die Mthemtik des Opertions Reserch Aufge (5+5= Punkte) Sommersemester 4 Lösungen zur Klusur (5. Septemer 4).

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Mengen. Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen. Notation und Terminologie. Bertrand Russell ( )

Mengen. Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen. Notation und Terminologie. Bertrand Russell ( ) Mengen Mthemtische Grundlgen der Computerlinguistik Mengen und Mengenopertionen Dozentin: Wieke Petersen 1 Folienstz Georg Cntor (1845-1918) Eine Menge ist eine Zusmmenfssung von estimmten wohlunterschiedenen

Mehr

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 2. Besprechung in KW44

HA-Lösung TA-Lösung Diskrete Strukturen Tutoraufgabenblatt 2. Besprechung in KW44 Technische Universität München Winter 2017/18 Prof. J. Esprz / Dr. M. Luttenerger, S. Sickert 2018/02/08 HA-Lösung TA-Lösung Diskrete Strukturen Tutorufgenltt 2 Besprechung in KW44 Bechten Sie: Soweit

Mehr

Musterlösungen zum 6. Übungsblatt

Musterlösungen zum 6. Übungsblatt Musterlösungen zum 6 Üungsltt Anlysis ei Dr Rolf Busm WS 6/7 Aufge 6 (Tois Hessenuer) ) 3 ep()d, setze u = ep(), v = 3 dnn gilt: 3 ep()d = ep() 3 = e (3 ep() ) 3 ep() d = e 3e + 6 ep() = 6e 3e + 6e 6e

Mehr

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten Fkultät IV Deprtment Mthemtik Lehrstuhl für Mthemtische Logik und Theoretische Informtik Prof. Dr. Dieter Spreen Dipl.Inform. Christin Uhrhn Grundlgen der Theoretischen Informtik, WS11/12 Minimle Automten

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN

ARBEITSBLATT 5L-11 BERECHNEN VON RAUMINHALTEN Mthemtik: Mg. Schmid Wolfgng+LehrerInnentem ) Rottion um die -Achse ARBEITSBLATT 5L- BERECHNEN VON RAUMINHALTEN Es geht hier um folgende Aufgenstellung. Eine gegeene Funktion f() soll in einem estimmten

Mehr

Analysis I. Vorlesung 3

Analysis I. Vorlesung 3 Prof. Dr. H. Brenner Osnrüc WS 2013/2014 Anlysis I Vorlesung 3 Körper Wir werden nun die Eigenschften der reellen Zhlen esprechen. Grundlegende Eigenschften von mthemtischen Struuren werden ls Axiome ezeichnet.

Mehr

3.3 Extrema I: Winkel Ebene/Gerade

3.3 Extrema I: Winkel Ebene/Gerade 3 3 ANALYSIS 3.3 Extrem I: Winkel Eene/Gerde In diesem Aschnitt gehen wir von einer Gerde g und einer g nicht enthltenden Eene ε us und wollen unter llen möglichen spitzen Schnittwinkeln zwischen g und

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

18. Algorithmus der Woche Der Euklidische Algorithmus

18. Algorithmus der Woche Der Euklidische Algorithmus 18. Algorithmus der Woche Der Euklidische Algorithmus Autor Friedrich Eisenrnd, Universität Dortmund Heute ehndeln wir den ältesten ereits us Aufzeichnungen us der Antike eknnten Algorithmus. Er wurde

Mehr

Copyright, Page 1 of 5 Der Faktorraum

Copyright, Page 1 of 5 Der Faktorraum www.mthemtik-netz.de Copright, Pge of 5 Der Fktorrum Ein sehr wichtiges Konstrukt, welches üerll in der Mthemtik Verwendung findet, ist der Fktorrum, oft uch Quotientenrum gennnt. Dieser ist selst ein

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Krlsruher Institut für Technologie Institut für Alger und Geometrie PD Dr. Stefn Kühnlein Dipl.-Mth. Jochen Schröder Einführung in Alger und Zhlentheorie Üungsltt 7 Aufge 1 (4 Punkte) Sei R ein kommuttiver

Mehr

Übungsblatt 1. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 1. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informtik Lehrstuhl Prof. Dr. D. Wgner Üungsltt Vorlesung Theoretische Grundlgen der Informtik im WS 78 Ausge 9. Oktoer 27 Age 7. Novemer 27, : Uhr (im Ksten im UG von Geäude

Mehr

13. Quadratische Reste

13. Quadratische Reste ChrNelius: Zhlentheorie (SS 007) 3 Qudrtische Reste Wir ehndeln jetzt ei den Potenzresten den Sezilfll m und führen die folgende Begriffsildung ein: (3) DEF: Seien n und teilerfremd heißt qudrtischer Rest

Mehr

Berechnung von Flächen unter Kurven

Berechnung von Flächen unter Kurven Berechnung von Flächen unter Kurven Es soll die Fläche unter einer elieigen (stetigen) Kurve erechnet werden. Dzu etrchten wir die (sog.) Flächenfunktion, mit der die zu erechnende Fläche qusi ngenähert

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6.1 Voremerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Oertionen. Sie heen sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

a q 0 q 1 a M q 1 q 3 q 2

a q 0 q 1 a M q 1 q 3 q 2 Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 4 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius.

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius. Gymso 1 Grundwissen Mthemtik 8.Klsse Gymnsium SOB 1.Funktionle Zusmmenhänge 1.1.Proportionlität Ändern sih ei einer Zuordnung die eiden Größen im gleihen Verhältnis, so spriht mn von einer direkten Proportionlität.

Mehr

Grundbegriffe der Mengenlehre

Grundbegriffe der Mengenlehre Reiner Winter Grundegriffe der Mengenlehre 1. Der Mengenegriff Die Mengenlehre wurde von Georg Cntor (1845-1918) egründet. Im Jhre 1895 g er die folgende, erühmt gewordene Begriffsestimmung der Menge n:

Mehr

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder

Formale Systeme, Automaten, Prozesse SS 2010 Musterlösung - Übung 2 M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Prof Dr J Giesl Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Üung 2 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden us dem

Mehr

Technische Universität München SS 2006 Fakultät für Informatik Übungsblatt 5 Prof. Dr. A. Knoll 30. Juni 2006

Technische Universität München SS 2006 Fakultät für Informatik Übungsblatt 5 Prof. Dr. A. Knoll 30. Juni 2006 Technische Universität München SS 26 Fkultät für Informtik Übungsbltt 5 Prof. Dr. A. Knoll 3. Juni 26 Übungen zu Einführung in die Informtik II Aufgbe 5 Kleidung ) Wir definieren zunächst die Aktionenmenge

Mehr

FK03 Mathematik I: Übungsblatt 1; Lösungen

FK03 Mathematik I: Übungsblatt 1; Lösungen FK03 Mthemtik I: Übungsbltt 1; Lösungen Verständnisfrgen: 1. Woher stmmen die Objekte in einer Menge? Die Objekte einer Menge entstmmen unserer Anschuung und unserem Denken. 2. Welche Drstellungen von

Mehr

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3

Bruchrechnung. W. Kippels 6. Dezember Inhaltsverzeichnis. 1 Vorwort 2. 2 Einleitung 3 Bruchrechnung W. Kippels 6. Dezemer 08 Inhltsverzeichnis Vorwort Einleitung Die Bruchrechenregeln. Addition gleichnmiger Brüche........................ Addition ungleichnmiger Brüche.......................

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen

Klausur zur Vorlesung Grundbegriffe der Informatik 10. März 2009 mit Lösungsvorschlägen Klusur zur Vorlesung Grundegriffe der Informtik 10. März 2009 mit Lösungsvorschlägen Klusurnummer Nme: Vornme: Mtr.-Nr.: Aufge 1 2 3 4 5 6 7 mx. Punkte 4 2 7 8 8 8 9 tts. Punkte Gesmtpunktzhl: Note: Aufge

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Lösungen zu den Wiederholungsaufgaben zum Grundwissenkatalog Mathematik der 7. Jahrgangsstufe. c) 5x ( 2 3 = 17 3

Lösungen zu den Wiederholungsaufgaben zum Grundwissenkatalog Mathematik der 7. Jahrgangsstufe. c) 5x ( 2 3 = 17 3 Gymnsium Stein Lösungen zu den Wiederholungsufgen zum Grundwissenktlog Mthemtik der. Jhrgngsstufe ) ) ❶: keine; ❷: ; ❸: ; ❹: ; ❺: keine; ❻: ; ❼: ; ❽: ; ❾: ) ❶; ❷; ❹; ❾ ) ) ( 0,x ) 0,x ( 0,x ) = = 0,0x

Mehr

Gliederung. Kapitel 1: Endliche Automaten

Gliederung. Kapitel 1: Endliche Automaten Gliederung 0. Motivtion und Einordnung 1. Endliche Automten 2. Formle Sprchen 3. Berechnungstheorie 4. Komplexitätstheorie 1.1. 1.2. Minimierungslgorithmus 1.3. Grenzen endlicher Automten 1/1, S. 1 2017

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit WS 008/09 7 Elementrmthemtik (LH) und Fehlerfreiheit. Zhlenbereiche... Die rtionlen Zhlen... Definition Die Definition der rtionlen Zhlen erfolgt hier innermthemtisch ebenflls wie diejenige der gnzen Zhlen

Mehr

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen

Aufgabe 1. Die Zahl 6 wird aus 3 gleichen Ziffern mit Hilfe der folgenden mathematischen Deprtment Mthemtik Tg der Mthemtik 5. Juli 008 Klssenstufen 9, 10 Aufge 1. Die Zhl 6 wird us 3 gleihen Ziffern mit Hilfe der folgenden mthemtishen Symole drgestellt: + Addition Sutrktion Multipliktion

Mehr

Vorlesung Theoretische Informatik Sommersemester 2018 Dr. B. Baumgarten

Vorlesung Theoretische Informatik Sommersemester 2018 Dr. B. Baumgarten Vorlesung Theoretische Informtik Sommersemester 28 Dr. B. Bumgrten Üungen zur Wiederholung quer durch den Stoff Mit Lösungseispielen Vollständigkeit wird nicht grntiert, und einige sind klusuruntypisch

Mehr

Überblick 2 1. Mengen 2. Relationen 3. Funktionen 4. Kardinalität von Mengen

Überblick 2 1. Mengen 2. Relationen 3. Funktionen 4. Kardinalität von Mengen Grundlgen Üerlick. Mengen. Reltionen. Funktionen. Krdinlität von Mengen. Einführung Ziel und Motivtion Grundvokulr der Mthemtik lernen. Ntürliche Sprche oft zweideutig Mthemtische Sprche erlut die präzise

Mehr

Flächenberechnung. Aufgabe 1:

Flächenberechnung. Aufgabe 1: Flächenerechnung Aufge : Berechnen Sie den Flächeninhlt zwischen dem Funktionsgrphen und der -Achse in den Grenzen von is von: ) f() = ) f() = - Skizzieren Sie die Funktionsgrphen und schrffieren Sie die

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel Qudrtische Gleichungen Aufge : Lösen von Gleichungen ohne Lösungsformel ) 0,8 ) 7 c) - 867 0 d) e) 9 f) - 0 g) 0 h) i) 6 0 j) Aufge : Lösen von Gleichungen durch Zerlegung in Fktoren ) 4 0 ) 4 0 c) - 4

Mehr

1.2 Eigenschaften der reellen Zahlen

1.2 Eigenschaften der reellen Zahlen 12 Kpitel 1 Mthemtisches Hndwerkszeug 12 Eigenschften der reellen Zhlen Alle Rechenregeln der Grundrechenrten der reellen Zhlen lssen sich uf einige wenige Rechengesetze zurückführen, die in der folgenden

Mehr

Vorkurs Mathematik Frankfurt University Of Applied Sciences, Fachbereich 2 1

Vorkurs Mathematik Frankfurt University Of Applied Sciences, Fachbereich 2 1 Vorkurs Mthemtik Frnkfurt University Of Applied Sciences, Fchbereich 1 Rechnen mit Potenzen N bezeichnet die Menge der ntürlichen Zhlen, Q die Menge der rtionlen Zhlen und R die Menge der reellen Zhlen.

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien Automten un formle Sprhen Notizen zu en Folien 1 Grunlgen un formle Beweise Venn-Digrmme (Folie 6) Im oeren Digrmm er Folie 6 sin zwei Mengen ngegeen: A un B. Es ist explizit ein Element von A ngegeen,

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fkultät für Informtik Prof. Tois Nipkow, Ph.D. Ssch Böhme, Lrs Noschinski Sommersemester 2011 Lösungsltt 4 20. Juni 2011 Einführung in die Theoretische Informtik Hinweis:

Mehr

wertyuiopasdfghjklzxcvbnmqwertyui

wertyuiopasdfghjklzxcvbnmqwertyui qwertyuiopsdfghjklzxcvnmqwerty uiopsdfghjklzxcvnmqwertyuiopsd fghjklzxcvnmqwertyuiopsdfghjklzx Aufgen M-Beispielen cvnmqwertyuiopsdfghjklzxcvnmq Vorereitung uf die. Schulreit wertyuiopsdfghjklzxcvnmqwertyui

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informtik Johnnes Köler Institut für Informtik Humoldt-Universität zu Berlin WS 2011/12 Minimierung von DFAs Frge Wie können wir feststellen, o ein DFA M = (Z, Σ, δ, q 0,

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

Kapitel 1. Anschauliche Vektorrechnung

Kapitel 1. Anschauliche Vektorrechnung Kpitel 1 nschuliche Vektorrechnung 1 2 Kpitel I: nschuliche Vektorrechnung Montg, 13. Oktoer 03 Einordnung Dieses erste Kpitel ht motivierenden Chrkter. Es führt n die geometrische nschuung nknüpfend die

Mehr

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( )

( ) ( ) 4. Der Hauptsatz der Infinitesimalrechnung. Hauptsatz (1. Form) I. Newton ( ), G.F. Leibniz ( ) 4. Der Huptstz der Infinitesimlrechnung Huptstz (. orm) I. Newton (64-77), G.. Leiniz (646-76) ür jede im Intervll [,] stetige unktion f sei ( ) = f ( t) dt sogennnte Integrlfunktion dnn gilt: Die Integrlfunktion

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2013S) Lösung Theoretische Informtik und Logik Üungsltt 2 (2013S) en Aufge 2.1 Geen Sie jeweils eine kontextfreie Grmmtik n, welche die folgenden Sprchen erzeugt, sowie einen Aleitungsum für ein von Ihnen gewähltes

Mehr

a b a) b) Fig. 1 Unterschiedliche Orientierung In beiden Fällen setzt sich das Übergangsstück aus zwei Kreisbögen mit einem Übergangspunkt

a b a) b) Fig. 1 Unterschiedliche Orientierung In beiden Fällen setzt sich das Übergangsstück aus zwei Kreisbögen mit einem Übergangspunkt Rolfdieter Frnk / Hns Wlser Korögen wie kriegen wir die Kurve? Kurzfssung: Es geht drum, wie wir zwischen zwei Gerden die Kurve kriegen. Präziser: Zwei orientierte Gerden sollen durch Kreisögen gltt und

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

3. Das Rechnen mit Brüchen (Rechnen in )

3. Das Rechnen mit Brüchen (Rechnen in ) . Ds Rechnen mit Brüchen (Rechnen in ) Brüche sind Teile von gnzen Zhlen. Zwischen zwei unterschiedlichen gnzen Zhlen ht es immer unendlich viele Brüche. Brüche entstehen us einer Division; eine gnze Zhl

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 5 Prof. J. Esprz Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Vielen Dnk n Jn Wgener für die erweiterten Aufgenlösungen Einführung in die theoretische Informtik Sommersemester 2017 Üungsltt

Mehr

Mitschrift Repetitorium Theoretische Informatik und Logik

Mitschrift Repetitorium Theoretische Informatik und Logik Mitschrift Repetitorium Theoretische Informtik und Logik Teil 1: Formle Sprchen, 15.01.2010, 1. Edit Allgemeine Hinweise für die Prüfung Ds Pumping-Lemm für kontextfreie Sprchen kommt nicht (sehr wohl

Mehr

Analytischen Geometrie in vektorieller Darstellung

Analytischen Geometrie in vektorieller Darstellung Anltische Geometrie Anltischen Geometrie in vektorieller Drstellung Anltische Geometrie Gerden Punkt-Richtungs-Form () Mit Hilfe von Vektoren lssen sich geometrische Ojekte wie Gerden und Eenen eschreien

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Automaten mit dot erstellen

Automaten mit dot erstellen Automten mit dot erstellen 1 Ws ist dot? dot ist ein Progrmm zum Kompilieren von dot-dteien in verschiedene Grfikformte, sowie der Nme einer Sprche, mit der mn Grphen spezifizieren knn. Unter Anderem können

Mehr

F ds= F ds. Theorem 1: "Stefanie Bayer" Wegintegrale und Kurvenintegrale

F ds= F ds. Theorem 1: Stefanie Bayer Wegintegrale und Kurvenintegrale Wegintegrle und Kurvenintegrle Theorem : Sei F ein uf dem Weg = [, ] stetiges Vektorfeld und sei = [, ] Reprmeteristion von. Wenn richtungs-whrend ist, dnn gilt und wenn richtungs-wechselnd ist, dnn gilt

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

Übungsaufgaben zu Mathematik 2

Übungsaufgaben zu Mathematik 2 Ü F-Studiengng Angewndte lektronik SS 8 Üungsufgen zu Mthemtik Vektor- und Mtrizenrechnung 9 Die ckpunkte des Dreiecks ABC seien durch ihre Ortsvektoren OA ( ) OB (7) und OC (8) gegeen Berechnen Sie die

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2.

FORMALE SYSTEME. Kleene s Theorem. Wiederholung: Reguläre Ausdrücke. 7. Vorlesung: Reguläre Ausdrücke. TU Dresden, 2. FORMALE SYSTEME 7. Vorlesung: Reguläre Ausdrücke Mrkus Krötzsch Rndll Munroe, https://xkcd.com/851_mke_it_etter/, CC-BY-NC 2.5 TU Dresden, 2. Novemer 2017 Mrkus Krötzsch, 2. Novemer 2017 Formle Systeme

Mehr

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A.

Vorname: Nachname: Matrikelnummer: Studiengang (bitte ankreuzen): Technik-Kommunikation M.A. Formle Systeme, Automten, Prozesse SS 2010 Musterlösung - Klusur 23.09.2010 Prof. Dr. J. Giesl M. Brockschmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Vornme: Nchnme: Mtrikelnummer: Studiengng (itte nkreuzen):

Mehr

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1)

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1) Mthemtik für die Physik II, Sommersemester 28 Lösungen zu Serie 5 2) Berechnen Sie die uneigentlichen Riemn-Integrle ln d und d +. Für jedes < < gilt ln t dt = t ln t t = ln und nch I. 2.Lemm 4 und I..Stz

Mehr

Aufgabensammlung: Vertiefung der Schulmathematik 1.1 Handelt es sich bei den folgenden Zuordnungen um Funktionen? Begründen Sie ihre Entscheidung.

Aufgabensammlung: Vertiefung der Schulmathematik 1.1 Handelt es sich bei den folgenden Zuordnungen um Funktionen? Begründen Sie ihre Entscheidung. Fkultät für Mthemtik Cmpus Essen Wielnd Wilzek.8.-.9.06 Aufgensmmlung: Vertiefung der Schulmthemtik. Hndelt es sich ei den folgenden Zuordnungen um Funktionen? Begründen Sie ihre Entscheidung. ) Person

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr