BINOMISCHE FORMELN FRANZ LEMMERMEYER

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "BINOMISCHE FORMELN FRANZ LEMMERMEYER"

Transkript

1 BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c = c + bc gilt. Dbei muss klr sein, dss ein Ausdruck (b + kein Befehl zum Auflösen der Klmmern ist: mnchml ist ds Auflösen der Klmmern nützlich, mnchml nicht. So wird mn bei 7 (8 + 2) erst die Klmmer usrechnen und dnn mit 7 multiplizieren, weil leichter zu berechnen ist ls 7 (8 + 2) = 7 30 = 20 7 (8 + 2) = = = 20. Umgekehrt wird mn bei eher usklmmern ls den ersten 7 Summnden uf den Huptnenner 7 zu bringen, denn dnn wird die Sche gnz einfch: ( 7 = 45 ) = = Es sei bemerkt, dss mn 45 6 m besten mit dem Assozitivgesetz usrechnet: 45 6 = 45 (2 3) = (45 2) 3 = 90 3 = 270. Bei Produkten zweier Zhlen, von denen eine gerde ist, knn mn immer einen Fktor verdoppeln und den ndern hlbieren, ohne dss ds Produkt sich ändert: so wäre etw = 50 2 = 00 8 = 600. Größen in () wie ds Produkt b können wir ls Flächeninhlt eines Rechtecks mit den Seiten und b interpretieren; in diesem Zusmmenhng besgt ds Distributivgesetz () nur, dss die Fläche eines Rechtecks, ds durch eine Prllele zu seinen Seiten in zwei Teile geteilt wird, die Summe der Flächen der Teile ist: Aufgbe. Interpretiere die Gleichung (b + c + d) = b + c + d geometrisch.

2 2 FRANZ LEMMERMEYER Abbildung. Ds Distributivgesetz Etws schwieriger wird die Sche, wenn mn zwei Summen miteinnder multipliziert: ws ist ( + b)(c + d)? Wenn wir zur Abkürzung c + d = C setzen, dnn finden wir (+b)(c+d) = (+b)c = C+bC = (c+d)+b(c+d) = c+d+bc+bd, wobei wir ds gewöhnliche Distributivgesetz zweiml ngewndt hben. Die geometrische Interprettion der Gleichung (2) ( + b)(c + d) = c + d + bc + bd ist vielleicht noch überzeugender: Abbildung 2. Ds Distributivgesetz für zwei Summen Aufgbe 2. Bestimme (+b)(c+d+e) und interpretiere ds Ergebnis geometrisch. Wichtige Bemerkung. Neben dem Distributivgesetz ist für ds Rechnen mit Zhlen und Termen noch ds Assozitivgesetz wichtig (wir

3 BINOMISCHE FORMELN 3 hben oben schon ein Beispiel dfür gegeben). Im Flle der Addition besgt es, dss die Summe von drei (oder mehr) Summnden nicht von der Klmmerung bhängt, dss lso 2 + (3 + 4) = (2 + 3) + 4 ist, oder llgemein + (b + = ( + b) + c = + b + c. Genusowenig wie mn beim Addieren 2+(3+4) = 5+6 = rechnen drf, knn mn dies beim Multiplizieren tun: es ist uch dort 2 (3 4) = (2 3) 4 = und eben nicht 2 (3 4) = 6 8! Ds Assozitivgesetz der Multipliktion (b = ( b) c = b c lässt sich geometrisch interpretieren: Die Formel bc beschreibt ds Volumen eines Quders mit den Knten, b und c, und ds Assozitivgesetz besgt, dss dieses Volumen nicht dvon bhängt, welche Fläche des Quders mn ls Grundfläche benutzt (Abb. 3). Abbildung 3. Ds Assozitivgesetz der Multipliktion () Berechne: (2) Berechne:. Übungen ) 3( + 4x) b) 5(b + 2cd) ( + b d) rs(r + s) ) ( + b)( + b) ( 2b)(b 2) (r s) r( s) d) ( + b) b( + b) (3) Klmmere so viel us wie möglich: ) 2x + 8y b) 24xy 30x x 2 + 2bx d) 2rs 2 5r 2 s

4 4 FRANZ LEMMERMEYER (4) Fsse zusmmen: ) x 7 y 2 (5) Fsse zusmmen: ) + b + b (6) Fsse zusmmen: ) b 3b 2 b) d) x + 2x 3 b) + b d) b b) b b d) x 2 x (7) Fsse zusmmen: ( ) + ) x b) x ( 3 2x 2x 5 ) d) 4x (8) Vereinfche: ) x 2 : x b) x 2 : 2 2 : d) 3 2 : b 2 ( x + ) (x + y) y ( x ) (x y) y (9) Vereinfche: ) : b x y : x x b) d) b : b b : 2 b (0) Rechne uf zwei verschiedene Arten: ) 2 ( ) b) 3 ( ) 5 ( ) d) 8 ( )

5 BINOMISCHE FORMELN 5 Die Binomischen Formeln. Die binomischen Formeln sind im wesentlichen oft vorkommende Spezilfälle von (2). Setzt mn dort nämlich c = und d = b, so wird drus ( + b)( + b) = 2 + b + b + b 2 = 2 + 2b + b 2. Auch diese Formel lässt sich geometrisch interpretieren (Abb. 4 links). Diese binomische Formel ist nur dnn hilfreich, wenn mn dmit uch z.b. (x + 2y) 2 usrechnen knn: hier ist = x und b = 2y, lso (x + 2y) 2 = x x 2y + (2y) 2 = x 2 + 4xy + 4y 2. Die Klmmer bei (2y) 2 ist wichtig, denn ohne die Klmmer würde hier nur 2y 2 = 2 y 2 stehen nsttt 4y 2. Die Formel Abbildung 4. Binomische Formeln (3) ( + b) 2 = 2 + 2b + b 2 heißt die erste binomische Formel. Wichtig ist dbei, ds Mittelglied 2b nicht zu vergessen, denn (+b) 2 ist eben gnz und gr nicht gleich 2 + b 2. Anders sieht ds ntürlich bei der Multipliktion us: Dort gilt in der Tt ( b) 2 = bb = 2 b 2, ws sich nicht so einfch geometrisch vernschulichen lässt, weil uf beiden Seiten der Gleichung ein Produkt von Flächen steht. Die zweite binomische Formel erhält mn, wenn mn in der ersten b durch b ersetzt: ( b) 2 = ( + ( b)) 2 = 2 + 2( b) + ( b) 2 = 2 2b + b 2.

6 6 FRANZ LEMMERMEYER Die dritte binomische Formel ( + b)( b) = 2 + b b b 2 = 2 b 2 ist interessnter; ihre geometrische Vernschulichung ist in Abb. 4 zu sehen: Die gefärbte Fläche in der mittleren Figur ht den Inhlt 2 b 2 ; schiebt mn ds Rechteck links oben uf die Spitze der rechten gefärbten Fläche, erhält mn ein Rechteck mit Grundseite b und Höhe + b. Also ist 2 b 2 = ( b)( + b). Zusmmenfssend hben wir lso die drei binomischen Formeln ( + b) 2 = 2 + 2b + b 2, ( b) 2 = 2 2b + b 2, ( + b)( b) = 2 b 2. Diese muss mn in beiden Richtungen beherrschen, d.h. mn muss sowohl mühelos (!) (2x + 3y) 2 = (2x) 2 + 2(2x)(3y) + (3y) 2 = 4x 2 + 2xy + 9y 2 rechnen können, ls uch umgekehrt sehen (und ds ist schwieriger), dss z.b. gilt. x 2 4xy + 4y 2 = (x 2y) 2 und 4c 2 9d 2 = (2c + 3d)(2c 3d) 2. Anwendungen Binomische Formeln erleichtern ds Kopfrechnen, etw ds Bestimmen von Qudrtzhlen. So ist 4 2 = (40 + ) 2 = = = 68 oder uch = (40 2)(40 + 2) = = = 396. Ein beknnter Rechentrick zur Bestimmung der Qudrte von Zhlen, die uf 5 enden, funktioniert so: um etw 65 2 uszurechnen, hängt mn n 6 (6 + ) = 6 7 = 42 eine 25 n und erhält 65 2 = Entsprechend ist 85 2 = 7225 wegen 8 9 = 25. Hinter diesem Trick steckt die erste binomische Formel: 65 2 = (60 + 5) 2 = = oder gnz llgemein = 60(60 + 0) + 25 = = , (0+5) 2 = = = 00(+)+25.

7 () Berechne (2) Berechne BINOMISCHE FORMELN 7 3. Übungen ) (x + 2y) 2 b) (2r 5s) 2 (3x 2 d) (2b + ) 2 ) ( 2b) 2 b) (2b ) 2 ( 2b) 2 d) ( 2b) 2 (3) Berechne ( ) + )( b ) b) ( b b + b ) 2 d) ( b ) 2 ( b ) 2 4 (4) Berechne (lle vorkommenden Terme sind positiv): ) 9x 2 b) 4x 6x 2 ( + b)( b) + b 2 d) 9x2 + 72xy + 44y 2 (5) Berechne uf zwei verschiedene Arten: (6) Berechne ) ( ) 2 b) ( ) 2 ( ) 2 d) ( ) 2 ) (3 2)(3 + 2) b) ( 5 + )( 5 ) ( 6 5)( 6 + 5) d) ( 3 )( 3+ ) (7) * Mche die Nenner rtionl (Hinweis: Betrchte die vorhergehende Aufgbe): 3 ) b) d) (8) * Berechne die folgende Summe (Hinweis: Mche die Nenner rtionl):

8 8 FRANZ LEMMERMEYER (9) Berechne mit der binomischen Formel: (0) Berechne ) 23 2 b) d) 38 2 ) 79 8 b) d) 39 4 () Interpretiere die Formel ( + 2b) 2 = 2 + 4b + 4b 2 geometrisch, indem du ds Qudrt mit Kntenlänge + b + b betrchtest. (2) Berechne (+b+ 2 und interpretiere ds Ergebnis geometrisch. (3) Berechne 38 2 mit der ersten, und dnch 37 39, und 35 4 mit der dritten binomischen Formel. (4) Berechne 45 2, 75 2 und 05 2 mit dem Rechentrick. (5) Ziehe die Qudrtwurzel: ) 625 b) ,25 d) 0,3025 (6) Berechne 8 2, und dnch und (7) Berechne und (8) Vereinfche ) (x + ) 2 (x ) 2 b) (x + y) 2 (x y) 2 2 ( + b)( b) d) (x + ) 2 (9) Schreibe ls binomische Formel: ) x 2 + 6xy + 9y 2 b) 4x 2 + 8xy + 4y 2 2 4c + 4c 2 d) 4p 2 25q 2 (20) Beweise die Formel ( + b ) 2 ( b ) 2. b = 2 2 Wie knn mn dmit 3 7 oder usrechnen? (2) Beweise, dss die folgende Gleichung richtig ist: ( 2 + b 2 )(c 2 + d 2 ) = (c bd) 2 + (d + b 2.

9 BINOMISCHE FORMELN 9 (22) Beweise, dss die folgende Gleichung richtig ist: ( 2 + 2b 2 )(c 2 + 2d 2 ) = (c 2bd) 2 + 2(d + b 2. (23) Stelle eine Vermutung uf, wie sich ( 2 + 3b 2 )(c 2 + 3d 2 ) ls Summe eines Qudrts und des Dreifchen eines Qudrts schreiben lässt und rechne nch, dss die Gleichung stimmt. (24) Zeige, dss gilt: (m 2 ) 2 + (2m) 2 = (m 2 + ) 2. (25) Löse folgende Gleichungen (Brth et l., Algebr ): ) (2x + 3)(2x 3) = (2x + 3) 2 b) (x + 3) 2 + 2(2x + )(2x ) = (5 3x) 2 (x 3) 2 x 2 = 3 3(x + 2) (26) Welche Formel wird hier vernschulicht?

10 0 FRANZ LEMMERMEYER 4. Routineufgben Die folgenden Aufgben sind erst vorwärts zu mchen, später uch in der umgekehrten Reihenfolge (von der Lösung zur Aufgbe). 4.. Binomische Formeln I. () (4 + 6b) 2 = (7 + 2b) 2 = (b) (4 + 8b) 2 = (4 + b) 2 = ( (6 + 9b) 2 = (7 + 2b) 2 = (d) (6 + b) 2 = (2 + 8b) 2 = (e) (4 + 9b) 2 = (5 + 8b) 2 = (f) (2 + 6b) 2 = (4 + 3b) 2 = (g) (6 + b) 2 = (3 + 2b) 2 = (h) (7 + 7b) 2 = (4 + 3b) 2 = (i) (7 + 3b) 2 = (4 + 4b) 2 = (j) (5 + 3b) 2 = (2 + 5b) 2 = (k) (9 + 6b) 2 = (9 + 7b) 2 = (l) ( + 2b) 2 = ( + 2b) 2 = (m) (2 + 6b) 2 = (3 + 7b) 2 = (n) (3 + 9b) 2 = (3 + 6b) 2 = (o) ( + 9b) 2 = ( + 7b) 2 = 4.2. Binomische Formeln II. () (2 9b) 2 = (4 9b) 2 = (b) (3 4b) 2 = (9 6b) 2 = ( (2 6b) 2 = (7 7b) 2 = (d) (5 7b) 2 = (3 5b) 2 = (e) ( 7b) 2 = (8 4b) 2 = (f) ( 6b) 2 = (2 9b) 2 = (g) (7 5b) 2 = (5 3b) 2 = (h) (3 9b) 2 = (2 b) 2 = (i) (6 9b) 2 = (3 2b) 2 = (j) (6 6b) 2 = (5 2b) 2 = (k) (9 4b) 2 = (7 6b) 2 = (l) ( 7b) 2 = (8 9b) 2 = (m) (7 2b) 2 = (4 2b) 2 = (n) (3 6b) 2 = (7 6b) 2 = (o) (5 7b) 2 = (7 5b) 2 =

11 BINOMISCHE FORMELN 4.3. Binomische Formeln III. () (6 b)(6 + b) = (8 b)(8 + b) = (b) (3 6b)(3 + 6b) = (2 6b)(2 + 6b) = ( (7 7b)(7 + 7b) = (3 8b)(3 + 8b) = (d) (9 b)(9 + b) = ( 7b)( + 7b) = (e) (6 4b)(6 + 4b) = (5 6b)(5 + 6b) = (f) (6 3b)(6 + 3b) = (3 b)(3 + b) = (g) ( 6b)( + 6b) = (3 8b)(3 + 8b) = (h) (9 2b)(9 + 2b) = (4 9b)(4 + 9b) = (i) (5 8b)(5 + 8b) = (4 8b)(4 + 8b) = (j) (3 2b)(3 + 2b) = (6 2b)(6 + 2b) = (k) (5 7b)(5 + 7b) = (6 5b)(6 + 5b) = (l) (9 7b)(9 + 7b) = (5 9b)(5 + 9b) = (m) (4 6b)(4 + 6b) = (8 4b)(8 + 4b) = (n) (7 5b)(7 + 5b) = (3 9b)(3 + 9b) = (o) (8 4b)(8 + 4b) = ( b)( + b) =

12 2 FRANZ LEMMERMEYER Lösungen 4.. Binomische Formeln I () b + 36b b + 4b 2 (b) b + 64b b + b 2 ( b + 8b b + 4b 2 (d) b + b b + 64b 2 (e) b + 8b b + 64b 2 (f) b + 36b b + 9b 2 (g) b + b b + 4b 2 (h) b + 49b b + 9b 2 (i) b + 9b b + 6b 2 (j) b + 9b b + 25b 2 (k) b + 36b b + 49b 2 (l) 2 + 4b + 4b b + 4b 2 (m) b + 36b b + 49b 2 (n) b + 8b b + 36b 2 (o) 2 + 8b + 8b b + 49b Binomische Formeln II () b + 8b b + 8b 2 (b) b + 6b b + 36b 2 ( b + 36b b + 49b 2 (d) b + 49b b + 25b 2 (e) 2 4b + 49b b + 6b 2 (f) 2 2b + 36b b + 8b 2 (g) b + 25b b + 9b 2 (h) b + 8b b + b 2 (i) b + 8b b + 4b 2 (j) b + 36b b + 4b 2 (k) b + 6b b + 36b 2 (l) 2 4b + 49b b + 8b 2 (m) b + 4b b + 4b 2 (n) b + 36b b + 36b 2 (o) b + 49b b + 25b 2

13 4.3. Binomische Formeln III () 36 2 b b 2 (b) b b 2 ( b b 2 (d) 8 2 b b 2 (e) b b 2 (f) b b 2 (g) 2 36b b 2 (h) 8 2 4b b 2 (i) b b 2 (j) 9 2 4b b 2 (k) b b 2 (l) b b 2 (m) b b 2 (n) b b 2 (o) b 2 2 b 2 BINOMISCHE FORMELN 3 Hinweis: Auf knn mn binomische Formeln online üben.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen.

Ich kann LGS mit drei Gleichungen und drei Unbekannten mit dem Gauß-Verfahren lösen. Klsse 9c Mthemtik Vorbereitung zur Klssenrbeit Nr. m.1.017 Themen: Reelle Zhlen, Qudrtwurzeln LGS mit drei Unbeknnten Checkliste Ws ich lles können soll Ich knn LGS mit drei Gleichungen und drei Unbeknnten

Mehr

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a) Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x

a = c d b Matheunterricht: Gesucht ist x. Physikunterricht Gesucht ist t: s = vt + s0 -s0 s - s0 = vt :v = t 3 = 4x = 4x :4 0,5 = x Bltt 1: Hilfe zur Umformung von Gleichungen mit vielen Vriblen Im Mthemtikunterricht hben Sie gelernt, wie mn Gleichungen mit einer Vriblen umformt, um diese Vrible uszurechnen. Meistens hieß sie. In Physik

Mehr

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b Grundlgen 0.0. Zhlbereiche ntürliche Zhlen: N = {0; ; 2;...} (nch DIN 547) N = N \ {0} gnze Zhlen: Z = {... 2; ; 0; ; 2;...} rtionle Zhlen: Q = { p p, q Z, q 0} q Q besteht us llen Bruchzhlen. reelle Zhlen:

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlgen in Mthemtik für die. Klssen der HMS und der FMS Einleitung In der Mthemtik wird häufig uf bereits Gelerntem und Beknntem ufgebut. Wer die Grundlgen nicht beherrscht, ht deshlb oft Mühe und Schwierigkeiten,

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3 2.5 Algebr Inhltsverzeichnis Fktorisieren 2. Terme fktorisieren...................................... 2.2 (-) usklmmern....................................... 2.3 Terme mit Klmmern fktorisieren..............................

Mehr

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen

Teil 1: Rechenregeln aus der Mittelstufe. Allgemeine Termumformungen Teil 1: Rechenregeln us der Mittelstufe Allgemeine Termumformungen Kommuttivgesetz: Bei reinen Produkten oder Summen ist die Reihenfolge egl x y z = z y x = x z y =.. x+y+z = z+y+x = x+z+y =.. Ausklmmern:

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik Grundsätzliche Vorussetzungen für die Fchoberschule b Klsse im Fch Mthemtik Zum Eintritt in die Fchoberschule ist der mittlere Bildungsbschluss Vorussetzung. Ds heißt, im Fch Mthemtik werden die, bis zur

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche...

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche... .6 Bruchterme Inhltsverzeichnis Theorie. Lernziele............................................ Repetition............................................3 Die Addition von zwei Bruchtermen-Methode I.......................

Mehr

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben.

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben. ALGEBRA GRUNDRECHENARTEN MULTIPLIZIEREN Grundlgen der Mthemtik Lösen Sie die nchfolgenden grundlegenden Aufgben. Beweisen Sie durch Ausrechnung, dss b ) b ist! ( Wichtige mthemtische Regeln: 0 = 0 = 0

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Lernumgebungen zu den binomischen Formeln

Lernumgebungen zu den binomischen Formeln Lernumgebungen zu den binomischen Formeln Die Fchmittelschule des Kntons Bsel-Lnd ist ein dreijähriger Bildungsgng der zum Fchmittelschulzeugnis führt. Dbei entspricht die 1.FMS dem 10. Schuljhr. Zu Beginn

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen

R := {((a, b), (c, d)) a + d = c + b}. Die Element des Quotienten M/R sind die Klassen Die ntürlichen Zhlen (zusmmen mit der Addition und der Multipliktion) wurden in Kpitel 3 xiomtisch eingeführt. Aus den ntürlichen Zhlen knn mn nun die gnzen Zhlen Z = {..., 2, 1, 0, 1, 2,...} die rtionlen

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlgen der Mthemtik, WS 2014/15 Thoms Timmermnn 3. Dezember 2014 Wiederholung: Konstruktion der gnzen Zhlen (i) Betrchten formle Differenzen b := (, b) mit, b N 0 (ii) Setzen b c d, flls +

Mehr

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen

1. Grundlagen. 2. Summenzeichen, Produktzeichen. 3. Fakultät, Binomialkoeffizient. 4. Potenzen, Wurzeln, Logarithmen. 5. Elementare Funktionen Inhlte Brückenkurs Mthemtik Fchhochschule Hnnover SS 00 Dipl.-Mth. Corneli Reiterger. Grundlgen. Summenzeichen, Produktzeichen. Fkultät, Binomilkoeffizient. Potenzen, Wurzeln, Logrithmen. Elementre Funktionen

Mehr

Unterrichtsentwurf Mathe

Unterrichtsentwurf Mathe Unterrichtsentwurf Mthe Them: Binomische Formeln Den Einstieg in die binomischen Formeln bildet folgende Problemstellung: Im Jugendclub gibt es eine qudrtische Tnzfläche, die für einen Discobend so vergrößert

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg Übungen zum Kurs Eponentilgleichungen Eponentilgleichungen 70 Eponentilgleichungen mit Ergebnissen und usführlichen Lösungsweg 7.technisch verbesserte Auflge vom.09.007 (Sonderzeichen wurden teilweise

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium Algebr-Trining Theorie & Aufgben Serie Bruchrechnen Theorie: Kthrin Lpdul Aufgben: Bernhrd Mrugg VSGYM / Volksschule Gymnsium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung mcht den Meister» gilt

Mehr

3. Das Rechnen mit Brüchen (Rechnen in )

3. Das Rechnen mit Brüchen (Rechnen in ) . Ds Rechnen mit Brüchen (Rechnen in ) Brüche sind Teile von gnzen Zhlen. Zwischen zwei unterschiedlichen gnzen Zhlen ht es immer unendlich viele Brüche. Brüche entstehen us einer Division; eine gnze Zhl

Mehr

Lineare Algebra I 5. Tutorium mit Lösungshinweisen

Lineare Algebra I 5. Tutorium mit Lösungshinweisen Fchbereich Mthemtik Prof Dr JH Bruinier Mrtin Fuchssteiner Ky Schwieger TECHNISCHE UNIVERSITÄT DARMSTADT AWS 07/08 0607 (T ) Linere Algebr I 5 Tutorium mit Lösungshinweisen Welche Gruppen kennen Sie? Welche

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Aufgben mit en Aufgbe G mit Der römische Brunnen Aufsteigt der Strhl und fllend gießt Er voll der Mrmorschle Rund, Die, sich verschleiernd, überfließt

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 9 Saison 1967/1968 Aufgaben und Lösungen 7. Mthemtik Olympide. Stufe (Kreisolympide) Klsse 9 Sison 1967/1968 Aufgben und Lösungen 1 OJM 7. Mthemtik-Olympide. Stufe (Kreisolympide) Klsse 9 Aufgben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen

Mehr

R. Brinkmann Seite Brüche, Terme und lineare Funktionen zur Vorbereitung einer Klassenarbeit. b)

R. Brinkmann  Seite Brüche, Terme und lineare Funktionen zur Vorbereitung einer Klassenarbeit. b) R. Brinkmnn http://brinkmnn-du.de Seite 9.09.0 Lösungen Linere Funktionen VBKA I Brüche, Terme und linere Funktionen zur Vorbereitung einer Klssenrbeit E E ) + = 8 0 0 ) 5 5 = 6 b) 7 9 = 8 7 56 b) 5 :

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

3 Uneigentliche Integrale

3 Uneigentliche Integrale Mthemtik für Ingenieure II, SS 29 Dienstg 9.5 $Id: uneigentlich.te,v.5 29/5/9 6:23:8 hk Ep $ $Id: prmeter.te,v.2 29/5/9 6:8:3 hk Ep $ 3 Uneigentliche Integrle Mn knn die eben nchgerechnete Aussge e d =,

Mehr

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang & Lehrer/innenTeam ARBEITSBLATT 2-6 GEOMETRISCHE KÖRPER 1) DAS PRISMA . Semester ARBEITSBLATT -6 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen hben deckungsgleiche (kongruente), prllele und eckige Grund- und Deckflächen. Die Seitenknten sind lle gleich lng und zueinnder

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthemtik für Informtiker I (Wintersemester 00/00) Aufgbenbltt (. Oktober 00)

Mehr

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM

Mathematik: Mag Schmid Wolfgang Arbeitsblatt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Mthemtik: Mg Schmid Wolfgng Arbeitsbltt 5 5. Semester ARBEITSBLATT 5 VEKTORRECHNUNG IM RAUM Bisher hben wir die Lge von Punkten und Gerden lediglich in der Ebene betrchtet. Nun wollen wir die Lge dieser

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

Inhalt. Info zum Buch

Inhalt. Info zum Buch 4 Inhlt Info zum Buch A Rechnen mit Potenzen und Wurzeln Potenzen mit gnzzhligen Exponenten 6 Normdrstellung von Zhlen 8 Polynomdivision 9 4 Wurzelterme 5 Der Zusmmenhng zwischen Potenzen und Wurzeln B

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN:

Heinz Klaus Strick: Mathematik ist schön, Springer-Verlag, ISBN: Heinz Klus Strick: Mthemtik ist schön, Springer-Verlg, ISBN: 978--66-79-9 Hinweise zu den nregungen zum Nchdenken und für eigene Untersuchungen zu 8.: zu 8.: Wenn die Dreiteilung des weißen Rechtecks durch

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Arbeitsblatt 1 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/

Arbeitsblatt 1 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/ 1. November 006 Arbeitsbltt 1 Übungen zu Mthemtik I für ds Lehrmt n der Grund- und Mittelstufe sowie n Sonderschulen H. Strde, B. Werner WiSe 06/07 4.10.06 Präsenzufgben: 1. Zeige: Sei p eine (un) gerde

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Grundwissen Mathematik 9

Grundwissen Mathematik 9 Grundwissen Mthemtik 9 Die binomischen Formeln ( + b) + b + b ( - b) - b + b ( + b) ( - b) - b Insbesondere benutzt mn die binomischen Formeln um Summen und Differenzen in Produkte umzuwndeln Die Qudrtwurzel

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

9 Satzgruppe des Pythagoras und Kongruenzabbildungen

9 Satzgruppe des Pythagoras und Kongruenzabbildungen Stzgruppe des Pythgors Mthemtik. Klsse 9 Stzgruppe des Pythgors und Kongruenzbbildungen Stz 4 Stz von Pythgors In einem rechtwinkligen Dreieck mit Ktheten und b und Hypotenuse c gilt: + b c Aufgbe 59 Beweisen

Mehr

14. INTEGRATION VON VEKTORFUNKTIONEN

14. INTEGRATION VON VEKTORFUNKTIONEN 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Figuren, Körper, Flächeninhlt, Volumen - Sttionenlernen Ds komplette Mteril finden Sie hier: School-Scout.de SCHOOL-SCOUT Lernzirkel -

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

Lösungen zur Probeklausur Lineare Algebra 1

Lösungen zur Probeklausur Lineare Algebra 1 Prof. Dr. Ktrin Wendlnd Dr. Ktrin Leschke WS 2006/2007 Lösungen zur Probeklusur Linere Algebr Ausgbe: 2. Dezember 2006 Aufgbe.. Geben Sie die Definition des Begriffs Gruppe n. Eine Gruppe ist eine Menge

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3. 5 5. Einführung Die Gleichung x 9 ht die Lösung. x 9 Z 9 x Die Gleichung x ht die Lösung. x Z x Definition Die Gleichung x, mit, Z und 0, ht die Lösung: x x Ist kein Vielfches von, so entsteht eine neue

Mehr

Der Gauß - Algorithmus

Der Gauß - Algorithmus R Brinkmnn http://brinkmnn-du.de Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei

Mehr

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen 1 Rechenregeln Betrg einer Zhl Subtrktion Kommuttivität der Addition (Vertuschungsgesetz) Assozitivgesetz der Addition (Verbindungsgesetz) Vorzeichenregeln Vorzeichen vor Klmmern Definition der Multipliktion

Mehr

Einführung in die Vektorrechnung (GK)

Einführung in die Vektorrechnung (GK) Einführung in die Vektorrechnung (GK) Michel Spielmnn Inhltsverzeichnis Grundlegende Definitionen Geometrische Vernschulichung. Punkte..................................... Pfeile.....................................

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückenkurs Linere Gleichungssysteme - Prof. r. M. Ludwig BRÜCKENKURS MATHEMATIK LINEARE GLEICHUNGSSYSTEME Schwerpunkte: Modellbildung Lösungsmethoden Geometrische Interprettion Prof. r. hbil. M. Ludwig

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

2. Flächenberechnungen

2. Flächenberechnungen Anlysis Integrlrechnung. Flächenberechnungen.. Die Flächenfunktion ) Flächenfunktionen ufzeichnen Skizziere zur gegebenen Funktion diejenige Funktion, welche die Fläche unterhlb der Funktionskurve misst.

Mehr

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen

26. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1986/1987 Aufgaben und Lösungen 26. Mthemtik Olympide 2. Stufe (Kreisolympide) Klsse 7 Sison 986/987 Aufgben und Lösungen OJM 26. Mthemtik-Olympide 2. Stufe (Kreisolympide) Klsse 7 Aufgben Hinweis: Der Lösungsweg mit Begründungen und

Mehr

2.4 Elementare Substitution

2.4 Elementare Substitution .4 Elementre Substitution 7.4 Elementre Substitution Im Übungsteil finden Sie folgende Aufgben zum Trining der in diesem Abschnitt behndelten Themen: Linere Substitution (LSub): Aufgbe 4.5 (S.4) und Aufgbe

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen 56. Mthemtik-Olympide. Stufe (Regionlrunde) Olympideklsse 8 Lösungen c 016 Aufgbenusschuss des Mthemtik-Olympiden e.v. www.mthemtik-olympiden.de. Alle Rechte vorbehlten. 56081 Lösung 10 Punkte Nehmen wir

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

10 Das Riemannsche Integral

10 Das Riemannsche Integral 10 Ds Riemnnsche Integrl 50 10 Ds Riemnnsche Integrl Ziel dieses Prgrphen ist es, den Inhlt einer Fläche, die vom Grphen einer Funktion berndet wird, exkt zu definieren. f(b) f() = t 0 t1 t2 t3 t4 t5 t

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

Musterlösung zu Blatt 9, Aufgabe 2

Musterlösung zu Blatt 9, Aufgabe 2 Musterlösung zu Bltt 9, Aufgbe Anlysis II MIIA SoSe 7 Mrtin Schottenloher Musterlösung zu Bltt 9, Aufgbe I Aufgbenstellung Es sei J [, ] und f : J R deniert durch fx x 3. Finden Sie eine Folge f n n N

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln $Id: trig.tex,v 1.8 015/05/04 10:16:36 hk Exp $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir begonnen die Additionstheoreme der trigonometrischen Funktionen zu besprechen.

Mehr

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel

Quadratische Gleichungen. Aufgabe 1: Lösen von Gleichungen ohne Lösungsformel Qudrtische Gleichungen Aufge : Lösen von Gleichungen ohne Lösungsformel ) 0,8 ) 7 c) - 867 0 d) e) 9 f) - 0 g) 0 h) i) 6 0 j) Aufge : Lösen von Gleichungen durch Zerlegung in Fktoren ) 4 0 ) 4 0 c) - 4

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mthemtisches Institut der Universität München Prof. Dr. Frnz Merkl Sommersemester 2013 Bltt 2 26.4.2013 Übungen zur Anlysis 2 2.1 Vernschulichung der Cuchy-Schwrz-Ungleichung. Gegeben seien die Vektoren

Mehr

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen.

f : G R ϕ n 1 (x 1,...,x n 1 ) Das ist zwar die allgemeine Form, aber es ist nützlich sie sich für den R 2 und R 3 explizit anzuschauen. Trnsformtionsstz von Sebstin üller Integrtion über Normlgebiete Allgemein knn mn im R n ein Normlgebiet wie folgt definieren: G : { R n 1 b, ϕ 1 ( 1 ) ψ 1 ( 1 ), ϕ ( 1, ) 3 ψ ( 1, ),... ϕ n 1 ( 1,...,

Mehr

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i,

Präsenz-Aufgaben = i. (a) i 15 = i 14 i = (i 2 ) 7 i = ( 1) 7 i = i i 15 = 0 + ( 1)i, i (i i) = i 1 = i i 15 = 0 + 1i, Präsenz-Aufgben 1. 1. Schreiben Sie z in der Form z α + βi mit α,β R. Aus der Vorlesung ist beknnt: i i i 1, i 1 1 i i i i i 1 i. () i 15 i 1 i (i ) 7 i ( 1) 7 i i i 15 + ( 1)i, (b) i 15 1 i 15 () 1 i

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Ferienkurs Experimentalphysik

Ferienkurs Experimentalphysik Ferienkurs Experimentlphysik 4 009 Übung 1 Heisenberg sche Unschärfereltion Zeigen Sie, dss eine Messprtur beim Doppelspltexperiment, die den Durchgng eines Teilchens durch ein Loch detektieren knn, ds

Mehr

RESULTATE UND LÖSUNGEN

RESULTATE UND LÖSUNGEN TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthemtik Kpitel 3.2 Alger Grundrechenrten RESULTATE UND LÖSUNGEN Verfsser: Hns-Rudolf Niedererger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausge:

Mehr