1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3"

Transkript

1 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen mit komplizierterem Nenner 7 6 Die Addition von zwei Bruchtermen - Methode II 7 6. Ds kgv Lösung der Aufgbe mit dem kgv Zusmmenfssung 0

2 Bruchterme Theoriebltt 2 Einführung und Repetition Den Begriff Term hben wir bereits kennengelernt. Ein Term ist zusmmengesetzt us Zhlen, Vribeln, Klmmern und Bruchstrichen. Dbei sind insbesondere Gleichungen und Ungleichungen keine Terme. Der Begriff Bruchterm ist selbsterklärend. Dmit sind diejenigen Terme gemeint, die einen oder mehrere) Bruchstriche) hben. Beispiele Bei Bruchtermen gelten die gleichen Prinzipien wie bei den Brüchen z.b. 3 ). Deshlb lösen wir ls Repetition schnell ein pr Übungen mit bereits beknntem Stoff. Repetitionsübungen. Berechne die folgenden Ausdrücke! = b) = = d) = 2. Berechne die folgenden Ausdrücke! = b) = 3 5 : 2 = d) 2 5 : 4 = 3. Fülle jeweils die Lücke us: Brüche können nur ddiert/subtrhiert werden, wenn sie.... b) Brüche mit gleichem Nenner werden ddiert, indem mn.... Brüche werden multipliziert, indem mn... d) Brüche werden dividiert, indem mn Entscheide, ob die Aussge whr oder flsch ist. Zwei Brüche können nur miteinnder multipliziert werden, wenn der Nenner gleich ist. b) Wenn zwei Brüche den gleichen Zähler hben, können sie miteinnder subtrhiert werden.

3 Bruchterme Theoriebltt 3 2 Multipliktion und Division von Bruchtermen Beispiele 5. Fsse so zusmmen, dss im Endergebnis nur ein Bruchstrich vorkommt und nicht mehr weiter gekürzt e) 4b 0+0b 5 2 5b2 7b 3 4 [ ] b) 2 24y b 2 b) 6x+40 4x+0 4y 2 2 b 2 2+2b +b) 2 3b 3 x 4 y 4 x 2 2xy+y 2 x y x 2 + xy [ 3 2] d) x 2 y 2 x 2 + y 2 x3 + xy 2 x y) 2 [ 3 2y+ ] [ xx+y) x y ] [ x2 +y 2 x ] 6. Fsse so zusmmen, dss im Endergebnis nur ein Bruchstrich vorkommt und nicht mehr weiter gekürzt 2x 2 + 4xy+2y 2 3xy) 2 : x2 y 2 9x 2 y 9z 2 + 2w 2z 20 : 9z4 6w 2 8z 30 [ 2x+y) yx y) ] b) 6u 2 9b 2 24b+u) : 4u 3b 36u+b) 9 [ ] d) c 2 d 2 d 2 23z 2 4w) c 2 : 4c+3 c 3 7. Erfinde eine Aufgbe zum Them Division von Brüchen, die ds Ergebnis ht. [ 34u+3b) 2 ] [ c+d c )d ] 3 Die Addition von zwei Bruchtermen-Methode I Wir wollen folgende Aufgbe lösen: b =

4 Bruchterme Theoriebltt 4 Wir lösen die Aufgbe in zwei Schritten: Die Ausführung: Übungen 8. Mche bei den folgenden Aufgben die Brüche gleichnmig. +b b b +b b) 7 t + 6 t 9. Fülle die Lücke us: Den gemeinsmen Nenner von zwei Brüchen finden wir herus, indem wir Fsse so zusmmen, dss im Endergebnis nur ein Bruchstrich vorkommt und nicht mehr weiter gekürzt +b b b +b x x2 2 x 2 [ 4b +b) b) ] b) 7 t + 6 t [ 2x ) ] d) k l k+ 4l x 2 + 4k+ 4l 6k+ 6l. Fsse so zusmmen, dss im Endergebnis nur ein Bruchstrich vorkommt und nicht mehr weiter gekürzt b ) : b b ) [ b ] b) m + ) : n m ) [ n+m n m n ] 2. Fsse so zusmmen, dss im Endergebnis nur ein Bruchstrich vorkommt und nicht mehr weiter gekürzt 2 + b 2 + b 2 b b ) [ b +b ] b) ) ) 2 [ ] + [ t ] [ 5 2 ]

5 Bruchterme Theoriebltt 5 d) 7 +b b 2 : 2t+ 4s 2t 4s 3t 5s 3t+ 5s ) 2+2b ) : [ 6 b ] t 2 4s 2 9t 2 25s 2 [ 44st t+2s)t 2s) ] 4 Doppelbrüche Doppelbrüche mit Zhlen hben wir bereits in der Unterstufe kennengelernt. Bei Doppelbrüchen hben die verschiedenen Bruchstriche verschiedene Prioritäten. Dmit der Doppelbruch eindeutig ist, muss der Huptbruchstrich gekennzeichnet sein, meistens ist er die längste Linie, in diesem Skript ist er die dickste Linie = Merke: Bei Doppelbrüchen werden die äusseren und die inneren Glieder miteinnder multipliziert. Aufgbe: Forme den folgenden Bruch zu einem Bruch mit einem Bruchstrich um Wenn wir wissen, wie wir einen Doppelbruch mit Zhlen lösen müssen, dnn können wir uch ohne Probleme einen Doppelbruch mit Vribeln lösen: Bei der nächsten Aufgbe kommt eine zusätzliche Schwierigkeit dzu. Bis jetzt htten wir oberhlb des Huptbruchstriches dicker Bruchstrich) und unterhlb des Bruchstriches schöne Brüche. In der folgenden Sitution ist ds nicht mehr so. Oberhlb des Bruchstriches hben wir eine Summe von Brüchen. Die Auf-

6 Bruchterme Theoriebltt 6 gbe sieht so us: 5 x+ 7 x 2 x 2 2 Die Lösung ist nicht viel schwieriger ls beim vorherigen Beispiel. Wir müssen einfch zuerst die beiden Brüche zusmmenzählen, dnch befinden wir uns in der beknnten Sitution des oberen Beispiels. Lösung Übungen 3. Fsse so zusmmen, dss im Endergebnis nur ein Bruchstrich vorkommt und nicht mehr weiter gekürzt x + y x y y x [ x y ] b) Fsse so zusmmen, dss im Endergebnis nur ein Bruchstrich vorkommt und nicht mehr weiter gekürzt 4 8b 2 4b 2 5 [ 4 5+2b) ] b) x x x +x [ 2 x 2 ] + + [ 2 ] [ +) +2 ]

7 Bruchterme Theoriebltt 7 5. Fsse so zusmmen, dss im Endergebnis nur ein Bruchstrich vorkommt und nicht mehr weiter gekürzt x x 2 r+ s r s r s r+ s r2 + s 2 r 2 s 2 [ x x+ ] b) [ 2r s ] d) [] c +b +c 6 2 2bc+6b 2 c 2 [ ] 6c+ b 6. Versuche die Aufgbe des nächsten Abschnitts mit der Multipliktionsmethode zu lösen. 5 Die Addition von zwei Bruchtermen mit komplizierterem Nenner Wir betrchten nun eine Aufgbe mit komplizierteren Nennern. x 2 + x x x+ = 6 Die Addition von zwei Bruchtermen - Methode II Ds Beispiel des vorherigen Abschnittes ht uns gezeigt, dss die Multipliktionsmethode nicht immer zum Ziel führt. Wir erhlten Terme wie x 3,... mit denen wir mit unserem Wissen nichts nfngen können. Wir erhlten zwr nichts Flsches, gerten ber in eine Sckgsse. Deshlb müssen wir uns etws neues überlegen. 6. Ds kgv Bei dieser Methode geht es um ds kleinste gemeinsme Vielfche. Dieses ist folgendermssen definiert:

8 Bruchterme Theoriebltt 8 Definition Gegeben sind die Zhlen,b N. Die kleinste ntürliche Zhl, von der und b Teiler sind, nennen wir kleinstes gemeinsmes Vielfches von und b, bgekürzt kgv,b). Beispiel: kgv3,5) = kgv4,6) = Bei grösseren Zhlen können wir ds kgv beknntlich mit Hilfe der Primzhlzerlegung bestimmen wenn es ohne TR geschehen soll). Wir betrchten dieses Verfhren hier, weil wir dieses Prinzip nchher uch uf Terme mit Vribeln übertrgen können. Ds kgv24,54) bestimmen: Die Anwendung uf ds Bruchrechnen: =? Frge: Wie können wir ds kgv llgemein bei Termen bestimmen? Antwort: Beispiele: Bestimme ds kgv der Terme,b, 2,b 3 und c 2.

9 Bruchterme Theoriebltt 9 Bestimme ds kgv der Terme 2x 2,3y und 4x. Bestimme ds kgv der Termex+)x+2),x+) 2 x+2) und x+)x+3) 2. Bestimme ds kgv der Terme 3xx+)x+2),2x 2 yx+) 2 x+2) und 6y 2 x+)x+3) 2. Bestimme ds kgv der Terme x+y,x y und x+y+z 6.2 Lösung der Aufgbe mit dem kgv Lösen wir die Aufgbe us Abschnitt.4 nun mit der Methode des kgv: x 2 + x x x+

10 Bruchterme Theoriebltt 0 Diese Methode funktioniert ntürlich uch für Aufgben mit mehr ls zwei Bruchtermen. Übungen 7. Bestimme ds kgv der folgenden Terme: x,y,z 2,x 2 und z 3 b) 3x,4z 2,5y 2 und 2y 3 x+),x+2) 2 und x+) 2 x+2) d) 3x+3)x+5),2x+2)x+5) 2 und 4x+3) 2 x+4) e) +b, b und +b+c 8. Bestimme ds kgv der folgenden Terme, indem Du zuerst fktorisierst: s 2 4 und 2 s b) u v,v u und u+v z 2 z,z 2 und z 2 + z 9. Mche die Brüche gleichnmig. Dbei sollte der Nenner so klein im Sinne des kgv) wie möglich sein. s+7 3s 6 s+4 s 2 2s b) u v uv+v 2 u 2 + uv z 2 z 2 z 2+ z 2 + z d) 2x x 3 2xx+2) x x 20. Bechte, dss die Aufgben zum Teil oben schon vorgekommen sind. Fsse nun so zusmmen, dss im Endergebnis nur ein Bruchstrich vorkommt und nicht mehr weiter gekürzt e) f) s+7 3s 6 s+4 s 2 2s z 2 z 2 z 2+ z 2 + z b) + b b b + u u v + v v u u+v u+v [ s+6] b) u v 3s uv+v 2 u 2 + uv 2 [ ] d) 2x z 2 z )z+) x 3 2xx+2) x x c c c b) [ u v vu ] [ x 6 3xx+3) ] [0] [ u+v ] 7 Zusmmenfssung Wir stnden vor dem Problem, dss wir Brüche ddieren mussten, die nicht den gleichen Nenner htten. Wir hben uns gefrgt, wie wir gleiche Nenner erhlten können.

11 Bruchterme Theoriebltt Wir hben herusgefunden, dss die Nenner dnn gleich werden, wenn wir sie miteinnder multiplizieren. Die Methode wr leider nur bei einfchen Nennern erfolgreich. Bei Brüchen mit grossen Nennern htten wir ds Problem, dss die Zähler sehr gross wurden. Aus diesem Grunde mussten wir uns eine zweite Methode überlegen. Wir kmen uf die Idee, ds kgv zu nehmen, wodurch sich die Rechnungen erheblich vereinfchten. Wir hben uns die Frge gestellt: Welche Methode wird wnn m besten ngewndt? Wir fnden herus: Methode II, wenn die Nenner Gemeinsmkeiten ufweisen, sonst die Methode I. Die Methode I ht den grossen Vorteil, dss sie nur eine Überlegung brucht und deshlb sehr leicht zu merken ist.

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche...

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche... .6 Bruchterme Inhltsverzeichnis Theorie. Lernziele............................................ Repetition............................................3 Die Addition von zwei Bruchtermen-Methode I.......................

Mehr

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3

2.5 Algebra. 1 Faktorisieren Terme faktorisieren (-1) ausklammern Terme mit Klammern faktorisieren... 3 2.5 Algebr Inhltsverzeichnis Fktorisieren 2. Terme fktorisieren...................................... 2.2 (-) usklmmern....................................... 2.3 Terme mit Klmmern fktorisieren..............................

Mehr

Mathematik Bruchrechnung Grundwissen und Übungen

Mathematik Bruchrechnung Grundwissen und Übungen Mthemtik Bruchrechnung Grundwissen und Übungen von Stefn Gärtner (Gr) Stefn Gärtner -00 Gr Mthemtik Bruchrechnung Seite Inhlt Inhltsverzeichnis Seite Grundwissen Ws ist ein Bruch? Rtionle Zhlen Q Erweitern

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlgen in Mthemtik für die. Klssen der HMS und der FMS Einleitung In der Mthemtik wird häufig uf bereits Gelerntem und Beknntem ufgebut. Wer die Grundlgen nicht beherrscht, ht deshlb oft Mühe und Schwierigkeiten,

Mehr

6c 4b 5a. 6c 4b + 5a.

6c 4b 5a. 6c 4b + 5a. Bltt Nr.0 Mthemtik Online - Übungen Bltt Klsse Bltt Kpitel Terme Addition Terme und Gleichungen Nummer: 0 0000 Kl: X Grd: Zeit: 0 Quelle: eigen W Aufgbe..: Fssen Sie den folgenden Bruchterm zusmmen und

Mehr

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium

Algebra-Training. Theorie & Aufgaben. Serie 3. Bruchrechnen. Theorie: Katharina Lapadula. Aufgaben: Bernhard Marugg. VSGYM / Volksschule Gymnasium Algebr-Trining Theorie & Aufgben Serie Bruchrechnen Theorie: Kthrin Lpdul Aufgben: Bernhrd Mrugg VSGYM / Volksschule Gymnsium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung mcht den Meister» gilt

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben.

1 Grundlagen der Mathematik Lösen Sie die nachfolgenden grundlegenden Aufgaben. ALGEBRA GRUNDRECHENARTEN MULTIPLIZIEREN Grundlgen der Mthemtik Lösen Sie die nchfolgenden grundlegenden Aufgben. Beweisen Sie durch Ausrechnung, dss b ) b ist! ( Wichtige mthemtische Regeln: 0 = 0 = 0

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

Übungen zu Wurzeln III

Übungen zu Wurzeln III A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) 1 15 9 bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: 1 1 9 5 1 1.).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

RESULTATE UND LÖSUNGEN

RESULTATE UND LÖSUNGEN TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthemtik Kpitel 3.2 Alger Grundrechenrten RESULTATE UND LÖSUNGEN Verfsser: Hns-Rudolf Niedererger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausge:

Mehr

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a)

Rechnen mit Termen. 1. Berechne das Volumen und die Oberfläche. 4. Löse die Klammern auf und fasse zusammen: a) 2x(3x 1) x(2 5x) b) 7a(1 b)+5b(2 a) Rechnen mit Termen 1. Berechne ds Volumen und die Oberfläche. 2. 3 3 7 2 4b 3. 5 4 8 b 4. Löse die Klmmern uf und fsse zusmmen: ) 2x(3x 1) x(2 5x) b) 7(1 b)+5b(2 ) c) 4b( 3b) 4b( 2 3) 5. Löse die Gleichungen:

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b

Begriffe: Addition Subtraktion Multiplikation Division. Summe Differenz Produkt Quotient a + b a b a b a : b Grundlgen 0.0. Zhlbereiche ntürliche Zhlen: N = {0; ; 2;...} (nch DIN 547) N = N \ {0} gnze Zhlen: Z = {... 2; ; 0; ; 2;...} rtionle Zhlen: Q = { p p, q Z, q 0} q Q besteht us llen Bruchzhlen. reelle Zhlen:

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit WS 008/09 7 Elementrmthemtik (LH) und Fehlerfreiheit. Zhlenbereiche... Die rtionlen Zhlen... Definition Die Definition der rtionlen Zhlen erfolgt hier innermthemtisch ebenflls wie diejenige der gnzen Zhlen

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Der Gauß - Algorithmus

Der Gauß - Algorithmus R Brinkmnn http://brinkmnn-du.de Seite 7..9 Der Guß - Algorithmus Der Algorithmus von Guss ist ds universelle Verfhren zur Lösung beliebiger linerer Gleichungssysteme. Einführungsbeispiel: 7x+ x 5x = Drei

Mehr

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich:

ist ein Quotient ganzer Zahlen m,n Z und n = 0. Dabei heißt m Zähler und n Nenner. Wegen m 1 = m ist Z eine Teilmenge von Q. Zwei Brüche sind gleich: Vorlesung 4 Zhlenbereiche 4.1 Rtionle Zhlen Wir hben gesehen, dss nicht jedes Eleent us Z ein ultipliktives Inverses besitzt. Dies führt zur Einführung der rtionlen Zhlen Q, obei der Buchstbe Q für Quotient

Mehr

5 Gleichungen (1. Grades)

5 Gleichungen (1. Grades) Mthemtik PM Gleichungen (. Grdes) Gleichungen (. Grdes). Einführung Betrchtet mn und (, Q) und vergleicht sie miteinnder, so git es Möglichkeiten:. > ist grösser ls. = ist gleich gross wie. < ist kleiner

Mehr

Das Rechnen mit Logarithmen

Das Rechnen mit Logarithmen Ds Rechnen mit Logrithmen Etw in der 0. Klssenstufe kommt mn in Kontkt mit Logrithmen. Für die, die noch nicht so weit sind oder die, die schon zu weit dvon entfernt sind, hier noch einml ein kleiner Einblick:

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Repetitionsaufgaben Logarithmusgleichungen

Repetitionsaufgaben Logarithmusgleichungen Kntonle Fchschft Mthemtik Repetitionsufgben Logrithmusgleichungen Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Repetition Logrithmen D) Logrithmusgleichungen 4 E) Aufgben mit Musterlösungen 5 A)

Mehr

14. INTEGRATION VON VEKTORFUNKTIONEN

14. INTEGRATION VON VEKTORFUNKTIONEN 120 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Einführung in das Rechnen mit Zahlen. (elementare Algebra)

Einführung in das Rechnen mit Zahlen. (elementare Algebra) Ausgbe 2008-05 Einführung in ds Rechnen mit Zhlen (elementre Algebr) Algebr ist ein Teilgebiet der Mthemtik und beschäftigt sich mit der Verknüpfung von Zhlen durch Rechenopertionen 1. Rechenregeln der

Mehr

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus:

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus: 0 Dr Andres M Seifert Sternstunden in Mthe, Physik und Technik wwwsternstunden-odenwldde Logrithmen Die Gleichung vom Typ b wird mit Hilfe des Logrithmus gelöst Der Logrithmus von zur Bsis b ist die Zhl,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Herleitung der Strasse für quadratische Räder

Herleitung der Strasse für quadratische Räder Herleitung der Strsse für qudrtische Räder P = P( P / y P ) sei der Berührungspunkt des Rdes mit der Strsse bzw mit der gesuchten Kurve P = P ( / y ) sei der Mittelpunkt der entsprechenden Qudrtseite des

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen

Rechenregeln. Bezeichnung Regel Bemerkung/Beispiel. Der Betrag einer Zahl ist stets ein positiver Wert. Strichrechnungen 1 Rechenregeln Betrg einer Zhl Subtrktion Kommuttivität der Addition (Vertuschungsgesetz) Assozitivgesetz der Addition (Verbindungsgesetz) Vorzeichenregeln Vorzeichen vor Klmmern Definition der Multipliktion

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik

Grundsätzliche Voraussetzungen für die Fachoberschule ab Klasse 11 im Fach Mathematik Grundsätzliche Vorussetzungen für die Fchoberschule b Klsse im Fch Mthemtik Zum Eintritt in die Fchoberschule ist der mittlere Bildungsbschluss Vorussetzung. Ds heißt, im Fch Mthemtik werden die, bis zur

Mehr

wertyuiopasdfghjklzxcvbnmqwertyui

wertyuiopasdfghjklzxcvbnmqwertyui qwertyuiopsdfghjklzxcvnmqwerty uiopsdfghjklzxcvnmqwertyuiopsd fghjklzxcvnmqwertyuiopsdfghjklzx Aufgen M-Beispielen cvnmqwertyuiopsdfghjklzxcvnmq Vorereitung uf die. Schulreit wertyuiopsdfghjklzxcvnmqwertyui

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

G2 Grundlagen der Vektorrechnung

G2 Grundlagen der Vektorrechnung G Grundlgen der Vektorrechnung G Grundlgen der Vektorrechnung G. Die Vektorräume R und R Vektoren Beispiel: Physiklische Größen wie Krft und Geschwindigkeit werden nicht nur durch ihre Mßzhl und ihre Einheit,

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg Übungen zum Kurs Eponentilgleichungen Eponentilgleichungen 70 Eponentilgleichungen mit Ergebnissen und usführlichen Lösungsweg 7.technisch verbesserte Auflge vom.09.007 (Sonderzeichen wurden teilweise

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 8. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmnn SS Höhere Mthemtik II für die Fchrichtung Informtik Lösungsvorschläge zum 8. Übungsbltt Aufgbe 9 erechnen

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

2 Rechnen mit Termen. 2.1 Grundrechenarten mit Termen

2 Rechnen mit Termen. 2.1 Grundrechenarten mit Termen 9 Rechnen mit Termen Rechnen mit Termen Die Einführung von Buchsten ls Vrile und deren Verknüpfung durch Rechenzeichen führt zu dem Begriff des Terms (von lt. terminre estimmen).. Grundrechenrten mit Termen.

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mthemtisches Institut der Universität München Prof. Dr. Frnz Merkl Sommersemester 2013 Bltt 2 26.4.2013 Übungen zur Anlysis 2 2.1 Vernschulichung der Cuchy-Schwrz-Ungleichung. Gegeben seien die Vektoren

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhl der c. 50.000 Mthemtikufgen zu orientieren, enutzen Sie unedingt ds Lesezeichen Ihres Acrot Reders: Ds Icon finden Sie in der links stehenden Leiste.

Mehr

Quadratische Gleichungen und Funktionen

Quadratische Gleichungen und Funktionen Qudrtische Gleichungen und Funktionen Bei einer udrtischen Gleichung kommt die Unbeknnte Vrible mindestens einml in der.potenz vor, ber in keiner höheren Potenz. b c udrtischer Anteil linerer Anteil konstnter

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhlt: 1. Die Bedeutung von Vriblen....................................... 2. Addition und Subtrktion gleichrtiger Terme............................ 3. Multipliktion und Division von einfchen Termen.........................

Mehr

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen

{ } Menge der natürlichen Zahlen { } Menge der natürlichen Zahlen mit Null { } Menge der ganzen Zahlen Themen Ntürliche und gnze gerde Eigenschften Besonderheiten - Beispiele { } Menge der ntürlichen { } Menge der ntürlichen mit Null { } Menge der gnzen IN = 1;2;3;4;... IN 0 = 0;1;2;3;4;... Z =...; 3; 2;

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT

Verlauf Material LEK Glossar Lösungen. In acht Leveln zum Meister! Exponentialgleichungen lösen. Kerstin Langer, Kiel VORANSICHT Eponentilgleichungen lösen Reihe 0 S Verluf Mteril LEK Glossr Lösungen In cht Leveln zum Meister! Eponentilgleichungen lösen Kerstin Lnger, Kiel Klsse: Duer: Inhlt: Ihr Plus: 0 (G8) 5 Stunden Eponentilgleichungen

Mehr

6.1. Matrizenrechnung

6.1. Matrizenrechnung 6 Mtrizenrechnung 6 Mtrizen und Vektoren Definition Eine Tbelle in der Drstellung A (m,n) n n m m mn heißt m,n-mtrix ( n ) ( ) mit den Zeilenvektoren ( m m mn ) und den Sltenvektoren m, m,, n n mn Mtrizen

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II (Thema aus dem Gebiet Algebra) Inhaltsverzeichnis 1 Potenzen, bei denen der Exponent negativ oder 0 ist 2 2 Potenzregeln 2 3 Terme mit Wurzelausdrücken 4 4 Wurzelgesetze 4 5 Das

Mehr

Bruchterme I. Definitionsmenge eines Bruchterms

Bruchterme I. Definitionsmenge eines Bruchterms Bruchterme I Definitionsmenge eines Bruchterms Alle zulässigen Einsetzungen in einen Bruchterm ilden die Definitionsmenge D. Einsetzungen, für die der Nenner Null wird, gehören nicht zur Definitionsmenge.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthemtik für Informtiker I (Wintersemester 00/00) Aufgbenbltt (. Oktober 00)

Mehr

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11 Reder für den Einstz in der Wiederholungsphse im Mthemtikunterricht der Jhrgngsstufe Anhng zur schriftlichen Husrbeit zur Zweiten Sttsprüfung für ds Lehrmt n öffentlichen Schulen von Andres Rschke Vorwort

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückenkurs Linere Gleichungssysteme - Prof. r. M. Ludwig BRÜCKENKURS MATHEMATIK LINEARE GLEICHUNGSSYSTEME Schwerpunkte: Modellbildung Lösungsmethoden Geometrische Interprettion Prof. r. hbil. M. Ludwig

Mehr

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert

a) Potenzieren ausgesprochen als Beispiel a b = c a = Basis a hoch b = c 4 3 = 64 b = Exponent c = Potenzwert 8. Potenzen 8. Einführung in Potenzen / Wurzeln / Logrithmen Neen den klssischen Grundrechenopertionen git es weitere Opertionen, welche Beziehungen zwischen Zhlen schffen: Potenzieren Rdizieren Wurzelziehen)

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Bruchterme. Franz Embacher

Bruchterme. Franz Embacher mthe online Skripten http://www.mthe-online.t/skripten/ Bruchterme Frnz Emcher Fkultät für Mthemtik der Universität Wien E-mil: frnz.emcher@univie.c.t WWW: http://homepge.univie.c.t/frnz.emcher/ In diesem

Mehr

Der Koeffizient wird an erster Stelle geschrieben, Potenzen gleicher Variablen werden zusammengefasst, Variablen werden alphabetisch geordnet.

Der Koeffizient wird an erster Stelle geschrieben, Potenzen gleicher Variablen werden zusammengefasst, Variablen werden alphabetisch geordnet. 5 Polynome 5.1 Definitionen Definition 8 Monom Ein Monom ist ein Produkt us einer reellen Zhl dem Koeffizienten) und beliebig vielen ntürlichen Potenzen von Vriblen dem Nmen des Monoms). Ist ds Monom nur

Mehr

Facharbeit über algebraische Gleichungen vierten Grades

Facharbeit über algebraische Gleichungen vierten Grades Fchrbeit über lgebrische Gleichungen vierten Grdes inkl. der Crdni schen Formeln und dem Beweis der Formeln. Verfßt von Ing. Wlter Höhlhubmer im Oktober ergänzt im Juli und August und erweitert im Dez.

Mehr

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg

1. Kapitel: Arithmetik. Ergebnisse mit und ohne Lösungsweg Arithmetik Lösungen Lö. Kpitel: Arithmetik. Ergenisse mit und ohne Lösungsweg Zu Aufge.: ) 7 ist eine rtionle Zhl, d sie sich ls Bruch us zwei gnzen Zhlen (Nenner 0) drstellen lässt: 7 7. 6 ) Eenso, denn

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Figuren, Körper, Flächeninhalt, Volumen - Stationenlernen Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Figuren, Körper, Flächeninhlt, Volumen - Sttionenlernen Ds komplette Mteril finden Sie hier: School-Scout.de SCHOOL-SCOUT Lernzirkel -

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen.

10. Riemannsche Geometrie I: Riemannsche Metrik. Variable Bilinearformen. 10. Riemnnsche Geometrie I: Riemnnsche Metrik Wir können in der hyperbolischen Geometrie noch nicht wirklich messen. Hierfür bruchen wir ein Riemnnsches Längen- und Winkelmß, d.h. eine Riemnnsche Geometrie.

Mehr

Beispiellösungen zu Blatt 24

Beispiellösungen zu Blatt 24 µthemtischer κorrespondenz- zirkel Mthemtisches Institut Georg-August-Universität Göttingen Aufge Beispiellösungen zu Bltt Mn eweise, dss mn ein Qudrt für jede Zhl n 6 in genu n kleinere Qudrte zerlegen

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x

π 2 r 2 r 2 sin 2 (t)r cos(t) dt π 2 cos2 (t) cos(t) dt = r 2 π dt = cos(x) sin(x) u v = cos(x) sin(x) + = cos(x) sin(x) + x Wir substituieren x x(t) r sin(t), t [ π, π ]. Dnn ist x (t) r cos(t), lso r x dx π π r π r r sin (t)r cos(t) dt π cos (t) cos(t) dt r π π cos (t) dt Wir integrieren cos mittels prtieller Integrtion: Sei

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

1 Ergänzungen zur Differentialrechnung

1 Ergänzungen zur Differentialrechnung $Id: nlytisch.te,v 1.3 2011/04/13 11:01:11 hk Ep $ 1 Ergänzungen zur Differentilrechnung Dieses einleitende Kpitel wollen wir verwenden um den Anschluss n ds vorige Semester herzustellen. Eine direkte

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

VORSCHAU. zur Vollversion. Inhalt. Seite. Vorwort 5. Zahlenarten 6 10 Zahlenarten. Grundrechenarten 7-11

VORSCHAU. zur Vollversion. Inhalt. Seite. Vorwort 5. Zahlenarten 6 10 Zahlenarten. Grundrechenarten 7-11 Inhlt Seite Vorwort 5 1 3 4 5 6 7 8 9 10 Zhlenrten 6 10 Zhlenrten Grundrechenrten 7-11 Die vier Grundrechenrten Übungskiste C Übungskiste D Punktrechnung und Strichrechnungen Positive und negtive Zhlen

Mehr

Terme und Gleichungen

Terme und Gleichungen Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,

Mehr

Potenzen, Wurzeln, Logarithmen Definitionen

Potenzen, Wurzeln, Logarithmen Definitionen Definitionen Wir gehen von der Gleichung c und dem Beispiel 8 2 us: nennt mn Potenz nennt mn Bsis nennt mn Eponent Allgemein: "Unter versteht mn die -te Potenz zur Bsis " " ist hoch " Beispiel: 2 8 Vorgng:

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7

Mehr

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren

Vektoren. Definition. Der Betrag eines Vektors. Spezielle Vektoren Vektoren In nderen Bereichen der Nturwissenschften treten Größen uf, die nicht nur durch eine Zhlenngbe drgestellt werden können, wie Krft, die Geschwindigkeit. Zur vollständigen Beschreibung z.b. der

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr