Übungen zu Wurzeln III

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungen zu Wurzeln III"

Transkript

1 A.Nenner rtionl mchen: Nenner ist Qudrtwurzel: 5 bc 1.).).).) 5.) bc.).) 8.) 9.) 10.) 5 5 B.Nenner rtionl mchen: Nenner ist höhere Wurzel: ).).).) 5.).) 5 C.Nenner rtionl mchen: Nenner ist Summe us Qudrtwurzeln 1.).) + 5.) 1.) ) D.Nenner rtionl mchen: Nenner ist Summe us drei Qudrtwurzeln ).).) E.Nenner rtionl mchen: Nenner ist Wurzel us Wurzeln) 1.) ) ).) ) 1.) ) ) Die Lösungen befinden sich uf den folgenden Blättern

2 Lösungen zu A1-A5: Lösung zu 1: Zähler und Nenner mit 1 erweitern: ) 1 Lösung zu : Zähler und Nenner mit 15 erweitern: Lösung zu : Zähler und Nenner mit 9 erweitern: ) 9 Mit Hilfe des teilweisen Rdizierens knn der Term noch weiter vereinfcht werden: Lösung zu : Zähler und Nenner mit bc erweitern: bc bc bc bc bc bc bc bc bc bc bc>0 Lösung zu 5: Mit erweitern:

3 Lösungen zu A-A10: Lösung zu : Mit erweitern: mit: > 0 Lösung zu : Diese Aufgbe ht die besondere Eigenschft, dß die beiden Wurzeln erst zusmmengefßt werden müssen. Dbei hilft ds Gesetz über die Multipliktion von Wurzeln: 1 Nun wie üblich) mit 1 erweitern: Lösung zu 8: Zuerst wieder Wurzeln zusmmenfssen: Nun mit 10 erweitern: Lösung zu 9: Hier helfen die Regeln "Division von Wurzeln" und "Rdizieren von Wurzeln": Diese Aufgbe ht die besondere Eigenschft, dß der gnze Bruch unter einer Wurzel steht. Hier hilft ds Gesetz über die Division von Wurzeln: Lösung zu 10: Hier helfen die Regeln "Division von Wurzeln" und "Rdizieren von Wurzeln": Nun mit 5 erweitern. Dnn Wurzelexpontent erweitern Wurzeln zusmmenfssen):

4 Lösungen zu B1-B: Lösung zu 1: ) Bruch mit erweitern: Potenzgesetz nwenden Rdizieren und Potenzieren mit heben sich uf ) Die Reihenfolge von Potenzieren und Rdizieren ist beliebig: ) 9 Lösung zu : 5 ) Bruch mit erweitern: Wurzelexpontent.Wurzelgesetz kürzen ) 5 ) ) 5 Definition der Wurzel: n n ) 1.Wurzelgesetz nwenden Lösung zu : ) Bruch mit 5 erweitern. Der Nenner i i 5 i 5 5 5i i 0 0

5 Lösungen zu B-B: Lösung zu : ) Bruch mit erweitern: Die Wurzelexponent erweitern. Ddurch können die Wurzeln unter einen Bruchstrich geschrieben werden: 1 1 ) Lösung zu 5: ) Bruch mit erweitern: In der linken Wurzel den Wurzelexponent erweitern. Ddurch können die Wurzeln unter einen Bruchstrich geschrieben werden: Lösung zu : ) Bruch mit erweitern: ) ) 1 Die Wurzeln können noch unter ein gemeinsmes Wurzelzeichen gebrcht werden: 1908

6 Lösungen zu C1-C: Lösung zu 1: Den Zähler und Nenner mit ) - 5 erweitern. Ddurch wird der Nenner zum. Binom: ) Für die beiden Wurzeln im Nenner gilt, dß sich Rdizieren und Potenzieren ufheben, wenn der Exponent gleich dem Wurzelexponenten ist: Lösung zu : Zähler und Nenner müssen mit + 5) multipliziert werden: ) + 5) + 5) ) ) ) + ) Vereinfchen, u.. mit Hilfe des 1.Wurzelgesetzes: Lösung zu : Zähler und Nenner müssen mit 8+ ) multipliziert werden. Ddurch wird der Nenner rtionl, und fällt hier) sogr weg weil er gleich 1 ist): 1 1) 1) 8+ ) 8 8 ) 8 ) 8+ ) 1) 8+ ) 1) 8+ ) 1 8 Nun den Zähler usmultiplizieren: Den Fktor knn mn usklmmern: i + ) 8 ) 0 ) 8+ 0 )

7 Lösungen zu C-C5: Lösung zu : Mn muß Zähler und Nenner mit + 5 erweitern. Der Nenner wird reell: Nun wird der Zähler usmultipliziert: 1.Wurzelgesetz nwenden: Nch ein pr weiteren Vereinfchungen erhält mn die Lösung: Lösung zu 5: Mn muß Zähler und Nenner mit erweitern. Der Nenner wird reell: Ds Zwischenergebnis schreiben wir nochml uf. Dnn wird der Zähler usmultipliziert: Zwei der Summnden heben sich uf. Den.Summnden vereinfchen: Dnn die Subtrktion im Zähler durchführen:

8 Lösungen zu D1: Im folgenden Bruch soll der Nenner rtionl werden: Bruch mit 15 5 erweitern. Nenner wird zum.binom: +b) -b) -b : b b b Den neuen Nenner wieder zum Binom mchen, indem wir Zähler und Nenner mit multiplizieren: Nun können wir den Zähler usmultiplizieren, zuerst die beiden ersten Klmmern: Gleiche Wurzeln in der linken Klmmer ddieren bzw. subtrhieren: Jetzt die beiden letzten verbliebenen Klmmern usmultiplizieren: Gleiche Wurzeln ddieren bzw. subtrhieren: Die Wurzeln 5 muß teilweise rdiziert werden: Gleiche Wurzeln ddieren bzw. subtrhieren:

9 Lösungen zu D: Im folgenden Bruch soller der Nenner rtionl werden: Den Bruch mit + 0 erweitern. Nenner wird zum.binom +b) -b) -b : + 0 ) + ) Den Nenner nun vereinfchen. Dbei gilt: + ist ein 1.Binom: Nun den Bruch mit erweitern. Ddurch wird der Zähler rtionl: + 0 Den Zähler vereinfchen, indem wir die Klmmer uflösen usmultiplizieren):

10 Lösungen zu D: Im folgenden Bruch soller der Nenner rtionl werden: Den Bruch mit erweitern. Nenner wird zum.binom +b) -b) -b : ) ) ) ) 0 ) b b b b b Den neuen Nenner mit 15 erweitern. Ddurch wird der Nenner rtionl: Nun den Zähler vereinfchen, indem wir die Klmmerr usmultiplizieren

11 Lösungen zu E1: Im folgenden Bruch soll der Nenner rtionl gemcht werden: 1 + Im 1.Schritt beseitigen wird die äußere Wurzel im Nenner, indem wir den Bruch mit + erweitern: ) + Im.Schritt beseitigen wir die übrig gebliebene Wurzel im Nenner, indem wir den Bruch mit ) ) erweitern. Der Nenner wird dnn zum.binom: Nun ist der Nenner rtionl. Der Bruch knn ber noch vereinfcht werden. 1 + ) 1 Wir bringen die Klmmer unter die Wurzel, wodurch sich ein.binom ergibt:

12 Lösungen zu E: Im folgenden Bruch soll der Nenner rtionl gemcht werden: Im 1.Schritt beseitigen wird die äußere Wurzel im Nenner, indem wir den Bruch mit + erweitern: Im.Schritt beseitigen wir die übrig gebliebene Wurzel im Nenner, indem wir den Bruch mit erweitern. Der Nenner wird dnn zum.binom: ) + )... ) Nun ist der Nenner rtionl. Der Zähler knn ber noch vereinfcht werden. Wir multiplizieren die beiden Klmmern us: )

13 Lösungen zu E: Im folgenden Bruch soll der Nenner rtionl gemcht werden: Im 1.Schritt beseitigen wird die äußere Wurzel im Nenner, indem wir den Bruch mit + 5 erweitern: + 5) + 5) Im.Schritt beseitigen wir die übrig gebliebene Wurzel im Nenner, indem wir den Bruch mit 5 erweitern. Der Nenner wird dnn zum.binom: ) + 5) 5 )... + ) ) Nun ist der Nenner rtionl. Der Zähler knn ber noch vereinfcht werden. Zum prktischeren Rechnen, ist es sehr rtsm us der ersten Klmmer die Zhl 5 uszuklmmern: Nun multiplizieren wir die beiden Klmmern us: + 10) 5) ) 5) ) + 5) ) + 5) ) + 5)

14 Lösungen zu E: Im folgenden Bruch soll der Nenner rtionl gemcht werden: Im 1.Schritt beseitigen wird die äußere Wurzel im Nenner, indem wir den Bruch mit + 11 erweitern: Im.Schritt beseitigen wir die übrig gebliebene Wurzel im Nenner, indem wir den Bruch mit 11 erweitern. Der Nenner wird dnn zum.binom: + 11) ) ) ) 9 5 Nun ist der Nenner rtionl. Der Zähler knn ber noch vereinfcht werden. Die beiden Klmmern bilden zusmmen ds.binom: + 11) ) + 11 [ 9 ]

15 Lösungen zu E5: Im folgenden Bruch soll der Nenner rtionl gemcht werden: Im 1.Schritt beseitigen wird die äußere Wurzel im Nenner, indem wir den Bruch mit + 5 erweitern: In zweiten Schritt multiplizieren wir den Bruch mit + ) ) 5 ) Ddurch wird der Nenner zum.binom und rtionl: Nun ist der Nenner rtionl. Der Zähler knn ber noch vereinfcht werden. Dzu kürzen wir den Bruch zuerst einml mit 1: ) 1 Nun bringen wir die Klmmer unter ds Wurzelzeichen: Nun ds.binom nwenden: [ 9 ) 5 )] 5)

16 Lösungen zu E: Im folgenden Bruch soll der Nenner rtionl gemcht werden: Im 1.Schritt beseitigen wird die äußere Wurzel im Nenner, indem wir den Bruch mit 5 5 erweitern: In zweiten Schritt multiplizieren wir den Bruch mit Ddurch wird der Nenner zum.binom und rtionl: 5 5) ) ) Nun ist der Nenner rtionl. Der Zähler knn ber noch vereinfcht werden. Die beiden Klmmern bilden ds.binom: [ 15 0]

17 Lösungen zu E: Im folgenden Bruch soll der Nenner rtionl gemcht werden: Im 1.Schritt beseitigen wird die äußere Wurzel im Nenner, indem wir den Bruch mit 5 erweitern: In zweiten Schritt multiplizieren wir den Bruch mit 5+. Ddurch wird der Nenner zum.binom und rtionl: 1 10 ) ) 5 5+ ) Nun ist der Nenner rtionl. Der Zähler knn ber noch vereinfcht werden. Dmit keine zu großen Zhlen entstehen, die mn nicht mehr im Kopf berechnen knn, klmmern wir us der ersten Klmmer us: Jetzt sieht mn, ds die beiden Klmmern ds.binom bilden. Wir können lso weiter vereinfchen: 5 5 [ 5 1] 5 [ ] 5 [ ] ) 1 5

18 Lösungen zu E8: Im folgenden Bruch soll der Nenner rtionl gemcht werden: Im 1.Schritt beseitigen wird die äußere Wurzel im Nenner, indem wir den Bruch mit 11 + erweitern: In zweiten Schritt multiplizieren wir den Bruch mit 11. Ddurch wird der Nenner zum.binom und rtionl: ) ) ) Nun ist der Nenner rtionl. Der Zähler knn ber noch vereinfcht werden. Aus der ersten Klmmern können wir 5 usklmmern: Jetzt sieht mn, ds die beiden Klmmern ds.binom bilden. Wir können lso weiter vereinfchen: [ 1]

RESULTATE UND LÖSUNGEN

RESULTATE UND LÖSUNGEN TG TECHNOLOGISCHE GRUNDLAGEN Kpitel 3 Mthemtik Kpitel 3.2 Alger Grundrechenrten RESULTATE UND LÖSUNGEN Verfsser: Hns-Rudolf Niedererger Elektroingenieur FH/HTL Vordergut 1, 8772 Nidfurn 055-654 12 87 Ausge:

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlgen in Mthemtik für die. Klssen der HMS und der FMS Einleitung In der Mthemtik wird häufig uf bereits Gelerntem und Beknntem ufgebut. Wer die Grundlgen nicht beherrscht, ht deshlb oft Mühe und Schwierigkeiten,

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg Übungen zum Kurs Eponentilgleichungen Eponentilgleichungen 70 Eponentilgleichungen mit Ergebnissen und usführlichen Lösungsweg 7.technisch verbesserte Auflge vom.09.007 (Sonderzeichen wurden teilweise

Mehr

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3

1.6 Bruchterme. 1 Einführung und Repetition 2. 2 Multiplikation und Division von Bruchtermen 3. 3 Die Addition von zwei Bruchtermen-Methode I 3 .6 Bruchterme Inhltsverzeichnis Einführung und Repetition 2 2 Multipliktion und Division von Bruchtermen 3 3 Die Addition von zwei Bruchtermen-Methode I 3 4 Doppelbrüche 5 5 Die Addition von zwei Bruchtermen

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhlt: 1. Die Bedeutung von Vriblen....................................... 2. Addition und Subtrktion gleichrtiger Terme............................ 3. Multipliktion und Division von einfchen Termen.........................

Mehr

Vorbereitung auf die Mathematik Schularbeit

Vorbereitung auf die Mathematik Schularbeit Vorbereitung uf die Mthemtik Schulrbeit 7. März 0 Alles Gute ll deinen Bemühungen, KL, KV Viel Erfolg! . Schulrbeit: MATHEMATIK KL.: M3b/I. - S. Mi, 7.03.0 ) Zeichne ds Prllelogrmm us den Bestimmungsstücken

Mehr

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist.

Teilbarkeitsregeln. 6.1 Grundwissen Mathematik Algebra Klasse 6. Teilbarkeit durch 2: Eine Zahl ist durch 2 teilbar, wenn die Endziffer gerade ist. 6.1 Grundwissen Mthemtik Algebr Klsse 6 Teilbrkeitsregeln Definition und Regeln Teilbrkeit durch 2: Eine Zhl ist durch 2 teilbr, wenn die Endziffer gerde ist. Teilbrkeit durch 3: Eine Zhl ist durch 3 teilbr,

Mehr

Kleine Algebra-Formelsammlung

Kleine Algebra-Formelsammlung Immnuel-Knt-Gymnsium Heiligenhus Gierhrt Kleine Alger-Formelsmmlung Mittelstufe (is Klsse 0) Drgestellt sin ie wichtigsten Fkten un Gesetze, woei iverse Ausnhmeregeln wie z.b. s Verot er Division urch

Mehr

MATHEMATIK GRUNDWISSEN KLASSE 5

MATHEMATIK GRUNDWISSEN KLASSE 5 MATHEMATIK GRUNDWISSEN KLASSE 5 Them NATÜRLICHE ZAHLEN Zählen und Ordnen Ntürliche Zhlen werden zum Zählen und Ordnen verwendet Stefn ist beim 100m-Luf ls 2. ins Ziel gekommen. Große Zhlen und Zehnerpotenzen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Grundwissen Jahrgangsstufe 9

Grundwissen Jahrgangsstufe 9 Grundwissen Jhrgngsstufe 9 GM 9. Qudrtwurzeln und die Menge der reellen Zhlen QUADRATWURZELN Unter der Qudrtwurzel us einer Zhl (kurz: Wurzel us, Schreibweise ) versteht mn diejenige nichtnegtive Zhl,

Mehr

Mathematik Brückenkurs

Mathematik Brückenkurs Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Mthemtik Brückenkurs im Fchbereich Informtik & Elektrotechnik Rumpfskript V7 Rumpfskript zur Vorlesung Mthemtik-Brückenkurs /86 Inhltsverzeichnis Mengen...

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

4 Die rationalen Zahlen

4 Die rationalen Zahlen 4 Die rtionlen Zhlen Der Ring der gnzen Zhlen ht den Mngel, dß nicht jede Gleichung = X, 0 innerhl Z lösr ist. (Z.B. ist 1 = 2 X unlösr in Z). Zu seiner Beseitigung erweitert mn den Zhlereich zum Körper

Mehr

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik GRUNDWISSEN MTHEMTIK Gymnsium Ernestinum Coburg Fchschft Mthemtik GM 5.1 Zhlen und Mengen Grundwissen Jhrgngsstufe 5 Mengen werden in der Mthemtik mit geschweiften Klmmern geschrieben: Menge der ntürlichen

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

Grundwissen Jahrgangsstufe 7

Grundwissen Jahrgangsstufe 7 GM 7.1 chsensymmetrie Grundwissen Jhrgngsstufe 7 Definition Zwei unkte liegen symmetrisch bezüglich einer chse, wenn ihre Verbindungsstrecke von der chse senkrecht hlbiert wird. M und liegen symmetrisch

Mehr

Zahlen und Grundrechenarten

Zahlen und Grundrechenarten Zhlen und Grundrechenrten In diesem Kpitel... Ntürliche Zhlen durch die Nchfolgeropertion erkennen Mit Differenzen zu den gnzen Zhlen Mit Quotienten zu den rtionlen Zhlen Irrtionle Zhlen hinzunehmen v

Mehr

Musterlösung zur Musterprüfung 2 in Mathematik

Musterlösung zur Musterprüfung 2 in Mathematik Musterlösung zur Musterprüfung in Mthemtik Diese Musterlösung enthält usführliche Lösungen zu llen Aufgben der Musterprüfung in Mthemtik sowie Hinweise zum Selbstlernen. Literturhinweise ) Bosch: Brückenkurs

Mehr

5 Gleichungen (1. Grades)

5 Gleichungen (1. Grades) Mthemtik PM Gleichungen (. Grdes) Gleichungen (. Grdes). Einführung Betrchtet mn und (, Q) und vergleicht sie miteinnder, so git es Möglichkeiten:. > ist grösser ls. = ist gleich gross wie. < ist kleiner

Mehr

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus:

Logarithmen zu speziellen und häufig gebrauchten Basen haben eigene Namen: Der Logarithmus zur Basis 10 heißt dekadischer oder Zehnerlogarithmus: 0 Dr Andres M Seifert Sternstunden in Mthe, Physik und Technik wwwsternstunden-odenwldde Logrithmen Die Gleichung vom Typ b wird mit Hilfe des Logrithmus gelöst Der Logrithmus von zur Bsis b ist die Zhl,

Mehr

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30

Canon Nikon Sony. Deutschland 55 45 25. Österreich 40 35 35. Schweiz 30 30 20. Resteuropa 60 40 30 55 45 25 40 35 35 J 30 30 20 60 40 30 15 Mtrizenrechnung 15 Mtrizenrechnung 15.1 Mtrix ls Zhlenschem Eine Internetfirm verkuft über einen eigenen Shop Digitlkmers. Es wird jeweils nur ds Topmodel der Firmen Cnon, Nikon und Sony ngeboten. Verkuft

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Bruchterme I. Definitionsmenge eines Bruchterms

Bruchterme I. Definitionsmenge eines Bruchterms Bruchterme I Definitionsmenge eines Bruchterms Alle zulässigen Einsetzungen in einen Bruchterm ilden die Definitionsmenge D. Einsetzungen, für die der Nenner Null wird, gehören nicht zur Definitionsmenge.

Mehr

Grundwissen Mathematik Klasse 9 Übungsaufgaben

Grundwissen Mathematik Klasse 9 Übungsaufgaben Grundwissen Mthemtik Klsse 9 Übungsufgben Rechnen mit Wurzeln:. Rdiziere so weit wie möglich! 7 8 b c d) e) ( b ) f) b c ( ) g) b b. Berechne! ( 8 8 )( 7 ) 7 9 9. Mche den Nenner rtionl und vereinfche

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Differentialgleichungen Gewöhnliche Differentialgleichungen

Differentialgleichungen Gewöhnliche Differentialgleichungen Differentilgleichungen Gewöhnliche Differentilgleichungen ( n) + + +... ++ Eplizite Form: (Gleichung lässt sich nch höchster Ableitung uflösen Implizite Form: + 0 Lösung: Durch eine Funktion Lösungsweg:

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

hat genau eine eindeutig bestimmte Lösung, wenn für die Determinante der Koeffizientenmatrix gilt:

hat genau eine eindeutig bestimmte Lösung, wenn für die Determinante der Koeffizientenmatrix gilt: 1 Determinnten Die Determinnte einer qudrtischen Mtrix ist eine reelle Zhl. Sie ermöglicht insbesondere eine Aussge über die Existenz der inversen Mtrix bzw. über die Lösbrkeit von lineren leichungssystemen.

Mehr

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 8. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Direkte Proportionlität Eigenschften Besonderheiten - Beispiele Zwei Größen und y heißen direkt proportionl, wenn gilt: Zum k-fchen Wert von gehört der k-fche Wert von y; Der Quotient q = y ht für

Mehr

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG

ARBEITSBLATT 5L-6 FLÄCHENBERECHNUNG MITTELS INTEGRALRECHNUNG Mthemtik: Mg. Schmid WolfgngLehrerInnentem RBEITSBLTT 5L-6 FLÄHENBEREHNUNG MITTELS INTEGRLREHNUNG Geschichtlich entwickelte sich die Integrlrechnug us folgender Frgestellung: Wie knn mn den Flächeninhlt

Mehr

4 Stetigkeit. 4.1 Intervalle

4 Stetigkeit. 4.1 Intervalle 4 Stetigkeit Der Grenzwertbegriff für Zhlenfolgen lässt sich uf Funktionen übertrgen. Funktionen (oder Abbildungen) wren bereits im Kpitel über Mengen ufgetreten. Hier wird nun der Fll betrchtet, dss Definitionsbereich

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

Bruchterme. Franz Embacher

Bruchterme. Franz Embacher mthe online Skripten http://www.mthe-online.t/skripten/ Bruchterme Frnz Emcher Fkultät für Mthemtik der Universität Wien E-mil: frnz.emcher@univie.c.t WWW: http://homepge.univie.c.t/frnz.emcher/ In diesem

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Orientierungstest Mathematische Grundlagen

Orientierungstest Mathematische Grundlagen Orientierungstest Mthemtische Grundlgen Lösungen:. Welche Zhlenmengen git es? Beispiele? Menge der ntürlichen Zhlen N {,,, } Menge der gnzen Zhlen Z {,, 0,,, } Menge der rtionlen Zhlen Q Menge ller ls

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

Werben mit Knauf Insulation Supafil. Einfach gestalten, professionell auftreten, erfolgreich kommunizieren.

Werben mit Knauf Insulation Supafil. Einfach gestalten, professionell auftreten, erfolgreich kommunizieren. Schüttdämmstoffe 07/2014 Werben mit Knuf Insultion Supfil. Einfch gestlten, professionell uftreten, erfolgreich kommunizieren. Inhltsverzeichnis Einleitung Erfolgreiche Kommuniktion beginnt bei der richtigen

Mehr

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014

Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs

Mehr

3 Wiederholung des Bruchrechnens

3 Wiederholung des Bruchrechnens 3 Wiederholung des Bruchrechnens Ein Bruch entsteht, wenn ein Gnzes in mehrere gleiche Teile zerlegt wird. Jeder Bruch besteht us dem Zähler, der Zhl über dem Bruchstrich, und dem Nenner, der Zhl unter

Mehr

F 0 =0, F 1 =1 und F n+1 =F n +F n-1 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

F 0 =0, F 1 =1 und F n+1 =F n +F n-1 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, F 0 0, F und F n+ F n +F n- 0,,,,,, 8,,, 4,, N A U T I L U S Fiboncci - Zhlen S. Nutilus - Nmen gebend für ds berühmte U-Boot des Kpitäns Nemo us Jules Vernes Romn "0 000 Meilen unter dem Meer" - ist ein

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Mathematik: Vorwissen und Selbststudium

Mathematik: Vorwissen und Selbststudium Mthemtik: Vorwissen und Selbststudium Prof. Thoms Apel Studienjhr 00/ Lerning nything chnges people; lerning mth mkes big chnge it opens minds nd opens doors. [Hirsh Cohen, SIAM president 983-984] Vorwort

Mehr

Brückenkurs MATHEMATIK

Brückenkurs MATHEMATIK Brückenkurs MATHEMATIK Professor Dr. rer. nt. Bernd Bumnn Professor Dr. rer. nt. Ulrich Stein Hochschule für Angewndte Wissenschften Hmburg 5. März 008 VO R B E M E R K U N G E N Liebe Studentin, lieber

Mehr

Repetitionsaufgaben Exponential-und Logarithmusfunktion

Repetitionsaufgaben Exponential-und Logarithmusfunktion Repetitionsufgben Eponentil-und Logrithmusfunktion Inhltsverzeichnis A) Vorbemerkungen B) Lernziele C) Eponentilfunktionen mit Beispielen 2 D) Aufgben Ep.fkt. mit Musterlösungen 6 E) Logrithmusfunktionen

Mehr

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11

Reader. für den Einsatz in der Wiederholungsphase im Mathematikunterricht der Jahrgangsstufe 11 Reder für den Einstz in der Wiederholungsphse im Mthemtikunterricht der Jhrgngsstufe Anhng zur schriftlichen Husrbeit zur Zweiten Sttsprüfung für ds Lehrmt n öffentlichen Schulen von Andres Rschke Vorwort

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

3. Ganzrationale Funktionen

3. Ganzrationale Funktionen 3. Gnzrtionle Funktionen ) Definitionen und Beispiele Definition: Eine gnzrtionle Funktion n-ten Grdes ht ls Definitionsterm ein Polynom n-ten Grdes, d.h. y = f() = n n n-1 n-1 1 0. n 0, i ( i = 1, n)

Mehr

definiert ist, heißt an der Stelle x0

definiert ist, heißt an der Stelle x0 1 Stetigkeit 1 Stetigkeit Bei der Behndlung der bschnittsweise deinierten Funktionen km es vor, dss der Grph dieser Funktion n der Nhtstelle einen Sprung ht. Andere dgegen hben keine Sprungstelle! Doch

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Flächenberechnung - Umfang und Fläche von Rechteck und Quadrat

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Flächenberechnung - Umfang und Fläche von Rechteck und Quadrat Unterrichtsmterilien in digitler und in gedruckter Form Auszug us: Flächenberechnung - Umfng und Fläche von Rechteck und Qudrt Ds komplette Mteril finden Sie hier: Downlod bei School-Scout.de Inhltsverzeichnis

Mehr

Über die sog. «Ein-Franken-pro-Todesfall» -Kassen.

Über die sog. «Ein-Franken-pro-Todesfall» -Kassen. Über die sog. «Ein-Frnken-pro-Todesfll» -Kssen. Eine versicherungstechnische Studie von HEINRICH JECKLIN (Zürich). (AIs Mnuskript eingegngen m 25. Jnur 1940.) In der versicherungstechnischen Litertur finden

Mehr

Vergleichsarbeiten 2010 3. Jahrgangsstufe (VERA-3) Deutsch TESTHEFT I Lesen

Vergleichsarbeiten 2010 3. Jahrgangsstufe (VERA-3) Deutsch TESTHEFT I Lesen Vergleichsrbeiten. Jhrgngsstufe (VERA-) eutsch TESTHEFT I Lesen ANLEITUNG In diesem Test wirst du einige Leseufgben berbeiten. Es gibt verschiedene Arten von Aufgben. Für einige Frgen werden dir mehrere

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mthemtik I Dr. Wolfgng Metzler Universität Kssel unter Mitwirkung von Dipl.-Mth. Mrtin Steigemnn Sommersemester 2005 ii c 2005 Dr. Wolfgng Metzler, Fchbereich Mthemtik und Informtik der Universität

Mehr

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen

Zahlenbereiche. Jeder Zahlenbereich ist eine Erweiterung des vorigen und enthält diesen Mthemtik Ihlt Zhlebereiche Recheopertioe Hierrchie der Recheopertioe Recheregel Brüche Recheregel für Brüche Klmmerreche Potezrechug Potezgesetze Ntürliche Zhle Zhlebereiche Jeder Zhlebereich ist eie Erweiterug

Mehr

Grundwissen Mathematik 5/1

Grundwissen Mathematik 5/1 1 Wichtige Symole Grundwissen Mthemtik 5/1 Wichtige Symole Rechenrten Qudrtzhlen IN Menge der ntürlichen Zhlen { 1; ; 3; 4;... } IN 0 Menge der ntürlichen Zhlen einschließlich der Null {0; 1; ; 3; 4;...

Mehr

Facharbeit über algebraische Gleichungen vierten Grades

Facharbeit über algebraische Gleichungen vierten Grades Fchrbeit über lgebrische Gleichungen vierten Grdes inkl. der Crdni schen Formeln und dem Beweis der Formeln. Verfßt von Ing. Wlter Höhlhubmer im Oktober ergänzt im Juli und August und erweitert im Dez.

Mehr

Berechnung der inversen Matrix.

Berechnung der inversen Matrix. Inverse Mtrix Berechnung der inversen Mtrix. Es ist ds LGS A X = E zu lösen. X = A 1 ist eine Mtrix. Verwendung des Guss-Algorithmus: Trnsformiere (A E in (E X. Steffen Voigtmnn Beuth Hochschule für Technik

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

x usw., wie oben unter 1.) behauptet.]

x usw., wie oben unter 1.) behauptet.] [Anmerkung zur Berechnung im Beispiel: Ersetzen wir die Zhlen der AzM durch die Koeffizienten, 2, 2 und 22, so lässt sich die Rechnung sowohl für ) ls uch b) gnz nlog durchführen, und es ergibt sich z.

Mehr

Technische Informatik - Hardware

Technische Informatik - Hardware Inhltsverzeichnis Hns-Georg Beckmnn 22 Technische Informtik - Hrdwre Teil : Grundlgen Vorbemerkungen 2 Dezimlzhlen, Dulzhlen, Hexzhlen 3 Umrechnen in Zhlensystemen 4 Addieren zweier Dulzhlen 6 Hlbddierer

Mehr

2007/09 ; Mike Stettler lizenziert für die Schule Aarberg

2007/09 ; Mike Stettler lizenziert für die Schule Aarberg 007/09 ; Mike Stettler lizenziert für die Schule Arberg Vorwort Ds vorliegende Werk ist eine Zusmmenfssung der wichtigsten Mthemtik-Kpitel der 7.-9. Klsse und soll ls Nchschlgewerk dienen. Ich dnke llen

Mehr

Limit Texas Hold em. Meine persönlichen Erfahrungen

Limit Texas Hold em. Meine persönlichen Erfahrungen Limit Texs Hold em Meine persönlichen Erfhrungen Dominic Dietiker c Drft dte 21. September 2010 Inhltsverzeichnis 1. Spielnleitung...................................... 1 1.1 Der Spielverluf....................................

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Lineare Gleichungssysteme lösen

Lineare Gleichungssysteme lösen Linere Gleichungssysteme lösen Eine Gleichung, die nur eine Unbeknnte ht, knn mn (in llen euch beknnten Fällen) nch dieser Unbeknnten uflösen und somit die Lösungsmenge bestimmen. Unter der Lösungsmenge

Mehr

Prüfungsteil Mündliche Kommunikation (MK)

Prüfungsteil Mündliche Kommunikation (MK) Prüfungsteil Mündliche Kommuniktion (MK) Die mündliche Prüfung besteht us zwei Teilen. Im ersten Teil sollst du ein Gespräch führen, im zweiten Teil hältst du einen Vortrg und musst dnch Frgen dzu bentworten.

Mehr

REGSAM-Handbuch. für neue Facharbeitskreissprecherinnen und -sprecher

REGSAM-Handbuch. für neue Facharbeitskreissprecherinnen und -sprecher REGSAM-Hndbuch für neue Fchrbeitskreissprecherinnen und -sprecher Inhlte Vorwort. 2 Über REGSAM. o Wozu REGSAM? o REGSAM holt lle Hndelnden n einen Tisch o Wie wird gerbeitet? Oder: Die Gremien o Zentrler

Mehr

Wirsberg-Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe. -fache

Wirsberg-Gymnasium Grundwissen Mathematik 8. Jahrgangsstufe. -fache Wirsberg-Gymnsium Grundwissen Mthemtik. Jhrgngsstue Lerninhlte Fkten-Regeln-Beispiele Proportionlität Gehört bei einer Zuordnung zum r-chen der einen Größe ds r-che der nderen Größe, so spricht mn von

Mehr

Grundwissen am Ende der 9. Jahrgangsstufe. Wahlpflichtfächergruppe I

Grundwissen am Ende der 9. Jahrgangsstufe. Wahlpflichtfächergruppe I Grundwissen m Ende der 9. Jhrgngsstufe Whlpflichtfächergruppe I Ssteme linerer Gleichungen mit zwei Vriblen lösen Qudrtische Gleichungen: Lösungsformel, edeutung der Diskriminnte, Koordinten der Schnittpunkte

Mehr