Lösungsvorschläge zum 9. Übungsblatt.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungsvorschläge zum 9. Übungsblatt."

Transkript

1 Übung zur Anlysis II SS 1 Lösungsvorschläge zum 9. Übungsbltt. Aufgbe 33 () A : {(x, y) R : x [ 1, 1] und y oder x und y [ 1, 1]}. (b) A : {(x, y) R : x < y < 1 + x }. (c) A : {(x, y) R : x < y < 1 + x } und f : A R definiert durch f(x, y) : (x, y). (d) A : U 1 (, 1). (e) Siehe Übung und Aufgbe 36 (b). (f) A {(x, y) R : x [ 1, 1], x 1 y 1 x }. Aufgbe 34 ( e () Behuptung (i): f : R R mit f(x, y) : y ) + cos(x) cos(y) xe y ht uf R sin(x) sin(y) die Stmmfunktion F : R R definiert durch F (x, y) : xe y + sin(x) cos(y). Beweis: Offensichtlich ist R ein sternförmiges Gebiet und für (x, y) R gilt ( sin(x) cos(y) e J f (x, y) y ) cos(x) sin(y) e y cos(x) sin(y) xe y, sin(x) cos(y) lso sind uf R die Integrbilitätsbedingungen erfüllt. Nch Stz 14.5 ht f eine Stmmfunktion uf R. D F C 1 (R, R) und für (x, y) R gilt, dss ( e (grd F )(x, y) y ) + cos(x) cos(y) xe y f(x, y) sin(x) sin(y) ist F die gesuchte Stmmfunktion. y + xyz 3 Behuptung (ii): f : R 3 R 3 mit f(x, y, z) : y + x z 3 ht keine Stmmfunktion uf R 3. y + 3x yz Beweis: R 3 ist ein sternförmiges Gebiet, f C 1 (R 3, R 3 ) und für (x, y, z) R 3 gilt yz 3 y + xz 3 6xyz J f (x, y, z) xz 3 3x z. 6xyz y + 3x z 6x yz Wie mn schnell feststellt ist dies keine symmetrische Mtrix und dher sind die Integrbilitätsbedingungen uf R 3 nicht erfüllt. Nch Stz 14.5 ht f lso keine Stmmfunktion. y + xz Behuptung (iii): f : R 3 R 3 mit f(x, y, z) : z + xy ht uf R 3 die Stmmfunktion F : R 3 x + yz R definiert durch F (x, y, z) xy + x z + yz. 1

2 Übung zur Anlysis II SS 1 Beweis: R 3 ist ein sternförmiges Gebiet, f C 1 (R 3, R 3 ) und für (x, y, z) R 3 gilt z y x J f (x, y, z) y x z. x z y D J f (x, y, z) symmetrisch ist, ht f nch Stz 14.5 eine Stmmfunktion. Diese werden wir nun berechnen. Ds folgende Vorgehen ist dbei ber nicht ls forml korrekte Rechnung zu verstehen, vielmehr soll es vernschulichen wie mn einen Kndidten für die Stmmfunktion ermittelt. Gesucht ist eine Funktion F : R 3 R mit der Eigenschft, dss (grd F )(x, y, z) (f 1 (x, y, z), f (x, y, z), f 3 (x, y, z)) gilt, wobei f i für i {1,, 3} die Komponentenfunktionen von f drstellen. Dies schreiben wir in ds Gleichungssystem F x (x, y, z) y + xz, F y (x, y, z) z + xy, F z (x, y, z) x + yz. Integriert mn (1) in der x-vribelen, erhält mn F F (x, y, z) (x, y, z) dx y + xz dx xy + x z + c 1 (y, z), x wobei die Konstnte c 1 (y, z) von y und z bhängen knn, d wir nur in x integrieren und diesbezüglich y und z ls Konstnten einzustufen sind. Integrieren wir () nch y und (3) nch z erhlten wir F (x, y, z) xy + c (x, z) + yz und F (x, y, z) c 3 (x, y) + x z + yz. An dieser Stelle vergleicht mn die drei Gleichungen für F (x, y, z) und wird schnell feststellen, dss c 1 (y, z) yz und c (x, z) x z und c 3 (x, y) xy eine Möglichkeit ist, diese Gleichungen zu erfüllen. Unser Kndidt lutet dher F : R 3 R definiert durch F (x, y, z) xy + x z + yz. Dnn ist F C 1 (R 3, R) und für (x, y, z) R 3 gilt y + xz (grd F )(x, y, z) z + xy f(x, y, z). x + yz Folglich ist F die gesuchte Stmmfunktion. (1) () (3) Behuptung (iv): Die Funktion f : D R 3 mit D : {(x, y, z) R 3 : z > } und f(x, y, z) : x y ze x ht uf D keine Stmmfunktion. xy log(z)

3 Übung zur Anlysis II SS 1 Beweis: D ist ein Gebiet und f C 1 (D, R 3 ). Für (x, y, z) D gilt xy x J f (x, y, z) ze x e x y log(z) x log(z) und dmit ist J f (x, y, z) nicht symmetrisch und f ht nch Stz 14.4 keine Stmmfunktion uf D. ( ) (b) Vorussetzung: Es sei f : R \ {(, )} R 1 x + y definiert durch f(x, y) : sowie (x,y) y x D 1 : {(x, y) R : y > } und D : R \ {(, )}. Behuptung: f ht uf D 1 die Stmmfunktion F : D 1 R definiert durch F (x, y) : 1 log(x + y ) + rctn ( x y ) und uf D keine Stmmfunktion. Beweis: (i) Es gilt f C 1 (R \ {(, )}, R ) und für (x, y) R \ {(, )} gilt ( 1 (x J f (x, y) + y ) (x + y)x (x + y ) ) (x + y)y (x, y) 4 (x + y ) (y x)x (x + y ) (y x)y ( 1 x xy + y x xy y ) (x, y) 4 x xy y x + xy y. J f (x, y) ist symmetrisch und dher sind die Integrbilitätsbedingungen uf R \ {(, )} erfüllt. (ii) Wir bestimmen nun eine Stmmfunktion von f uf D 1. f C 1 (D 1, R ) und D 1 ist ein sternförmiges Gebiet und D 1 R \ {(, )}. In (i) hben wir schon festgestellt, dss f uf R \ {(, )} die Integrbilitätsbedingungen erfüllt, lso erfüllt f uch uf D 1 diese Bedingung. Nch Stz 14.5 existiert lso eine Stmmfunktion von f uf D 1. Wir suchen nun wieder einen Kndidten für die Stmmfunktion. Wie in (iii) us () ergibt sich der Kndidt F : D 1 R mit F (x, y) : 1 log(x + y ) + rctn ( x) y für den sich leicht bestätigen lässt, dss für (x, y) D 1 gilt, dss (grd F )(x, y) f(x, y). Dies ist lso die gesuchte Stmmfunktion. (iii) Wir zeigen nun, dss f uf D R \ {(, ( )} keine ) Stmmfunktion besitzt. D ist ein Gebiet und cos(t) für γ : [, π] D definiert durch γ(t) : gilt sin(t) γ und dmit ist Aufgbe 35 f(x, y) d(x, y) γ π π ( cos(t) + sin(t) ) sin(t) + ( sin(t) cos(t) ) cos(t) dt dt π f(x, y) d(x, y) nicht wegunbhängig und f ht keine Stmmfunktion uf D. () Vorussetzung: Sei j, n N mit j n sowie D R n offen und f C(D [, b], R) sowie C(D [, b], R). f xy z 3

4 Übung zur Anlysis II SS 1 Behuptung: Die Funktion F : D R definiert durch ist prtiell differenzierbr nch x j und F (x) : f(x, t) dt f(x, t) dt f (x, t) dt. Beweis: Die Funktion F : D R definiert durch F (x) : f(x, t) dt ist wohldefiniert, d für festes x D die Funktion t f(x, t) uf [, b] stetig und dmit Riemnn-integrierbr ist. Es sei x (x 1,..., x n ) D und d D offen ist existiert ein ɛ > mit U ɛ (x ) D. O.B.d.A. wählen wir j 1 und setzen I : [x 1 ɛ, x 1 + ɛ] und definieren die Funktion f : [, b] I R durch f(s, t) : f(s, x,..., x n, t). Dnn ist f C(I [, b], R) und für festes t [, b] stetig uf I sowie stetig differenzierbr uf I o. Um die prtielle Differenzierbrkeit von F in x nch x 1 zu zeigen, müssen wir zeigen, dss F : I R definiert durch F (s) : f(s, t) dt in s x 1 differenzierbr ist. Für h I \ {} gilt 1 ( ) b F (s + h) F (s) h f(s + h, t) f(s, t) h dt (ξ, t) dt, wobei ξ ξ(t, h) [s, s + h] dem Mittelwertstz entspringt. Dnn schreiben wir (ξ(t, h), t) dt (s, t) dt + (s, t) dt. und bemerken, dss es nun genügt zu zeigen, dss ds hintere Integrl für h gegen konvergiert. Dies ist eine Folgerung us sup t [,b] denn dnn gilt (s, t) h, (4) (s, t) dt sup t [,b] (b ) sup t [,b] (s, t) dt (s, t) dt (s, t) h. Es bleibt lso (4) zu zeigen. Nch Vorussetzung ist f C(D [, b], R) und dmit ist uch x 1 C(I [, b], R). I [, b] ist kompkt und dher ist sogr gleichmäßig stetig uf I [, b], lso ɛ> δ> (s,t),(s,t ) I [,b], (s,t) (s,t ) <δ : (s, t) (s, t ) < ɛ. 4

5 Übung zur Anlysis II SS 1 Für h gilt ξ s und dmit folgt insbesondere und dies impliziert (4). Insgesmt hben wir nun x 1 ɛ> h> t [,b] : (s, t) < ɛ f(x, t) dt F 1 ( ) (x, t) lim F (s + h) F (s) x 1 h h f ( (s, t) dt + lim f h (s, t) dt f x 1 (x, t) dt. (s, t) dt) (b) Vorussetzung: Es sei n N und G R n ein sternförmiges Gebiet und f C 1 (G, R n ). Behuptung: f erfüllt uf G die Integrbilitätsbedingungen f ht uf G eine Stmmfunktion. Beweis: Es sei x G der Punkt bezüglich dessen G sternförmig ist und x G. Wir definieren γ x : [, 1] G durch γ x (t) : x + t(x x ). Dnn gilt γ x C 1 ([, 1], G) und für t [, 1] gilt γ x(t) x x. Nimmt mn n, dss F : G R die Stmmfunktion von f uf G ist, so liefert Stz 14.1 γ x f(x) dx F (γ x (1)) F (γ x ()) F (x) F (x ). Die Konstnte F (x ) ist nun unerheblich und wir definieren F : G R durch 1 F (x) : f(x) dx f(x + t(x x )) (x x ) dt γ x und weisen nch, dss dies eine Stmmfunktion ist. Um später Teilufgbe () zu verwenden, untersuchen wir die Funktion f : G [, 1] R definiert durch f(x, t) : f(x +t(x x ))(x x ). Als Komposition stetiger Funktionen ist f C(G [, 1], R) und f ist uf G [, 1] stetig prtiell nch x 1,..., x n differenzierbr. Für j {1,..., n} und x G gilt F (x) () (IB) 1 1 i1 1 i1 1 i1 1 i1 1 f i (x + t(x x ))(x x ) i dt i1 f i (x + t(x x ))(x x ) i dt [ f i (x + t(x x )) ] (x x ) i + f i (x + t(x x )) [ (x x ) i ] dt f i (x + t(x x ))t(x x ) i dt + 1 f j (x + t(x x )) dt f j x i (x + t(x x ))t(x x ) i + f j (x + t(x x )) dt [ t tf j(x + t(x x )) ] dt f j (x). 5

6 Übung zur Anlysis II SS 1 Aufgbe 36 () Behuptung: Für A : {(x, y) R : y x, y 4 x} gilt A Beweis: Es gilt und y x 4 y impliziert A {(x, y) R : y x 4 y } Es folgt y 4 y y y. A {(x, y) R : y [, ], y x 4 y } und dmit ist A ein Normlbereich bezüglich der y-achse und es gilt ( ) 4 y A 1 dx dy y y dy (b) (i) Vorussetzung: A : {(x, y) R : y, y x 1, y 1 + x} und f : R R definiert durch f(x, y) : cosh ( x y+1). Behuptung: f(x, y) d(x, y) e 4 e. A Beweis: Wir weisen zuerst nch, dss A ein Normlbereich bezüglich der y-achse ist. Es sei (x, y) A. Dnn gilt y und y 1 x y + 1 und dmit Also gilt y [, ]. Dmit ist y 1 y + 1 (y + 1)(y 1) y + 1 y. ein Normlbereich bezüglich der y-achse und A f(x, y) d(x, y) A {(x, y) R : y [, ], y 1 x y + 1} ( y+1 y 1 cosh ( ) x ) dx dy y + 1 (y + 1) sinh(1) (y + 1) sinh(y 1) dy e 4 e, wobei ds letzte Integrl mittels prtieller Integrtion berechnet werden knn. (ii) Vorussetzung: A sei die Fläche, die durch ds Dreieck mit Ecken (, ), ( 1, 5) und (, 1) begrenzt wird und f : R R sei definiert durch f(x, y) : x + y. Behuptung: f(x, y) d(x, y) 86. A Beweis: Um zu zeigen, dss A ein Normlbereich ist, prmetrisieren wir die Ränder des Dreiecks 6

7 Übung zur Anlysis II SS 1 mit den Ecken (, ),( 1, 5) und (, 1). Die Strecken S 1 [(, ), ( 1, 5)] und S [( 1, 5), (, 1)] werden durch die Funktion f : [, ] R definiert durch { x + 6, x [, 1] f(x) : x, x [ 1, ], prmetrisiert und S 3 [(, 1), (, )] durch g : [, ] R definiert durch g(x) : x 5. Dnn gilt A {(x, y) R : x [, ], g(x) y f(x)} und A ist dher ein Normlbereich bezüglich der x-achse. Also A f(x, y) d(x, y) 1 ( ) f(x) x + y dy dx g(x) [ x y + y ] f(x) g(x) dx x f(x) + f(x) x (x + 6) (x + 6) + dx + 1 x ( x ) 1( x) + dx 86, 5 5 wobei die letzten Integrle elementr berechnet werden. x (x) + (x) dx x g(x) + g(x) (c) Vorussetzung: Es sei A : {(x, y, z) R : y 4 x, z } und B {M(θ)(A) : θ [, π]} wobei 1 M(θ) : cos(θ) sin(θ). sin(θ) cos(θ) dx dx Behuptung: A {(x, y) R : x [, ], x 4 y 4 x } ist ein Normlbereich bezüglich der x-achse und für den Normlbereich bezüglich der xy-ebene B {(x, y, z) R 3 : (x, y) A, (4 x ) y z (4 x ) y } gilt B B und B B π. Beweis: D wir einen Normlbereich bezüglich der xy-ebene bestimmen sollen, betrchten wir die Menge B geschnitten mit der xy-ebene. Dieser Schnitt ist offensichtlich durch A vereinigt mit der n der x-achse gespiegelten Menge A gegeben. Diese Vereinigung schreiben wir ls Normlbereich A : {(x, y) R : x [, ], x 4 y 4 x } bezüglich der x-achse. Sei nun (x, y) A. Schneidet mn B mit der einer Ebene prllel zur yz-ebene durch (x, y, ) erhält mn eine Kreisscheibe mit Rdius r(x) : 4 x und Mittelpunkt (x,, ). (x, y, z) liegt lso genu dnn in B, wenn y und z einer Kreisscheibengleichung mit Rdius r(x) genügen, lso (x, y, z) B z + y (4 x ) (4 x ) y z (4 x ) y. 7

8 Übung zur Anlysis II SS 1 D g : A R mit g(x, y) : (4 x ) y stetig ist, folgt, dss B B : {(x, y, z) R 3, (x, y) A, g(x, y) z g(x, y)} ein Normlbereich bezüglich der xy-ebene ist und ( ) g(x,y) B B 1 d(x, y, z) 1 dz d(x, y) g(x, y) d(x, y) B A g(x,y) A ( r(x) ) r(x) y dy dx πr(x) dx r(x) π (4 x ) dx π. Ds Integrl r(x) r(x) r(x) y dx ist flls r(x) und lässt sich flls r(x) > mit der Substitution y r(x) sin(u) berechnen. 8

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Einführung in die Integralrechnung

Einführung in die Integralrechnung Einführung in die Integrlrechnung Vorbereitung für ds Probestudium n der LMU München 3. bis 7. September von W. Frks und O. Forster Integrle ls Flächeninhlte. Motivtion Flächeninhlte von Rechtecken sind

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

Lineare DGL zweiter Ordnung

Lineare DGL zweiter Ordnung Universität Duisburg-Essen Essen, 03.06.01 Fkultät für Mthemtik S. Buer C. Hubcsek C. Thiel Linere DGL zweiter Ordnung Betrchten wir ds AWP { x + x + bx = 0 mit, b, t 0, x 0, v 0 R. Der Anstz xt 0 = x

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

1 Folgen von Funktionen

1 Folgen von Funktionen Folgen von Funktionen Wir etrchten Folgen von reell-wertigen Funktionen f n U R mit Definitionsereicht U R und interessieren uns für ntürliche Konvergenzegriffe. Genuer setzen wir uns mit folgenden Frgen

Mehr

2.5 Messbare Mengen und Funktionen

2.5 Messbare Mengen und Funktionen 1 2.5 Messbre Mengen und Funktionen Definition Eine beschränkte Menge M R n heißt messbr, flls die chrkteristische Funktion χ M integrierbr ist. Die Zhl vol n (M) := χ M dµ n nennt mn ds Volumen von M.

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mthemtisches Institut der Universität München Prof. Dr. Frnz Merkl Sommersemester 2013 Bltt 2 26.4.2013 Übungen zur Anlysis 2 2.1 Vernschulichung der Cuchy-Schwrz-Ungleichung. Gegeben seien die Vektoren

Mehr

9 Das Riemannsche Integral

9 Das Riemannsche Integral 1 9 Ds Riemnnsche Integrl 9.1 Definition und Beispiele Sei I = [, ] R mit

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 1 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mthemtik 1 für Ingenieure (Sommersemester 2016) Kpitel 10: Integrlrechnung einer Veränderlichen Prof. Miles Simon Nch Folienvorlge von Prof. Dr. Volker Kibel Otto-von-Guericke Universität Mgdeburg.

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzufgben zu Mthemtik I für ET/IT und ITS WS / Bltt 6. Bestimmen Sie zu vorgegebenem Volumen V > die Dose (Zylinder mit der kleinsten Oberfläche und ds Gls (Zylinder ohne Deckel mit

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Mathematik. Ingo Blechschmidt. 22. Januar 2007

Mathematik. Ingo Blechschmidt. 22. Januar 2007 Mthemtik Ingo Blechschmidt 22. Jnur 2007 Inhltsverzeichnis I Mthemtik 2 1 Anlysis 2 1.1 Stetigkeit und Differenzierbrkeit........... 2 1.1.1 Stetigkeit..................... 2 1.1.2 Differenzierbrkeit................

Mehr

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene.

t 1 t cos(t) sin(t) haben als Spur jeweils den Einheitshalbkreis in der oberen Halbebene. Kpitel Kurvenintegrle Kurven Sei I = [, b] R ein Intervll Eine Weg ist eine Abbildung dieses Intervlls in den R d, d, : I R d Dbei nennt mn () den Anfngspunkt, (b) den Endpunkt und ds Bild ([, b]) die

Mehr

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable.

Falls die Werte von X als Ergebnisse eines Zufallsvorgangs resultieren, wird X zu einer stetigen Zufallsvariable. Sttistik I für Sttistiker, Mthemtiker und Informtiker Lösungen zu Bltt 11 Gerhrd Tutz, Jn Ulbricht, Jn Gertheiss WS 7/8 Theorie: Stetige Zufllsvriblen Begriff Stetigkeit: Eine Vrible oder ein Merkml X

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

Komplexe Kurvenintegrale

Komplexe Kurvenintegrale Komplexe Kurvenintegrle nlog zu Kurvenintegrlen: Sei : [, b] D R n ein stükweiser C Weg, f : D R und F : D R n gegeben. Dnn htten wir in Anlysis II/III die beiden Kurvenintegrle. und 2. Art f (x)ds = b

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Ü b u n g s b l a t t 13. Organisatorisches:

Ü b u n g s b l a t t 13. Organisatorisches: MATHEMATIK FÜ INFOMATIKE I WINTESEMESTE 7/8 POF. D. FIEDICH EISENBAND D. KAI GEHS Ü b u n g s b l t t 13 Orgnistorisches: Dieses Übungsbltt wir nicht mehr korrigiert. D ie Aufgben ennoch klusurrelevnt

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

10.2 Kurven und Bogenlänge

10.2 Kurven und Bogenlänge 10.2 Kurven und Bogenlänge Definition: Sei c = (c 1,..., c n ) : [, b] R n eine stetige Funktion. Dnn wird c ls Kurve im R n bezeichnet; c() heißt Anfngspunkt, c(b) heißt Endpunkt von c. c heißt geschlossene

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Funktionenfolgen. Kapitel 6

Funktionenfolgen. Kapitel 6 Kpitel 6 Funktionenfolgen Bemerkung 6.1 Motivtion. Dieser Abschnitt betrchtet die Konvergenz von Folgen von uf einem gemeinsmen Intervll definierten Funktionen. Dies ist eine wichtige Grundlge, um eine

Mehr

f(x) := lim f n (x) (a) Wann ist die Grenzfunktion f stetig? Reicht dazu die Stetigkeit aller Funktionen f n?

f(x) := lim f n (x) (a) Wann ist die Grenzfunktion f stetig? Reicht dazu die Stetigkeit aller Funktionen f n? Kpitel 9 Gleichmäßige Konvergenz von Funktionenfolgen 9.1 Gleichmäßige Konvergenz 9.2 Eigenschften der Grenzfunktion 9.3 Gleichmäßige Konvergenz von Funktionenreihen 9.4 Anwendung uf Potenzreihen 9.5 Tylor

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

Kapitel 4 Differentialrechnung in mehreren Variablen. 4.1 Topologie des R n und Stetigkeit von Funktionen

Kapitel 4 Differentialrechnung in mehreren Variablen. 4.1 Topologie des R n und Stetigkeit von Funktionen Kpitel 4 Differentilrechnung in mehreren Vriblen 4.1 Topologie des R n und Stetigkeit von Funktionen Gegenstnd dieses Kpitels sind Funktionen in mehreren Vriblen. Wir können die Definitionsbereiche solcher

Mehr

Kurven und Bogenlänge

Kurven und Bogenlänge Kpitel 3 Kurven und Bogenlänge 3.1 Motivtion Der Begriff der Kurve in der Ebene oder im Rum spielt in den Nturwissenschften, insbesondere der Physik, Technik (Robotik) und der Informtik (Computergrphik)

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Württemberg: Abitur 014 Whlteil A www.mthe-ufgben.com Huptprüfung Abiturprüfung 014 (ohne CAS) Bden-Württemberg Whlteil Anlysis Hilfsmittel: GTR und Formelsmmlung llgemeinbildende Gymnsien Alexnder

Mehr

9 Riemann-Integral für Funktionen einer Variablen

9 Riemann-Integral für Funktionen einer Variablen 9 Riemnn-Integrl für Funktionen einer Vriblen Integrl = (orientierte) Fläche zwischen Funktion f : r, bs Ñ R und der x-achse «ř n px n x n 1 qf pξ n q mit Zwischenpunkten ξ n P rx n 1, x n s x n 1 x n

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Analysis II. Universität Stuttgart, SS 06 M. Griesemer

Analysis II. Universität Stuttgart, SS 06 M. Griesemer Anlysis II Universität Stuttgrt, SS 06 M. Griesemer Inhltsverzeichnis 9 Ds Riemnnsche Integrl 3 9.1 Definition und Beispiele........................... 3 9.2 Elementre Eigenschften..........................

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

1 Integralsätze - Motivation

1 Integralsätze - Motivation Wolfrm Liebermeister 28.10.2013 Einführung: Integrle HU-Berlin - Institut für Theoretische Biophysik nlehnung n die Vorlesung Höhere Mthemtik 3 von Michel Eisermnn, www.igt.uni-stuttgrt.de/eiserm Tutoren:

Mehr

Ziel dieses Paragraphen ist die Untersuchung von parameterabhängigen Integralen der Form. f(x 1,..., x n, t) dt. Satz. f (x) = (x, t) dt.

Ziel dieses Paragraphen ist die Untersuchung von parameterabhängigen Integralen der Form. f(x 1,..., x n, t) dt. Satz. f (x) = (x, t) dt. 1 Kpitel 9 Mehrfche Integrle 1 Prmeterintegrle Inhlt: Stetigkeit und Differenzierbrkeit von Prmeterintegrlen, Potentilfunktionen und Integrbilitätsbedingung, Fubini für Rechtecke, Leibnizsche Formel, uneigentliche

Mehr

Unter einer Partition oder Zerlegung eines Intervalls [a, b] verstehen wir eine endliche Menge P = {x 0, x 1,..., x n } mit der Eigenschaft ...

Unter einer Partition oder Zerlegung eines Intervalls [a, b] verstehen wir eine endliche Menge P = {x 0, x 1,..., x n } mit der Eigenschaft ... Kpitel 7 Ds Riemnn Integrl 7.1 Unter und Obersummen 7.2 Riemnn Integrl 7.3 Riemnnsche Summen 7.4 Rechenregeln 7.5 Differentition und Integrtion 7.6 Die L p Normen 7.1 Unter und Obersummen Unter einer Prtition

Mehr

Elemente der Funktionentheorie. Wolfgang Arendt

Elemente der Funktionentheorie. Wolfgang Arendt Elemente der Funktionentheorie Wolfgng Arendt Skript zur Vorlesung im Sommersemester 24 Inhltsverzeichnis Der Körper der komplexen Zhlen 3 2 Komplexe Differenzierbrkeit 7 3 Die Cuchy-Riemnnschen Differenzilgleichungen

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Thema 11 Vektorwertige Funktionen, Kurven

Thema 11 Vektorwertige Funktionen, Kurven Them 11 Vektorwertige Funktionen, Kurven Definition 1 Eine Kurve in R n ist eine stetige Abbildung uf einem Intervll I mit Werten in R n. Wir verwenden den Buchstben c für Kurven und schreiben c = (c 1,...,c

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Höhere Mathematik für Elektrotechniker II

Höhere Mathematik für Elektrotechniker II Vorlesungsmnuskript zu Höhere Mthemtik für Elektrotechniker II Werner Blser Institut für Angewndte Anlysis Sommersemester 2009 Inhltsverzeichnis 1 Integrlrechnung 4 11 Riemnn-Summen und Riemnn-Integrl

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

Formelsammlung. Folgen und Reihen

Formelsammlung. Folgen und Reihen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Übungen zur Vorlesung Analysis II

Übungen zur Vorlesung Analysis II Sommersemester 3 Bltt 13 1) Mn verschiebe die Prbel y = x in R so, dß sie weiterhin den Nullpunkt enthält. Zu der hierdurch entstehenden Kurvenschr bestimme mn die orthogonlen Kurven. ) Mn bestimme lle

Mehr

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag Fkultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhnov Übungen zu Klssischer Mechnik (T) im SoSe 0 Bltt 9. Bewegung strrer Körper- Lösungsvorschlg Aufgbe 9.. Trägheitstensor

Mehr

4 Die Integralfunktion*

4 Die Integralfunktion* Übungsmteril 1 Die Integrlfuntion* In den vorigen Kpiteln hben wir bereits ds unbestimmte und ds bestimmte Integrl und deren Eigenschften ennengelernt. Ersteres liefert die Menge der Stmmfuntionen einer

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

2 Der Cauchysche Integralsatz

2 Der Cauchysche Integralsatz themtik für Physiker IV, SS 2013 ontg 6.5 $Id: cuchy.tex,v 1.11 2013/05/07 14:26:31 hk Exp hk $ 2 Der Cuchysche Integrlstz 2.3 Die Cuchysche Integrlformel In der letzten Sitzung htten wir eine erste Form

Mehr

Die Keplersche Fassregel

Die Keplersche Fassregel Die Keplersche Fssregel K. Gerer Bei vielen Aufgen, z.b. ei der Lösung von Differentilgleichungen, tucht die Schwierigkeit uf, dss Integrtionen nicht durchgeführt werden können. So können z.b. die folgenden

Mehr

Grundlagen der Integralrechnung

Grundlagen der Integralrechnung Grundlgen der Integrlrechnung W. Kippels 0. April 2014 Inhltsverzeichnis 1 Ds unbestimmte Integrl 2 2 Ds bestimmte Integrl 4 Beispielufgben 7.1 Beispielufgbe 1............................... 7.2 Beispielufgbe

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $

$Id: integral.tex,v /05/15 13:14:04 hk Exp $ $Id: uneigentlich.tex,v /05/15 13:21:33 hk Exp $ Mthemtik für Ingenieure II, SS 9 Freitg 15.5 $Id: integrl.te,v 1.1 9/5/15 13:14:4 hk Ep $ $Id: uneigentlich.te,v 1. 9/5/15 13:1:33 hk Ep $ Integrlrechnung.5 Sonstige Integrtionstechniken Wir kommen nun

Mehr

5 Ellipsen, Parabeln und Hyperbeln

5 Ellipsen, Parabeln und Hyperbeln 5 Ellipsen, Prbeln und Hperbeln Ellipsen: Seien b > reelle Zhlen und E = E,b := { + b = } Eine Qudrik Q R heißt Ellipse, wenn es reelle Zhlen b > gibt, so dss q E,b. Die Kurven E,b heißen Ellipsen in metrischer

Mehr

f (j) (x 0 ) (x x 0 ) j. j! j=0 Folgerung 3.1 Das k-te Taylorpolynom mit Entwicklungspunkt x 0 eines Polynoms f vom Grad höchstens k ist f selbst.

f (j) (x 0 ) (x x 0 ) j. j! j=0 Folgerung 3.1 Das k-te Taylorpolynom mit Entwicklungspunkt x 0 eines Polynoms f vom Grad höchstens k ist f selbst. 3 Tylorentwicklung In Anlysis I hben wir die Tylorentwicklung von Funktionen einer Vriblen eingeführt. Hier wollen wir die Tylorentwicklung von Funktionen mehrerer Vriblen herleiten. Der Komplettheit hlber

Mehr

5.5. Integralrechnung

5.5. Integralrechnung .. Integrlrechnung... Berechnung von Integrlen mit der Streifenmethode Definition: Gegeen seien, R mit < und eine uf [; ] stetige Funktion f. Der orientierte Inhlt der Fläche, die durch die -Achse, ds

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

2 Trigonometrische Formeln

2 Trigonometrische Formeln Mthemtische Probleme, SS 013 Donnerstg.5 $Id: trig.tex,v 1.3 013/05/03 10:50:31 hk Exp hk $ Trigonometrische Formeln.1 Die Additionstheoreme In der letzten Sitzung htten wir geometrische Herleitungen der

Mehr

2 Berechnung von Flächeninhalten unter Kurvenstücken

2 Berechnung von Flächeninhalten unter Kurvenstücken Übungsmteril 1 Berechnung von Flächeninhlten unter Kurvenstücken.1 Annäherung durch Rechtecke Um die Fläche zu berechnen, die zwischen dem Funktionsgrphen einer Funktion und der -Achse eingeschlossen wird,

Mehr

ANALYSIS II OLIVER C. SCHNÜRER

ANALYSIS II OLIVER C. SCHNÜRER ANALYSIS II OLIVER C. SCHNÜRER Zusmmenfssung. Bei diesem Mnuskript hndelt es sich um Notizen zu einer Vorlesung Anlysis II. Ich hbe sie im Sommersemester 215 in Konstnz benutzt. Inhltsverzeichnis 4. Differentition

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

9 Die Prinzipien der Analysis

9 Die Prinzipien der Analysis 9 Die Prinzipien der Anlysis 9. Der Huptstz der Differentil- und Integrlrechnung Ds wichtigste Prinzip der Anlysis besgt, dss die Integrtion in gewisser Weise die Umkehrung der Differentition ist. Genuer

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphsik I Prof. Peter Böni, E21 Lösung zum 2. Übungsbltt (Besprechung: 0. - 1. Oktober 2006) P. Niklowitz, E21 Aufgbe 2.1: Zweidimensionle Wigner-Seitz-Zellen Vernschulichen Sie,

Mehr

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα.

AnKa Hyp. , tan α= Weil die Ankathete des einen Winkels der Gegenkathete des anderen entspricht, gilt auch: sin α = cos β und sinβ = cosα. Trigonometrie Wenn mn die Trigonometrischen Funktionen Sinus, Kosinus und Tngens berechnen will, ist es wichtig, uf welchen Winkel sie sich beziehen. Die Kthete, die direkt m Winkel nliegt, heißt Ankthete

Mehr

Volumen von Rotationskörpern

Volumen von Rotationskörpern Volumen von Rottionskörpern Beispiele: [ Es stellt sich die Frge: Wie entstehen solche Rottionskörper bzw wie lssen sich solche Rottionskörper er zeugen? Rotiert eine Fläche z.b. um die x-achse, so entsteht

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

18.1 Vektorfelder, Divergenz und Rotation

18.1 Vektorfelder, Divergenz und Rotation Kpitel 18 Integrlsätze 18.1 Vektorfelder, Divergenz und Rottion 18.2 Zusmmenhng, Gebiete und Potentile 18.3 Kurvenintegrle 18.4 Der Integrlstz von Green 18.5 Flächen und Oberflächenintegrle im Rum 18.6

Mehr

Theoretische Mechanik - Übungen 10 WS 2016/17

Theoretische Mechanik - Übungen 10 WS 2016/17 Prof. Dr. A. Ms Institut für Physik N A W I G R A Z Theoretische Mechnik - Übungen 1 WS 16/17 Aufgbe P: Poissonklmmern Präsenzufgben 15. Dezember 16 ) Betrchten Sie zwei Erhltungsgrößen A und B, d. h.

Mehr

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10

Zusatzmaterial zur Mathematik I für E-Techniker Übung 10 Mthemtik I für E-Techniker C. Erdmnn WS /, Univerität Rotock,. Vorleungwoche Zutzmteril zur Mthemtik I für E-Techniker Übung Uneigentliche Integrle Die Funktion f ei für x definiert und in jedem Intervll

Mehr

Analysis I. TU Dortmund, Wintersemester 2013/14. Ben Schweizer

Analysis I. TU Dortmund, Wintersemester 2013/14. Ben Schweizer Anlysis I TU Dortmund, Wintersemester 2013/14 Ben Schweizer Inhltsverzeichnis 1 Reelle Zhlen 1.1 Logische Grundlgen: Aussgen, Beweise, Mengen........ 3 1.2 Die Zhlenbereiche N, Z und Q..................

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mthemtik für Informtiker I (Wintersemester 00/00) Aufgbenbltt (. Oktober 00)

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mthemtik I Dr. Wolfgng Metzler Universität Kssel unter Mitwirkung von Dipl.-Mth. Mrtin Steigemnn Sommersemester 2005 ii c 2005 Dr. Wolfgng Metzler, Fchbereich Mthemtik und Informtik der Universität

Mehr

A.25 Stetigkeit und Differenzierbarkeit ( )

A.25 Stetigkeit und Differenzierbarkeit ( ) A.5 Stetigkeit / Differenzierbrkeit A.5 Stetigkeit und Differenzierbrkeit ( ) Eine Funktion ist wenn die Kurve nicht unterbrochen wird, lso wenn mn sie zeichnen knn, ohne den Stift vom Bltt bzusetzen.

Mehr

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen

Bestimmtes (Riemannsches) Integral / Integral als Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhalb bestimmter Grenzen III. Integrlrechnung : Bestimmtes (Riemnnsches Integrl / Integrl ls Grenzwert einer Summe : Bedeutung: Fläche unter einer Funktion innerhl estimmter Grenzen yf( y n y n ( Δ Berechnung der Fläche A unter

Mehr

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014 Anlysis 2 Vorlesungsskript Sommersemester 214 Bernd Schmidt Version vom 15. Oktober 214 Institut für Mthemtik, Universität Augsburg, Universitätsstr. 14, 86135 Augsburg, bschmidt@mth.uni-ugsburg.de 1 Inhltsverzeichnis

Mehr

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche...

1.6 Bruchterme. 1 Theorie Lernziele Repetition Die Addition von zwei Bruchtermen-Methode I Doppelbrüche... .6 Bruchterme Inhltsverzeichnis Theorie. Lernziele............................................ Repetition............................................3 Die Addition von zwei Bruchtermen-Methode I.......................

Mehr

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3

Mathematik fu r Ingenieure (Maschinenbau und Sicherheitstechnik) 2. Semester Apl. Prof. Dr. G. Herbort Dr. T. Pawlaschyk. SoSe16 Arbeitsheft Blatt 3 Mthemtik fu r Ingenieure (Mschinenu und Sicherheitstechnik). Semester Apl. Prof. Dr. G. Herort Dr. T. Pwlschyk SoSe6 Areitsheft Bltt Hinweis: Besuchen Sie die Vorlesung und vervollst ndigen Sie Areitsheft.

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr