1 Einleitung: Die Lichtgeschwindigkeit

Größe: px
Ab Seite anzeigen:

Download "1 Einleitung: Die Lichtgeschwindigkeit"

Transkript

1 1 Einleitung: Die Lichtgeschwindigkeit In der zweiten Hälfte des 19. Jahrhunderts wurde die elektromagnetische Natur des Lichts erkannt (J. C. Maxwell, ca. 1870). Wir wollen die Argumentation kurz skizzieren. Die mathematischen Einzelheiten spielen jedoch für die folgenden Abschnitte keine Rolle. In Anwesenheit von elektrischen Ladungs- und Stromverteilungen ρ(r, t) bzw. J(r, t) genügen die elektromagnetischen Felder E(r, t) und B(r, t) den Maxwell-Gleichungen (a) E = 1 ǫ 0 ρ, (b) B = µ 0 J + ǫ 0 µ 0 E t, (c) B = 0, (d) E + B t (SI-Einheiten!), mit den universellen Naturkonstanten = 0 (1) 12 As ǫ 0 = Vm, µ 6 Vs 0 = Am. (2) Wie man leicht zeigen kann, 1 efüllt damit im Vakuumfall (ρ 0, J 0) jede der sechs kartesischen Komponenten u(r, t) von E(r, t) und B(r, t) die Wellengleichung ǫ 0 µ 0 2 u t 2 = 2 u. (3) Es gibt also im Vakuum elektromagnetische Wellen mit der universellen Ausbreitungsgeschwindigkeit c = 1 ǫ0 µ 0 = m s. (4) Dieses Ergebnis gibt einerseits den bekannten Wert der Lichtgeschwindigkeit wieder (und legt die Identifikation dieser elektromagnetischen Wellen mit Licht nahe). Andererseits ist es jedoch alarmierend, da im Vakuum kein Inertialsystem besonders ausgezeichnet ist, auf das sich diese Geschwindigkeit beziehen könnte. (Anders als diese elektromagnetischen Wellen haben etwa Schallwellen immer ein Medium, relativ zu dem sie sich mit der jeweiligen Schallgeschwindigkeit ausbreiten.) Unter diesen Umständen erschien die Richtig des Maxwellschen Gleichungssystems zweifelhaft. Zur Aufklärung sollte der Wert (4) experimentell überprüft werden. 1 Zur Herleitung kombiniere man die Maxwell-Gleichungen (b) und (d) unter Beachtung der Identität ( A) = ( A) 2 A), wobei im Vakuum jeweils E = B = 0 ist. 1

2 Direkte Messung der Geschwindigkeit von Licht zeigt aber tatsächlich: Die festgestellte Geschwindigkeit hat immer den gleichen, universellen Wert (4), unabhängig von der Relativgeschwindigkeit zwischen Meßgerät und Lichtquelle. In einem Gedankenexperiment denke man etwa an einen Laser als Lichtquelle und ein Lichtgeschwindigkeits-Meßgerät (LGM), beides auf je einem Schienenwagen montiert. Die beiden Wagen können sich auf einer geraden Schiene mit beliebig gewählter Relativgeschwindigkeit v aufeinander zu oder voneinander weg bewegen. Dann zeigt das LGM unabhängig von v immer denselben universellen Wert (4) an. Nach unterschiedlichsten, zum Teil abenteuerlichen Erklärungsversuchen aus den Jahrzehnten vor 1905 war es schließlich Einstein, der die entscheidende Idee hatte: Die traditionelle Vorstellung vom Begriff der Zeit war ihm verdächtig. Tatsächlich läßt sich die Universalität der Lichtgeschwindigkeit widerspruchsfrei erklären, wenn man nur bereit ist, die vermeintliche Absolutheit der Zeit aufzugeben (Kapitel 2). Dann kann ein- und dasselbe Ereignis für zwei Beobachter, die sich relativ zueinander bewegen, zu verschiedenen Zeitpunkten t und t stattfinden, obwohl die Beobachter ihre Uhren synchronisiert haben. 2

3 2 Die Lorentz-Transformation (LT) Die Universalität der Lichtgeschwindigkeit erscheint deshalb verwirrend, da unser Alltag ein falsches Bild vom Begriff der Zeit suggeriert. Wir wollen daher alle subjektiven Vorstellungen unterdrücken und postulieren: 0. Die Lichtgeschwindigkeit hat in jedem IS den gleichen, universellen Wert c. Unser Ziel ist es, eine in sich widerspruchsfreie Theorie von Raum und Zeit zu entwickeln, die mit diesem Postulat vereinbar ist. 2.1 Ereignisse, Ereignis-Koordinaten und Inertialsysteme Ein Bezugssystem S besteht aus einem Ursprung O, drei paarweise orthogonalen Raumachsen (x, y, z) und einer mit O fest verbundenen Uhr. Ein (Punkt-) Ereignis (z.b. ein Lichtblitz) hat in S vier Koordinaten (x, y, z, t). Seine räumlichen Koordinanten x, y und z werden direkt beobachtet. (Man denke sich ein dichtes Netz aus Koordinatenlinien durch sichtbare Stäbe oder Seile realisiert.) Dann definiert man t = t 0 1 c x 2 + y 2 + z 2, (5) wobei t 0 die von der Uhr bei O in dem Augenblick angezeigte Zeit ist, in dem der bei O sitzende Beobachter das Ereignis sieht. Def.: S heißt ein Inertialsystem, wenn für jedes kräftefreie Teilchen zwei konstante 3- Vektoren r 0 und v 0 existieren, sodaß seine Koordinaten (x, y, z, t) zu jeder Zeit verknüpft sind durch die Beziehung x y z = r 0 + v 0 t x 0 y 0 z 0 + v 01 v 02 v 03 t. (6) Diese Definition setzt stillschweigend voraus, daß die Kräftefreiheit eines Teilchens durch eine unabhängige Methode feststellbar ist. 3

4 2.2 Herleitung der Lorentz-Transformation Wir betrachten zwei verschiedene Inertialsysteme S und S. Der Ursprung O von S bewege sich mit konstanter Geschwindigkeit v entlang der x-achse von S. In dem Augenblick, da O den Ursprung O von S passiert, werden die Uhren von S und S zugleich auf Null gestellt (synchronisiert). Die Raum-Zeit-Koordinaten (x, y, z, t) bzw. (x, y, z, t ), die ein- und demselben Ereignis in den verschiedenen Inertialsystemen S bzw. S zugeordnet werden, sind in der Newtonschen Mechanik verknüpft durch die Galilei-Transformation, x = x vt, y = y, z = z, t = t. (7) Um vorurteilsfrei zu sein, verlassen wir uns außer auf Postulat (0) nur auf drei fundamentale Annahmen über die Struktur von Raum und Zeit: I. Der Raum ist isotrop: Alle räumlichen Richtungen sind äquivalent. II. Raum und Zeit sind homogen: Alle Raumpunkte sind untereinander äquivalent, alle Zeitpunkte sind untereinander äquivalent. III. Alle ISe sind gleichberechtigt (Relativitätsprinzip). Die korrekt transformierten Koordinaten x, y, z und t müssen gewisse Funktionen von x, y, z und t, sowie des Parameters v sein, x = f 1 (v; x, y, z, t), y = f 2 (v; x, y, z, t), z = f 3 (v; x, y, z, t), t = f 4 (v; x, y, z, t). (8) Die explizite Form dieser Lorentz-Transformation (LT) folgt aus den Prinzipien (0 III). Die Homogenität von Raum und Zeit (II) impliziert Linearität in x, y, z und t, x = f 11 (v) x + f 12 (v) y + f 13 (v) z + f 14 (v) t, y = f 21 (v) x + f 22 (v) y + f 23 (v) z + f 24 (v) t, z = f 31 (v) x + f 32 (v) y + f 33 (v) z + f 34 (v) t, t = f 41 (v) x + f 42 (v) y + f 43 (v) z + f 44 (v) t, (9) mit 16 v-abhängigen Koeffizienten f µν (v). 4

5 Weiterhin müssen wegen (I) und (II) viele dieser Koeffizienten verschwinden. Da etwa den S-Koordinaten (x, y, z, t) = (0, ±y 0, 0, 0) die S -Koordinaten x = ±f 12 (v) y 0, y = ±f 22 (v) y 0, z = ±f 32 (v) y 0, t = ±f 42 (v) y 0, (10) zugeordnet werden, so folgt f 12 (v) = f 32 (v) = f 42 (v) = 0, sonst wären im Widerspruch zu (I) die (±y)-richtungen in S nicht gleichwertig. Ebenso folgt f 13 (v) = f 23 (v) = f 43 (v) = 0. Außerdem muß x verschwinden, wenn x = vt ist, x =γ(v)(x vt), y =f 22 (v) y, z =f 33 (v) z, t =f 44 (v) t + f 41 (v) x, γ(v) := f 11 (v). (11) Dreht man in S und S die Koordinatenachsen jeweils 180 um die z- bzw. z -Achse, dann wird das Ereignis mit den alten Koordinaten (x, y, z, t) bzw. (x, y, z, t ) durch die neuen Koordinaten ( x, y, z, t) bzw. ( x, y, z, t ) beschrieben, und die Relativgeschwindigkeit v wechselt ihr Vorzeichen. Es muß also zusammen mit Gl. (11) auch gelten x = γ( v)( x + vt), y = f 22 ( v) y, z = + f 33 ( v) z, t = f 44 ( v) t f 41 ( v) x. (12) Vergleich mit Gl. (11) enthüllt die Symmetrie der Koeffizientenfunktionen, γ( v) = γ(v), f µµ ( v) = f µµ (v) (µ = 2, 3, 4), f 41 ( v) = f 41 (v). (13) Die zu (11) inverse Transformation S S (mit v v) ist wegen (III) gegeben durch x = γ(v) (x + vt ), y = f 22 (v) y, z = f 33 (v) z, t = f 44 (v) t f 41 (v) x, (14) wo wir bereits die Symmetrien (13) ausgenutzt haben. Durch Vergleich der zweiten und dritten Gleichung mit den entsprechenden Gleichungen in (11) folgt f 22 (v) = f 33 (v) 1. (15) 5

6 Erst jetzt werden wir von Postulat (0) Gebrauch machen. Wird zur Zeit t = t = 0 ein Lichtsignal vom dann gemeinsamen Ursprung O = O ausgesandt, so erreicht es in S nach der Laufzeit t den Ort x = ct. Dieses letztere Ereignis hat in S die Koordinaten x und t, wobei x = ct, da die Lichtgeschwindigkeit nach Postulat (0) in beiden ISen den gleichen Wert c hat. Mit t = x/c in der ersten Gleichung in (11) und t = x /c in der ersten Gleichung in (14) folgt x = γ(v)x ( 1 v c ), x = γ(v)x ( 1 + v c x x = γ(v) 2 xx ( 1 v2 c 2 ) ) γ(v) = 1. (16) 1 v2 c 2 Mit x = γ(v)(x vt) findet man weiter t = x x /γ(v) v t x x/γ(v) v =... = γ(v) ( t v c 2x). (17) Hier wurde im letzten Schritt nochmals x = γ(v)(x vt) eingesetzt. Somit ist die gesuchte Lorentz-Transformation (8) explizit gegeben durch x =γ(v)(x vt), y =y, z =z, t =γ(v) ( t v c 2 x ), γ(v) := 1 1 β 2, β := v c. (18) Dies ist offenbar die einfachst mögliche Verallgemeinerung der Galilei-Transformation (7), die mit den Prinzipien (0 III) vereinbar ist. Ein Ereignis, für das der Beobachter in S die Raum-Zeit-Koordinaten (x, y, z, t) feststellt, hat für den Beobachter in S die Koordinaten (x, y, z, t ), entsprechend Gl. (18). Dabei ist offensichtlich in der Regel t t, obwohl es sich um ein- und dasselbe Ereignis handelt und beide Beobachter ihre Uhren synchronisiert haben! Nur im hypotetischen Fall c = erhält man Gl. (7) (mit t = t ) zurück. Die inverse LT ergibt sich durch Ersetzung v v, x = γ(v)(x + vt ), y = y, z = z, t = γ(v) ( t + v c 2 x ), (19) wie man durch Einsetzen leicht bestätigt. 6

7 Falls die Geschwindigkeit v = (v x, v y, v z ) T von S relativ zu S nicht in x-richtung (von S) weist, müssen wir lediglich den Ortsvektor r = (x, y, z) T in Gl. (18) in Komponenten parallel ( ) und senkrecht ( ) zu v zerlegen, r = r v v 2 Dann ergibt Gl. (18) v = xv x + yv y + zv z v 2 v x v y v z, r = r r. (20) r = γ(v)(r vt), r = r, t = γ(v) ( t v r v) ( r v) γ(v) t. (21) c 2 v c 2 Mit r = r + r folgt also r (r v)v =r + [γ(v) 1] γ(v)vt, v 2 t = γ(v) ( t r v ). c 2 (22) Die inverse Transformation S S ergibt sich durch Ersetzung v v, r =r + [γ(v) 1] (r v)v v 2 + γ(v)vt, t =γ(v) ( t + r v c 2 ). (23) 2.3 Das Additionstheorem für Geschwindigkeiten Um zu prüfen, ob die LT (18) tatsächlich das in der Einleitung (Kapitel 1) erläuterte, paradox wirkende Verhalten der Lichtgeschwindigkeit richtig beschreibt, betrachten wir ein Teilchen, das sich im System S mit der konstanten Geschwindigkeit u entlang der x -Achse bewegt, u = x t = x B x A. (24) t B t A Hier sind x A und x B seine in S zu den Zeitpunkten t A bzw. t B festgestellten Ortskoordinaten. Nach Gl. (19) sind die entsprechenden Koordinatendifferenzen, die ein Beobachter in S feststellt x =γ(v)( x + v t ), t =γ(v) ( t + v c 2 x ). } 7 (25)

8 Schreibt man hier x = u t, gemäß Gl. (24), so folgt für die Geschwindigkeit w des Teilchens, die der Beobachter in S feststellt, w x t = u + v 1 + uv c 2. (26) Dies ist das relativistische Additionstheorem für Geschwindigkeiten. Im Fall u, v c kann der Term uv/c 2 im Nenner vernachlässigt werden, und es gilt in guter Näherung die Galileische Additionsregel w = u + v. Während diese Regel in Fällen wie etwa u = v = 0.9c Überlichtgeschwindigkeiten w liefern würde, ergibt Gl. (26) den korrekten Wert w = 1.8 c = c. Ist insbesondere das Teilchen ein Lichtstrahl, u = c, so ergibt 1.81 Gl. (26) auch w = c. Licht hat also tatsächlich in jedem IS die gleiche Geschwindigkeit c. Wir untersuchen noch das Transformationsverhalten einer beliebigen Geschwindigkeit. Ein Teilchen bewege sich in S mit konstanter Geschwindigkeit u, u = r r B r A. t t B t A (27) Hier sind r A und r B seine Ortskoordinaten (in S ) zu den Zeitpunkten t A bzw. t B. Nach Gl. (23) sind die entsprechenden Koordinatendifferenzen, die ein Beobachter in S feststellt r = r + [γ(v) 1] (v r )v v 2 + γ(v)v t, t =γ(v) ( t + v r c 2 ). Schreibt man hier r = u t, gemäß Gl. (27), so folgt für die Geschwindigkeit w des Teilchens, die der Beobachter in K feststellt, (28) w r t u + (γ 1)(v u) v + γv v = 2 γ(1 + v u c 2 ) = 1 β2 u + [ (1 1 β 2 ) v u v ] v 1 + v u c 2. (29) Im wichtigsten Fall v u folgt mit v u = vu und v u v 2 = u v die einfache Formel (26). 2.4 Relativität der Gleichzeitigkeit Zwei Ereignisse A und B, die in S gleichzeitig sind, t A = t B, müssen dies in S nicht sein. Mit t A = t B ergibt nämlich die vierte Gleichung von Gl. (18) t A t B = γ v c 2(x B x A ), (30) was für x A x B nicht verschwindet. Wir werden auf dieses Phänomen noch ausführlich zu sprechen kommen. 8

Spezielle Relativität

Spezielle Relativität Spezielle Relativität Gleichzeitigkeit und Bezugssysteme Thomas Schwarz 31. Mai 2007 Inhalt 1 Einführung 2 Raum und Zeit Bezugssysteme 3 Relativitätstheorie Beginn der Entwicklung Relativitätsprinzip Lichtausbreitung

Mehr

IX Relativistische Mechanik

IX Relativistische Mechanik IX Relativistische Mechanik 34 Relativitätsprinzip Die bisher behandelte Newtonsche Mechanik gilt nur für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind. Im Teil IX stellen wir die

Mehr

5.3.3 Die Lorentz-Transformationen

5.3.3 Die Lorentz-Transformationen 5.3. EINSTEINS SPEZIELLE RELATIVITÄTSTHEORIE 135 Wir kennen bereits die Transformationen zwischen Inertialsystemen der Potentiale der Elektrodynamik. So sind ϕ und A für eine gleichmäßig, geradlinig bewegte

Mehr

Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub

Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub 6. Dezember 2004 2 Inhaltsverzeichnis 2 spezielle Relativitätstheorie

Mehr

10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation

10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation 10. Spezielle Relativitätstheorie (SRT) 10.1 Grundlagen und Lorentztransformation (a) Inertialsysteme und das spezielle Relativitätsprinzip Es gibt unendlich viele Inertialsysteme (IS), die sich relativ

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 07. 12. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

Konsequenzen der Konstanz der Lichtgeschwindigkeit

Konsequenzen der Konstanz der Lichtgeschwindigkeit Konsequenzen der Konstanz der Lichtgeschwindigkeit Wir beginnen mit einer kurzen Zusammenfassung einiger Dinge, die am Ende des vorigen Semesters behandelt wurden. Neben dem Relativitätspostulat Die Gesetze

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Die SRT behandelt Ereignisse, die von einem Inertialsystem (IS) beobachtet werden und gemessen werden. Dabei handelt es sich um Bezugssyteme, in denen das erste Newton sche Axiom gilt. Die Erde ist strenggenommen

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Bearbeitet von Torsten Fließbach 1. Auflage 212. Buch. x, 382 S. Hardcover ISBN 978 3 8274 331 1 Format (B x L): 16,8 x 24 cm Gewicht: 823 g Weitere Fachgebiete > Physik,

Mehr

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation

Mehr

Experimentalphysik E1

Experimentalphysik E1 Eperimentalphysik E1 Spezielle Relativitätstheorie Relativisitische Impuls-Energie Beziehung Schwerpunktssysteme Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/inde.html

Mehr

9. Spezielle Relativitätstheorie

9. Spezielle Relativitätstheorie 7. Relativistischer Impuls 9. Spezielle Relativitätstheorie (SRT) Inhalt 9. Spezielle Relativitätstheorie 9.1 Galilei-Transformation 9.2 Lorentz-Transformation 9.3 Transformation von Geschwindigkeiten

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 5

Grundlagen der Physik 1 Lösung zu Übungsblatt 5 Grundlagen der Physik Lösung zu Übungsblatt 5 Daniel Weiss 8. November 2009 Inhaltsverzeichnis Aufgabe - Aberation des Lichtes a) Winkelbeziehungen................................ b) Winkeldierenz für

Mehr

Kapitel 2. Lorentz-Transformation

Kapitel 2. Lorentz-Transformation Kapitel 2 Lorentz-Transformation Die Galilei-Transformation aus Abschnitt 1.7 wurde durch eine Vielzahl von Experimenten erfolgreich überprüft und gehört zu den Grundlagen der klassischen Mechanik. Die

Mehr

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Michael Mittermair 29. August 2013 1 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 3 1.1 Warum heißt das so?.......................

Mehr

1.3 Transformation der Geschwindigkeit

1.3 Transformation der Geschwindigkeit [Griffiths 1.1.3, 1..1] 1.3 Transformation der Geschwindigkeit Seien S und S Inertialsysteme. S bewege sich gegenüber S mit der Geschwindigkeit V = V e 1. Es sei wieder β = V/c, γ = 1/ 1 β. Für ein Ereignis

Mehr

Die Maxwell Gleichungen

Die Maxwell Gleichungen Die Maxwell Gleichungen Die Maxwellschen Gleichungen beschreiben Beziehungen zwischen dem elektrischen Feld E = E( x;t), der magnetischen Flussdichte B = B( x;t), der elektrischen Stromstärke J = J( x;t),

Mehr

Lorentz-Transformation

Lorentz-Transformation Lorentz-Transformation Aus Sicht von Alice fliegt Bob nach rechts. Aus Sicht von Bob fliegt Alice nach links. Für t = t' = 0 sei also x(0) = x'(0) = Lichtblitz starte bei t = t' = 0 in und erreiche etwas

Mehr

Dieses Buch enthält eine kurze Einführung in die relativistische

Dieses Buch enthält eine kurze Einführung in die relativistische Vorwort Dieses Buch enthält eine kurze Einführung in die relativistische Mechanik. Dabei stehen die Bewegungsgleichungen für ein Masseteilchen im Mittelpunkt. Es richtet sich an Studenten, die bereits

Mehr

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche

Mehr

Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner Philipp Köhler

Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner Philipp Köhler Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner 2012 Philipp Köhler Übersicht Newton sche Mechanik und Galileitransformation Elektrodynamik Äther und das Michelson Morley Experiment

Mehr

24 Minkowskis vierdimensionale Raumzeit

24 Minkowskis vierdimensionale Raumzeit 24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Wo ist eigentlich Gamma? - Die Mär vom Lorentzfaktor γ (Gemeinverständlich)

Wo ist eigentlich Gamma? - Die Mär vom Lorentzfaktor γ (Gemeinverständlich) Wo ist eigentlich Gamma? - Die Mär vom Lorentzfaktor γ (Gemeinverständlich) Gerd Termathe, Dipl.-Ing. gerd@termathe.net c Dezember 206 - Für Tobias - Abstract Es wird gezeigt, dass der Lorentzfaktor, Bestandteil

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 12.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Relativistische Beziehungen Hochfrequenzgrundlagen

Relativistische Beziehungen Hochfrequenzgrundlagen Hochfrequenzgrundlagen Prof. Dr. H. Podlech 1 Klassische Mechanik Im Rahmen der klassischen Mechanik gelten folgende Beziehungen Masse: m=konstant Impuls: Kinetische Energie: Geschwindigkeit: Prof. Dr.

Mehr

Teil III. Grundlagen der Elektrodynamik

Teil III. Grundlagen der Elektrodynamik Teil III Grundlagen der Elektrodynamik 75 6. Die Maxwellschen Gleichungen 6.1 Konzept des elektromagnetischen eldes Im folgenden sollen die Grundgleichungen für das elektrische eld E( x, t) und für das

Mehr

12. Spezielle Relativitätstheorie

12. Spezielle Relativitätstheorie Inhalt 12. Spezielle Relativitätstheorie 12.1 Lorentz-Transformation 12.2 Transformation von Geschwindigkeiten 12.3 Zeitdilatation 12.4 Längenkontraktion kti 12.5 Relativistischer Impuls 12.6 Relativistische

Mehr

3 Bewegte Bezugssysteme

3 Bewegte Bezugssysteme 3 Bewegte Bezugssysteme 3.1 Inertialsysteme 3.2 Beschleunigte Bezugssysteme 3.2.1 Geradlinige Beschleunigung 3.2.2 Rotierende Bezugssysteme 3.3 Spezielle Relativitätstheorie Caren Hagner / PHYSIK 1 / Sommersemester

Mehr

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern.

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern. II Spezielle Relativitätstheorie II.1 Einleitung Mechanik für v c (Lichtgeschwindigkeit: 3x10 8 m/s) Spezielle Relativitätstheorie: Raum und Zeit in Systemen, die sich gegeneinander mit konstanter Geschwindigkeit

Mehr

I.2.3 Minkowski-Raum. ~r x 3 benutzt.

I.2.3 Minkowski-Raum. ~r x 3 benutzt. I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer

Mehr

2.2 4-Stromdichte [Griffiths , Jackson 11.9]

2.2 4-Stromdichte [Griffiths , Jackson 11.9] Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Karl-Heinz Lotze und Stefan Völker, Jena 21.07.15 Einsteins Postulate Einstein stellte die folgenden beiden Prinzipien an die Spitze seiner

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften 12 Relativitätstheorie Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 06. Juli 2009 Die Relativitätstheorie besteht aus

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 05. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 06.

Mehr

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse Kapitel 1 PUNKTMECHANIK LERNZIELE Definition der physikalischen Begriffe Körper, Masse, Ort, Geschwindigkeit, Beschleunigung, Kraft. Newtons Axiome Die Benutzung eines Bezugssystems / Koordinatensystems.

Mehr

Eigenschaften der Schwerkraft

Eigenschaften der Schwerkraft Gravitation Teil 1 Eigenschaften der Schwerkraft Bewirkt die gegenseitige Anziehung von Massen Ist prinzipiell nicht abschirmbar Ist im Vergleich zu den anderen Naturkräften extrem schwach: F E F G 10

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Übungsblatt 10 Lösungen Name des Übungsgruppenleiters und Gruppenbuchstabe:

Mehr

Korrekturen 1 zur Mechanik, 5. Auflage, 2006/7

Korrekturen 1 zur Mechanik, 5. Auflage, 2006/7 Korrekturen 1 zur Mechanik, 5. Auflage, 2006/7 Seite 8: In Aufgabe 1.1 r(t) = r(t) e r (t) anstelle von r(t) = r(t) e r. Seite 26: In der Zeile vor (4.9) ist ṙ ν durch r ν zu ersetzen. Seite 28: In der

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen Prof. C. Greiner, Dr. H. van Hees Wintersemester 13/14 Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 1 Präsenzübungen (P7) Viererimpuls und relativistisches Electron im Plattenkondensator (a) Es

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 28. 05. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 28. 05. 2009

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

1 Elektromagnetische Wellen im Vakuum

1 Elektromagnetische Wellen im Vakuum Technische Universität München Christian Neumann Ferienkurs Elektrodynamik orlesung Donnerstag SS 9 Elektromagnetische Wellen im akuum Zunächst einige grundlegende Eigenschaften von elektromagnetischen

Mehr

Elektrodynamik. Rainer Hauser. Januar 2015

Elektrodynamik. Rainer Hauser. Januar 2015 Elektrodynamik Rainer Hauser Januar 2015 1 Einleitung 1.1 Vektorfelder Wenn man jedem Punkt im Raum eine physikalische Grösse zuordnen kann, spricht man von einem Feld. Die Temperatur ist ein skalares

Mehr

Probestudium Sommersemester 2010, Theoriekurs

Probestudium Sommersemester 2010, Theoriekurs Probestudium Sommersemester 2010, Theoriekurs 2 Vorlesungen zur Einführung in die spezielle Relativitätstheorie H. W. Diehl Fakultät für Physik, U. Duisburg-Essen 26. Juni und 3. Juli 2010 Einführung Physik:

Mehr

1.5 Relativistische Kinematik

1.5 Relativistische Kinematik 1.5 Relativistishe Kinematik 1.5.1 Lorentz-Transformation Grundlage: Spezielle Relativitätstheorie à In jedem Inertialsystem gelten die gleihen physikalishen Gesetze; Inertialsystem: System in dem das

Mehr

Klein-Gordon-Gleichung

Klein-Gordon-Gleichung Seminar zur Theorie der Atome, Kerne und kondensierten Matierie Klein-Gordon-Gleichung Judith Beier 17.12.2014 1 Inhaltsverzeichnis 1 Einblick in die Geschichte der relativistischen Quantenmechanik 3 2

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Technische Universität München Physik Department Ferienkurs Experimentalphysik 2 Vorlesung 4: Elektromagnetische Wellen und spezielle Relativitätstheorie Tutoren: Elena Kaiser Matthias Golibrzuch Nach

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

Übungen zur Speziellen und Allgemeinen Relativitätstheorie

Übungen zur Speziellen und Allgemeinen Relativitätstheorie Übungen zur Speziellen und Allgemeinen Relativitätstheorie Blatt 1 WS 08/09 Abgabe: 22.10.2008 Prof. Dr. T. Mannel, S. Faller 1. Galilei-Gruppe Die Gruppe G der Galilei-Transformationen g = g, v, a, λ,

Mehr

Relativistische Punktmechanik

Relativistische Punktmechanik KAPITEL II Relativistische Punktmechanik Der Formalismus des vorigen Kapitels wird nun angewandt, um die charakteristischen Größen und Funktionen zur Beschreibung der Bewegung eines freien relativistischen

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/201 Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12 (P0) Das Garagen-Paradoxon Präsenzübungen Es kann selbstverständlich mit der Beschreibung

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Grundlegende Aspekte der speziellen Relativitätstheorie

Grundlegende Aspekte der speziellen Relativitätstheorie Grundlegende Aspekte der speziellen Relativitätstheorie Theoretische Physik Universität Ulm 89069 Ulm Kolloquium für Physiklehrende Universität Ulm, 10. Feb. 2009 Inhalt Einleitung Lorentz-Transformation

Mehr

Einsteins Relativitätstheorie

Einsteins Relativitätstheorie Dr. Michael Seniuch Astronomiefreunde 2000 Waghäusel e.v. Einsteins Relativitätstheorie 16. April 2010 Inhalt: I. Raum, Zeit und Geschwindigkeit im Alltag II. Die Spezielle Relativitätstheorie III. Die

Mehr

24 Herleitung der Maxwell-Gleichungen

24 Herleitung der Maxwell-Gleichungen 24 Herleitung der Maxwell-Gleichungen In dieser Vorlesung werden wir die Maxwell-Gleichungen aus rein theoretischen Erwägungen herleiten. Dabei muß der Begriff Herleitung allerdings mit Vorsicht betrachtet

Mehr

Das gravitomagnetische Feld der Erde

Das gravitomagnetische Feld der Erde Das gravitomagnetische Feld der Erde von T. Fließbach 1. Einführung magnetisch gravitomagnetisch 2. Bezugssysteme Bevorzugte Inertialsysteme 3. Newton und Mach Absoluter Raum? 4. Drehung eines Foucault-Pendels

Mehr

Kapitel 1. Bezugssysteme. 1.1 Koordinatensysteme

Kapitel 1. Bezugssysteme. 1.1 Koordinatensysteme Kapitel 1 Bezugssysteme Wenn wir die Bewegung eines Teilchens messen oder vorausberechnen, liefern wir eine Reihe von Ereignissen (r i, t i ), die jeweils aus einem Ortsvektor r i und der dazugehörenden

Mehr

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009

5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 2009 5. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 10. November 009 Aufgabe 5.1: Trägheitskräfte Auf eine in einem Aufzug stehende Person (Masse 70 kg) wirken

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 16. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 16. 06.

Mehr

Spezielle Relativitätstheorie (Einstein, 1905)

Spezielle Relativitätstheorie (Einstein, 1905) Spezielle Relativitätstheorie (Einstein, 1905) A. Einstein, 1905, Annalen der Physik: "Zur Elektrodynamik bewegter Körper" http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf

Mehr

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen Theoretischen Physik II SS 7 Klausur I - Aufgaben und Lösungen Aufgabe Elektrostatik Im Mittelpunkt einer leitenden und geerdeten Hohlkugel RadiusR) befindet sich eine kleine Kugel mit homogener Ladungsverteilung

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Ein konzeptioneller Einblick Von Jan Kaprolat Gliederung Einleitung Übergang SRT -> ART Grundlegende Fragestellungen der ART Kurzer Einblick: Tensoralgebra Einsteinsche Feldgleichungen

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

A E t. Teil 1 25/ Klassische Theoretische Physik Lehramt (220 LA), WS 2014/15. Thomas Tauris AIfA Bonn Uni. / MPIfR

A E t. Teil 1 25/ Klassische Theoretische Physik Lehramt (220 LA), WS 2014/15. Thomas Tauris AIfA Bonn Uni. / MPIfR F F A E t Teil 1 5/11-014 T Klassische Theoretische Physik Lehramt (0 LA), WS 014/15 Thomas Tauris AIfA Bonn Uni. / MPIfR Kapitel 6+7 + Anhang C Weiterführende Literatur: - Introduction to Special Relatiity

Mehr

Doku Spezielle Relativität

Doku Spezielle Relativität Doku Spezielle Relativität Äther-Diskussion um 1900 Newton Mechanik ist Galilei-invariant Maxwell EM ist jedoch Lorentz-invariant Michelson-Morley Experiment Albert Michelson & Edward Morley Drehbarer

Mehr

Zusammenfassung: Lichtgeschwindigkeit m/s per Definition! Das ist eigentlich Definition des Meters:

Zusammenfassung: Lichtgeschwindigkeit m/s per Definition! Das ist eigentlich Definition des Meters: Zusammenfassung: Lichtgeschwindigkeit c 299.792.458 m/s per Definition! Das ist eigentlich Definition des Meters: Einsteins Postulate: 1) Relativitätsprinzip: (Alle) IS sind für Beschreibung (aller) physikalischen

Mehr

2.1 Das Ereignisintervall, die Eigenzeit

2.1 Das Ereignisintervall, die Eigenzeit Kapitel 2 Begriffe und Konzepte 2.1 Das Ereignisintervall, die Eigenzeit Wir wollen nun im Prinzip die Bewegung eines Körpers unter Einwirkung der Schwerkraft untersuchen und suchen deshalb in der Raumzeit

Mehr

Wir wollen zunächst die fundamentalen Feldgleichungen der Elektrostatik. roth = j

Wir wollen zunächst die fundamentalen Feldgleichungen der Elektrostatik. roth = j 208 4. Elektrodynamik 4 Elektrodynamik Die Kapitel 2 und 3 haben gezeigt, dass sich elektrostatische und magnetostatische Probleme völlig unabhängig voneinander behandeln lassen. Gewisse formale Analogien

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 7 11. Mai 2010 Kapitel 8. Vektoren Definition 76. Betrachten wir eine beliebige endliche Anzahl von Vektoren v 1, v 2,..., v m des R n, so können

Mehr

Kapitel 18. Spezielle Relativitätstheorie Einleitung

Kapitel 18. Spezielle Relativitätstheorie Einleitung Kapitel 18 Spezielle Relativitätstheorie Wir werden im Kap. 19 die Lorentz-Invarianz der Maxwell-Gleichungen nachweisen. Historisch ist dieses vor der Entwicklung der relativistischen Mechanik geschehen.

Mehr

Elektrodynamische Wellen

Elektrodynamische Wellen Elektrodynamische Wellen Hannah Vogel 23.01.2017 Hannah Vogel Elektrodynamische Wellen 23.01.2017 1 / 33 Inhaltsverzeichnis 1 Elektrische und Magnetische Kräfte und Felder 2 Die Maxwell schen Gleichungen

Mehr

7. Elektromagnetische Wellen (im Vakuum)

7. Elektromagnetische Wellen (im Vakuum) 7. Elektromagnetische Wellen (im Vakuum) Wir betrachten das elektromagnetische Feld bei Abwesenheit von Ladungen und Strömen und untersuchen die Lösungen der Maxwellschen Gleichungen. 7.1 Wellengleichungen

Mehr

Felder und Wellen. Musterlösung zur 11. Übung

Felder und Wellen. Musterlösung zur 11. Übung Felder und Wellen WS 218/219 Musterlösung zur 11. Übung 26. Aufgabe a) Die Welle breitet sich im Vakuum aus, deshalb gilt ρ =,j =. Die zeitabhängigen Maxwellgleichungen im Vakuum (µ = µ, ε = ε ) lauten

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

Allgemeine Relativitätstheorie und Quantentheorie

Allgemeine Relativitätstheorie und Quantentheorie Allgemeine Relativitätstheorie und Quantentheorie Der Zusammenhang zwischen Gravitation und den Rest der Grundkräfte in komplexen Raum von 19. Januar 2012 bis? Fachbereich theoretische Physik/Mathematik

Mehr

E in einfacher Beweis für die T rägheit der E nergie.

E in einfacher Beweis für die T rägheit der E nergie. download unter www.biologiezentrum.at E in einfacher Beweis für die T rägheit der E nergie. Von Philipp Frank. (Vortrag, gehalten am 6. Dezember 1922 in der physikalischen Fachgruppe des,,lotos.) Die Aussage

Mehr

Theoretische Physik C Elektrodynamik

Theoretische Physik C Elektrodynamik Universität Karlsruhe (TH WS 27/8 Theoretische Physik C Elektrodynamik V: Prof Dr D Zeppenfeld, Ü: Dr S Gieseke Klausur Nr 2 Name/Matrikelnummer/Übungsgruppe: 2 3 4 Σ Aufgabe : Vergütungsschicht 4] Die

Mehr

13. Relativitätstheorie

13. Relativitätstheorie Inhalt 13. Relativitätstheorie 13.1 Addition von Geschwindigkeiten 13.2 Zeitdilatation 13.33 Längenkontraktion kti 13.4 Relativistischer Impuls 13.5 Relativistische Energie 13.6 Allgemeine Relativitätstheorie

Mehr

Anmerkungen zur Speziellen Relativitätstheorie

Anmerkungen zur Speziellen Relativitätstheorie Mitteilung sd05211, Mai 2010 1 Anmerkungen zur Speziellen Relativitätstheorie Inhalt 1. Übersicht 1 2. Physikalischer Teil 3 2.1. Prinzipien....................... 3 2.2. Inertialsysteme....................

Mehr

T1: Theoretische Mechanik, SoSe 2016

T1: Theoretische Mechanik, SoSe 2016 T1: Theoretische Mechanik, SoSe 2016 Jan von Delft http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik Newtonsche Sätze (Originalformulierung) 1. Jeder Körper verharrt in seinem

Mehr

Experimentalphysik E1

Experimentalphysik E1 Eperimentalphysik E Schwerpunktssystem Schwerpunktssatz, Zwei-Körper Systeme:reduzierte Masse Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/inde.html 0. Dez. 06 ct

Mehr

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur II - Aufgaben und Lösungen Theoretischen Physik II SS 007 Klausur II - Aufgaben und Lösungen Aufgabe Hohlleiter Gegeben sei ein in z-richtung unendlich langer, gerader Hohlleiter (Innenradius R/3, Außenradius R), der einen Stromfaden

Mehr

Magnetostatik. Kapitel Problemstellung. 3.2 Langer gerader Draht

Magnetostatik. Kapitel Problemstellung. 3.2 Langer gerader Draht Kapitel 3 Magnetostatik 3.1 Problemstellung In der Magnetostatik betrachten wir das Magnetfeld ~ B = ~ r ~ A,dasvoneiner gegebenen zeitunabhängigen Stromverteilung ~j (~r ) produziert wird. Die Feldlinien

Mehr

Grundlagen der Physik 1 Mechanik und spezielle Relativität

Grundlagen der Physik 1 Mechanik und spezielle Relativität Grundlagen der Physik 1 Mechanik und spezielle Relativität 09. 12. 2005 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 1/30 Weihnachtsvorlesung (c) Ulm

Mehr

Grundideen der allgemeinen Relativitätstheorie

Grundideen der allgemeinen Relativitätstheorie Grundideen der allgemeinen Relativitätstheorie David Moch La Villa 2006 Inhalt Newtons Physik und ihr Versagen Einsteins Lösung von Raum und Zeit: Die spezielle Relativitätstheorie Minkowskis Vereinigung

Mehr

Einführung in die Elektrodynamik

Einführung in die Elektrodynamik Einführung in die Elektrodynamik 0.1 Elektrische Ladung Während in der Mechanik die Eigenschaft Masse im Vordergrund steht, ist die Ladung von Massenpunkten Ausgangspunkt der Elektrodynamik. Sie besitzt

Mehr

E2: Wärmelehre und Elektromagnetismus 22. Vorlesung

E2: Wärmelehre und Elektromagnetismus 22. Vorlesung E2: Wärmelehre und Elektromagnetismus 22. Vorlesung 05.07.2018 Heute: - Verschiebestrom - Maxwellgleichungen - Wellengleichungen - Elektromagnetische Wellen Barlow-Rad Prof. Dr. Jan Lipfert https://xkcd.com/273/

Mehr

8. Relativistische Mechanik

8. Relativistische Mechanik 8. Relativistische Mechanik 8.1 Einleitung Einige experimentelle Tatsachen zeigen, dass die Galileiinvariante Mechanik nur begrenzte Gültigkeit haben kann. Konstanz der Lichtgeschwindigkeit Die Invarianz

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Relativitätstheorie. in elementarer Darstellung mit Aufgaben und Lösungen. Prof. Dr. rer. nat. habil. H. Melcher. Vierte, neubearbeitete Auflage

Relativitätstheorie. in elementarer Darstellung mit Aufgaben und Lösungen. Prof. Dr. rer. nat. habil. H. Melcher. Vierte, neubearbeitete Auflage Relativitätstheorie in elementarer Darstellung mit Aufgaben und Lösungen Prof. Dr. rer. nat. habil. H. Melcher Vierte, neubearbeitete Auflage VEB Deutscher Verlag der Wissenschaften Berlin 1974 Inhaltsverzeichnis

Mehr