Lorentz-Transformation

Größe: px
Ab Seite anzeigen:

Download "Lorentz-Transformation"

Transkript

1 Lorentz-Transformation Aus Sicht von Alice fliegt Bob nach rechts. Aus Sicht von Bob fliegt Alice nach links. Für t = t' = 0 sei also x(0) = x'(0) = Lichtblitz starte bei t = t' = 0 in und erreiche etwas später Punkt P. A sagt: B' sagt: Gesucht: Beziehung zwischen Koordinaten von P laut A und B', die konsistent ist mit (2),(3) Die Beziehung zwischen (x,y,z,t) und (x',y',z',t') muss linear sein, denn ansonsten würden gerade gleichförmig durchlaufene (und damit kräftefreie) Teilchenbahnen in A nicht auf solche in B' abgebildet werden. Laut Skizze muss gelten: Konsequenz für lineare Transformation: denn in A findet sich immer eine zur y-achse (oder z-achse) parallele Achse, die mit der momenten y'-achse (oder z'-achse) in B' in Deckung gebracht werden kann. (3) in (4) eingesetzt zeigt, dass t' linear von t und x (!) abhängt. Ansatz: Aufgabe des Postulats der absoluten Zeit! Bei x=0 gilt einerseits: andrerseits: (7) = (8):

2 (22.3), (22.9) eingesetzt in (21.3): Umgestellt: Aber, es gilt auch (21.2): Koeffizientenvergleich (4), (5): [konsistent mit (7)] In (7,8) wählen wir die positive Wurzel, denn für v = 0 sollte (22.3) die Identität liefern: Zusammengefasst: Transformation für "Lorentz-Boost" lautet Matrix- Notation: mit Im "nicht-relativistischen Limes": reduziert die Lorentz-Transformation zur Galilei-Transformation:

3 Inverse Lorentz- Transformation zu ist: mit Check: denn Ferner gilt: Rapidität Die Identität erinnert an und legt folgende Parametrisierung nahe: mit der Identifikation: Definition: "Rapidität" Bei Geschwindigkeiten v sehr nahe bei c ist eine praktischere Größe als Kann gezeigt werden: Rapiditäten sind unter relativistscher Geschwindigkeitsaddition additiv: Falls (SR28,29) dann gilt

4 Lorentz-Gruppe: "Invariantes Interval": Bei Herleitung der Transformationsgleichungen für Lorentz-Boost haben wir gefordert: Allgemeiner gilt: Lorentz-Gruppe = alle linearen vier-dimensionalen Transformationen, welche invariant lassen alle Lorentz-Boosts für beliebig orientierte Geschwindigkeiten alle räumlichen Drehungen Räumliche Drehungen bilden eine Untergruppe der Lorentz-Gruppe, die invariant lassen. Sie haben die Form: Es gilt: mit Drehung x Drehung = Drehung. Boost x Boost = Boost x Drehung. Boost x Boost = Boost nur falls Relativgeschwindigkeiten beider Boosts gleichgerichtet sind Produkt von gleichgerichteten Boosts: relativ zu A relativ zu B' B' bewegt sich relativ zu A mit Geschwindigkeit. C'' bewegt sich relativ zu B' mit Geschwindigkeit alle gleichgerichtet. C'' bewegt sich relativ zu A mit Geschwindigkeit

5 Es muss gelten: mit etc. Für gilt "Relativistische Geschwindigkeits- Addition" Die größtmögliche Geschwindigkeit ist die Lichtgeschwindigkeit Allgemeine Lorentz-Transformation wird durch 6 Parameter parametrisiert: 3 für Boost, 3 für Rotation (z.b. Euler-Winkel). Jede Lorentz-Transformation lässt sich schreiben als: R1 rotiert das Koordinatensystem von A so, dass der Geschwindigkeitsvektor mit dem sich B' bezüglich A bewegt, in die neue positive x-richtung zeigt. Falls ergibt sich ein reiner Lorentz-Boost, mit der Form: dyadisches Produkt Für reduziert (2) zu (24.1).

6 Minkowski-Raum Index, nicht Exponent! Vierer-Vektor: beschreibt ein "Ereignis" im Raum-Zeit-Kontinuum ( = "Minkowski-Raum") "Weltlinie" = Trajektorie eines Punktteilchens im Minkowski-Raum Raum-Zeit-Diagram oder Minkowski-Diagram: ungleichförmig bewegtes Teilchen ruhendes Teilchen Photon-Bahn hat Steigung = 1 Wir beschränken uns auf die Koordinaten ct und x. Wie liegen die Linien mit ct'=0 und x'=0 im Minkowski-Diagram? Steigung = x'-achse: ct'-achse: Steigung = Winkel von x'-achse relativ zur x-achse: Winkel von ct'-achse relativ zur ct-achse: Wo liegen Einheitsvektoren von B' aus Sicht von A?

7 Invariantes Interval: Laut (27.3) gilt: Folglich sind sich A und B' einig: beschreibt Ausbreitung des Lichtpulses Das Interval in A zwischen zwei Punkten, nämlich ist "raumartig" bzw. "zeitartig", falls ein IS B' besteht, für das es folgende Form annimmt: raumartig: Zukunft Lichtkegel Lichtkegel zeitartig zeitartig: raumartig raumartig raumartig raumartig zeitartig Vergangenheit Längenkontraktion Vergleiche räumliche Abstände zwischen zwei Ereignissen, aus Sicht von A und B': A-Länge: räumlicher Abstand zwischen zwei gleichzeitigen Ereignissen. B'-Länge: räumlicher Abstand zwischen zwei gleichzeitigen Ereignissen. Maßstab habe Ruhelänge ("Eigenlänge") Maßstab ruhe in B': Länge laut A: Maßstab ruhe in A: Länge laut B': "Längenkontraktion": bewegte Maßstäbe schrumpfen! Grund: "gleichzeitig" in A "gleichzeitig" in B'

8 Längenkontraktion aus Sicht von A: IS A und IS B', mit relativer Geschw. enthalten identische Maßstäbe, je mit Ruhelänge L. Wie lang ist B'-Maßstab, laut A? A macht Fotos von Endpunkten des B-Stabs, entlang des A-Stabs, zur selben A-Zeit, z.b. bei A-Stab: linkes Ende bei P: B'-Stab: linkes Ende bei P: rechtes Ende bei Q: rechtes Ende bei R: Laut A, bei t = 0: Bewegte Maßstäbe schrumpfen: obwohl bei P: linkes B'-Ende liegt bei linkem A-Ende gilt bei R: rechtes B'-Ende liegt vor rechtem A-Ende laut A ist B'-Stab kürzer als A-Stab Das ist nicht paradox, denn zwei Ereignesse (P und R) die laut A gleichzeitig sind, sind laut B' nicht gleichzeitig: R1 (hinteres früher): laut A: Bewegte B'-Uhren sind asynchron: R2 (vordere Uhr geht nach): Längenkontraktion aus Sicht von B': IS A und IS B', mit relativer Geschw. enthalten identische Maßstäbe, je mit Ruhelänge L. Wie lang ist A-Maßstab, laut B'? B' macht Fotos von Endpunkten des A-Stabs, entlang des B'-Stabs, zur selben B'-Zeit, z.b. bei B'-Stab: linkes Ende bei P: A-Stab: linkes Ende bei P: rechtes Ende bei S: rechtes Ende bei T: Laut B', bei t = 0: Bewegte Maßstäbe schrumpfen: obwohl bei P: linkes A-Ende liegt bei linkem B-Ende gilt bei T: rechtes A-Ende liegt vor rechtem B'Ende Das ist nicht paradox, denn zwei Ereignesse (P und T) die laut B' gleichzeitig sind, sind laut A nicht gleichzeitig: R1 (hinteres früher): laut B' ist A-Stab kürzer als B'-Stab laut B': Bewegte A-Uhren sind asynchron: R2 (vordere Uhr geht nach):

9 Zeitdilatationkontraktion Vergleiche zeitliche Abstände zwischen zwei Ereignissen, aus Sicht von A und B': A-Zeit: zeitlicher Abstand zwischen zwei gleichortigen Ereignissen. B'-Zeit: zeitlicher Abstand zwischen zwei gleichortigen Ereignissen. Uhr habe Ruhezeit ("Eigenzeit") Uhr ruhe in B': Zeitdauer laut A: Uhr ruhe in A: Zeitdauer laut B': "Zeitdilatation": bewegte Uhren gehen langsamer! Grund: "gleichortig" in A "gleichortig" in B' Zeitdilatation aus Sicht von B': Betrachte ein Reihe von identischen Sanduhren in B', und eine Sanduhr in A, je mit Ruheauslaufzeit ("Eigenzeit"). Was ist A-Auslaufzeit, laut B'? B' macht Fotos von B-Uhren, sowie A-Uhr an festem A-Ort, z.b. A-Uhr voll bei P: A-Uhr leer bei Q: B'-Uhr voll bei P: B'-Uhr leer bei R: laut B', bei x = 0: bewegte Uhren gehen langsamer obwohl bei P gilt: B'-Uhr und A-Uhr, beide voll, starten gleichzeitig gilt ferner: B'-Uhr ist bereits bei R leer, aber A-Uhr wird erst danach, bei Q, leer A-Uhren gehen langsamer als B'-Uhren!

10 Zeitdilatation aus Sicht von A: Betrachte ein Reihe von identischen Sanduhren in A, und eine Sanduhr in B', je mit Ruheauslaufzeit ("Eigenzeit") Was ist B'-Auslaufzeit, laut A? A macht Fotos von A-Uhren, sowie einer B'-Uhr an festem B'-Ort, z.b. B'-Uhr voll bei P: B'-Uhr leer bei S: A-Uhr voll bei P: A-Uhr leer bei T: laut A, bei x' = 0: bewegte Uhren gehen langsamer obwohl bei P gilt: A-Uhr und B'-Uhr, beide voll, starten gleichzeitig gilt ferner: A-Uhr ist bereits bei T leer, aber B'-Uhr wird erst danach, bei S, leer B'-Uhren gehen langsamer als A-Uhren! Zusammenfassung: Längenkontraktion, Zeitdilatation Längenkontraktion: Bewegte Maßstäbe schrumpfen: Zeitdilatation: Bewegte Uhren gehen langsamer

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand

Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche

Mehr

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie

Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Michael Mittermair 29. August 2013 1 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 3 1.1 Warum heißt das so?.......................

Mehr

I.2.3 Minkowski-Raum. ~r x 3 benutzt.

I.2.3 Minkowski-Raum. ~r x 3 benutzt. I.2 Lorentz-Transformationen 9 I.2.3 Minkowski-Raum Wegen der Absolutheit von Zeit und Raum in der klassischen Mechanik faktorisiert sich die zugehörige nicht-relativistische Raumzeit in das Produkt einer

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen

Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/201 Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12 (P0) Das Garagen-Paradoxon Präsenzübungen Es kann selbstverständlich mit der Beschreibung

Mehr

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit

beschrieben wird. B' sei ein IS das derjenigen Weltlinie folgt, die P und Q in gleichförmiger Bewegung verbindet. Aus Sicht von A folgt B' Bahn mit Minkowski-Wegelement und Eigenzeit Invariantes Wegelement entlang einer Bahnkurve einesteilchens im IS A: immer "Instantan mitlaufendes" Inertialsystem B' sei so gewählt, dass es zum Zeitpunkt t dieselbe

Mehr

24 Minkowskis vierdimensionale Raumzeit

24 Minkowskis vierdimensionale Raumzeit 24 Minkowskis vierdimensionale Raumzeit Der deutsche Mathematiker Hermann Minkowski (1864 1909) erkannte, daß sich die von Albert Einstein 1905 entwickelte spezielle Relativitätstheorie am elegantesten

Mehr

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie

Ferienkurs Elektrodynamik WS11/12 - Elektrodynamik und spezielle Relativitätstheorie Ferienkurs Elektrodynamik WS11/1 - Elektrodynamik und spezielle Relativitätstheorie Isabell Groß, Martin Ibrügger, Markus Krottenmüller. März 01 TU München Inhaltsverzeichnis 1 Minkowski-Raum und Lorentz-Transformation

Mehr

7.3 Lorentz Transformation

7.3 Lorentz Transformation 26 KAPITEL 7. SPEZIELLE RELATIVITÄTSTHEORIE 7.3 Lorent Transformation In diesem Abschnitt sollen die Transformationen im 4-dimensionalen Minkowski Raum betrachtet werden. Dabei wollen wir uns auf solche

Mehr

Spezielle Relativitätstheorie (Einstein, 1905)

Spezielle Relativitätstheorie (Einstein, 1905) Spezielle Relativitätstheorie (Einstein, 1905) A. Einstein, 1905, Annalen der Physik: "Zur Elektrodynamik bewegter Körper" http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf

Mehr

Grundlegende Aspekte der speziellen Relativitätstheorie

Grundlegende Aspekte der speziellen Relativitätstheorie Grundlegende Aspekte der speziellen Relativitätstheorie Theoretische Physik Universität Ulm 89069 Ulm Kolloquium für Physiklehrende Universität Ulm, 10. Feb. 2009 Inhalt Einleitung Lorentz-Transformation

Mehr

Ferienkurs der Experimentalphysik II Musterlösung Übung 4

Ferienkurs der Experimentalphysik II Musterlösung Übung 4 Ferienkurs der Experimentalphysik II Musterlösung Übung 4 Michael Mittermair 9. August 013 1 Aufgabe 1 Ein Elektron hat die Ruhemasse m 0 = 9, 11 10 31 kg. a) Berechnen Sie die Ruheenergie in Elektronenvolt

Mehr

Aber gerade in diesem Punkt ist Newton besonders konsequent.

Aber gerade in diesem Punkt ist Newton besonders konsequent. 2.1.Lorentz-Transformationen Aus Einstein, Mein Weltbild 1.) Trotzdem man allenthalben das Streben Newtons bemerkt, sein Gedankensystem als durch die Erfahrung notwendig bedingt hinzustellen und möglichst

Mehr

Experimentalphysik E1

Experimentalphysik E1 Eperimentalphysik E Schwerpunktssystem Schwerpunktssatz, Zwei-Körper Systeme:reduzierte Masse Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/inde.html 0. Dez. 06 ct

Mehr

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Karl-Heinz Lotze und Stefan Völker, Jena 21.07.15 Einsteins Postulate Einstein stellte die folgenden beiden Prinzipien an die Spitze seiner

Mehr

Zusammenfassung: Lichtgeschwindigkeit m/s per Definition! Das ist eigentlich Definition des Meters:

Zusammenfassung: Lichtgeschwindigkeit m/s per Definition! Das ist eigentlich Definition des Meters: Zusammenfassung: Lichtgeschwindigkeit c 299.792.458 m/s per Definition! Das ist eigentlich Definition des Meters: Einsteins Postulate: 1) Relativitätsprinzip: (Alle) IS sind für Beschreibung (aller) physikalischen

Mehr

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg

Geometrie der Maxwell-Theorie. Max Camenzind Senioren Uni Würzburg Geometrie der Maxwell-Theorie Max Camenzind Senioren Uni Würzburg Die Themen Die Geometrisierung der Speziellen Relativität durch Hermann Minkowski im Jahre 1908. Die kausale Struktur der RaumZeit. Die

Mehr

2. Translation und Rotation

2. Translation und Rotation 2. Translation und Rotation 2.1 Rotation eines Vektors 2.2 Rotierendes ezugssystem 2.3 Kinetik Prof. Dr. Wandinger 2. Relativbewegungen Dynamik 2 2.2-1 2.1 Rotation eines Vektors Gesucht wird die zeitliche

Mehr

Starrer Körper: Drehimpuls und Drehmoment

Starrer Körper: Drehimpuls und Drehmoment Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und

Mehr

Probestudium Sommersemester 2010, Theoriekurs

Probestudium Sommersemester 2010, Theoriekurs Probestudium Sommersemester 2010, Theoriekurs 2 Vorlesungen zur Einführung in die spezielle Relativitätstheorie H. W. Diehl Fakultät für Physik, U. Duisburg-Essen 26. Juni und 3. Juli 2010 Einführung Physik:

Mehr

Inhaltsverzeichnis. Vorwort. Liste der verw endeten Sym bole. 1 N ew ton sche Mechanik 1. 2 Spezielle R elativitätstheorie 15 CM CO ^

Inhaltsverzeichnis. Vorwort. Liste der verw endeten Sym bole. 1 N ew ton sche Mechanik 1. 2 Spezielle R elativitätstheorie 15 CM CO ^ Inhaltsverzeichnis Vorwort Liste der verw endeten Sym bole V X V 1 N ew ton sche Mechanik 1 1.1 Die Grundgleichungen der Newton schen Mechanik... 1 1.1.1 Gravitationspotential und K raft... 1 1.1.2 Bewegungsgleichung

Mehr

Einsteins Relativitätstheorie

Einsteins Relativitätstheorie Dr. Michael Seniuch Astronomiefreunde 2000 Waghäusel e.v. Einsteins Relativitätstheorie 16. April 2010 Inhalt: I. Raum, Zeit und Geschwindigkeit im Alltag II. Die Spezielle Relativitätstheorie III. Die

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Die SRT behandelt Ereignisse, die von einem Inertialsystem (IS) beobachtet werden und gemessen werden. Dabei handelt es sich um Bezugssyteme, in denen das erste Newton sche Axiom gilt. Die Erde ist strenggenommen

Mehr

A E t. Teil 1 25/ Klassische Theoretische Physik Lehramt (220 LA), WS 2014/15. Thomas Tauris AIfA Bonn Uni. / MPIfR

A E t. Teil 1 25/ Klassische Theoretische Physik Lehramt (220 LA), WS 2014/15. Thomas Tauris AIfA Bonn Uni. / MPIfR F F A E t Teil 1 5/11-014 T Klassische Theoretische Physik Lehramt (0 LA), WS 014/15 Thomas Tauris AIfA Bonn Uni. / MPIfR Kapitel 6+7 + Anhang C Weiterführende Literatur: - Introduction to Special Relatiity

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 5

Grundlagen der Physik 1 Lösung zu Übungsblatt 5 Grundlagen der Physik Lösung zu Übungsblatt 5 Daniel Weiss 8. November 2009 Inhaltsverzeichnis Aufgabe - Aberation des Lichtes a) Winkelbeziehungen................................ b) Winkeldierenz für

Mehr

IX Relativistische Mechanik

IX Relativistische Mechanik IX Relativistische Mechanik 34 Relativitätsprinzip Die bisher behandelte Newtonsche Mechanik gilt nur für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind. Im Teil IX stellen wir die

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

Kapitel 2. Lorentz-Transformation

Kapitel 2. Lorentz-Transformation Kapitel 2 Lorentz-Transformation Die Galilei-Transformation aus Abschnitt 1.7 wurde durch eine Vielzahl von Experimenten erfolgreich überprüft und gehört zu den Grundlagen der klassischen Mechanik. Die

Mehr

Spezielle Relativitätstheorie. Die ersten Gedankenexperimente: Zeit-Dilatation und Lorentz-Kontraktion. Einsteins Gedanken-Experiment

Spezielle Relativitätstheorie. Die ersten Gedankenexperimente: Zeit-Dilatation und Lorentz-Kontraktion. Einsteins Gedanken-Experiment Spezielle Relativitätstheorie Die ersten Gedankenexperimente: Zeit-Dilatation und Lorentz-Kontraktion Vorlesung von Prof. Dr. Cornelis ( Kees ) Dullemond in Zusammenarbeit mit Elena Kozlikin, Benjamin

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

Kapitel 18. Spezielle Relativitätstheorie Einleitung

Kapitel 18. Spezielle Relativitätstheorie Einleitung Kapitel 18 Spezielle Relativitätstheorie Wir werden im Kap. 19 die Lorentz-Invarianz der Maxwell-Gleichungen nachweisen. Historisch ist dieses vor der Entwicklung der relativistischen Mechanik geschehen.

Mehr

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3

Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2011/12 Vorlesung 3 Differenziation und Integration von Vektorfunktionen Der Ortsvektor: Man kann einen Punkt P im Raum eindeutig durch die

Mehr

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern.

Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern. II Spezielle Relativitätstheorie II.1 Einleitung Mechanik für v c (Lichtgeschwindigkeit: 3x10 8 m/s) Spezielle Relativitätstheorie: Raum und Zeit in Systemen, die sich gegeneinander mit konstanter Geschwindigkeit

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x).

Jede symmetrische Bilinearform b definiert eine quadratische Form q durch. q(x) := b(x, x). 1 Kapitel 1 Clifford-Algebren 1 Innere Produkte Sei k {R, C}, V stets ein endlich-dimensionaler k-vektorraum. Fehlende Beweise finden sich in der Literatur ([Art1], [Bou1], [Brie], [Cohn]). Definition.

Mehr

Vorlesung Theoretische Mechanik

Vorlesung Theoretische Mechanik Julius-Maximilians-Universität Würzburg Vorlesung Theoretische Mechanik Wintersemester 17/18 Prof. Dr. Johanna Erdmenger Vorläufiges Skript 1 (Zweite Vorlesung, aufgeschrieben von Manuel Kunkel, 23. 10.

Mehr

Minkowski-Geometrie in der Schule. Michael Bürker

Minkowski-Geometrie in der Schule. Michael Bürker Minkowski-Geometrie in der Schule Michael Bürker buerker@online.de Gliederung Weg-Zeit-Diagramme Grundprinzipien der speziellen Relativitätstheorie Drei Symmetrieprinzipien Der relativistische Faktor Lorentz-Kontraktion

Mehr

Trägheitstensor einer kontinuierlichen Massenverteilung

Trägheitstensor einer kontinuierlichen Massenverteilung Trägheitstensor einer kontinuierlichen Massenverteilung Satz: Es gilt wieder: (vergleiche 10.2) Geschw. eines Volumenelements bei bezüglich Ursprung v. IS. Analog zu (3.1), (3.3): (3) in (2): Wähle Ursprung

Mehr

5. Raum-Zeit-Symmetrien: Erhaltungssätze

5. Raum-Zeit-Symmetrien: Erhaltungssätze 5. Raum-Zeit-Symmetrien: Erhaltungssätze Unter Symmetrie versteht man die Invarianz unter einer bestimmten Operation. Ein Objekt wird als symmetrisch bezeichnet, wenn es gegenüber Symmetrieoperationen

Mehr

Übung 8 : Spezielle Relativitätstheorie

Übung 8 : Spezielle Relativitätstheorie Universität Potsdam Institut für Physik Vorlesung Theoretische Physik I LA) WS 13/14 M. Rosenblum Übung 8 : Spezielle Relativitätstheorie Besprechung am Montag, dem 03.0.014) Aufgabe 8.1 Zeigen Sie die

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

I.3 Inertialsysteme. Galilei-Transformationen

I.3 Inertialsysteme. Galilei-Transformationen I.3 Inertialsysteme. Galilei-Transformationen 17 I.3 Inertialsysteme. Galilei-Transformationen Das erste und das zweite Newton sche Gesetz beruhen auf der Existenz von besonderen Bezugssystemen, nämlich

Mehr

Kräftefreier symmetrischer Kreisel

Kräftefreier symmetrischer Kreisel Kräftefreier symmetrischer Kreisel Grannahmen: Symmetrieachse = "" Winkelgeschwindigkeit im körperfesten System: Euler-Gleichungen: [per Konvention wählen wir Richtung von so, dass mit für harm. Osz. Lösung:

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

Allgemeine Relativitätstheorie

Allgemeine Relativitätstheorie Allgemeine Relativitätstheorie Bearbeitet von Torsten Fließbach 1. Auflage 212. Buch. x, 382 S. Hardcover ISBN 978 3 8274 331 1 Format (B x L): 16,8 x 24 cm Gewicht: 823 g Weitere Fachgebiete > Physik,

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner Philipp Köhler

Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner Philipp Köhler Vorträge gehalten im Rahmen der L2 Vorlesung von Prof. R.A. Bertlmann Jänner 2012 Philipp Köhler Übersicht Newton sche Mechanik und Galileitransformation Elektrodynamik Äther und das Michelson Morley Experiment

Mehr

1. Das Stabelement. Prof. Dr. Wandinger 1. Fachwerke FEM L x E u 1. u 2

1. Das Stabelement. Prof. Dr. Wandinger 1. Fachwerke FEM L x E u 1. u 2 Ein Fachwerk besteht aus einzelnen Stäben, die in den Knoten gelenkig miteinander verbunden sind. Für jeden Stab besteht eine lineare Beziehung zwischen den Verschiebungen seiner Knoten und den Kräften

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H

Formelsammlung. Lagrange-Gleichungen: q k. Zur Koordinate q k konjugierter Impuls: p k = L. Hamilton-Funktion: p k. Hamiltonsche Gleichungen: q k = H Formelsammlung Lagrange-Gleichungen: ( ) d L dt q k L q k = 0 mit k = 1,..., n. (1) Zur Koordinate q k konjugierter Impuls: p k = L q k. (2) Hamilton-Funktion: n H(q 1,..., q n, p 1,..., p n, t) = p k

Mehr

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

Die Spezielle Relativitätstheorie

Die Spezielle Relativitätstheorie 2 Die Spezielle Relativitätstheorie Mithilfe des berühmten Michelson-Morley-Experiments wurde entdeckt, dass die Geschwindigkeit des Lichts in allen Inertialsystemen den gleichen Wert hat. 1 Einstein war

Mehr

Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'.

Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'. Bewegte Bezugsysteme Fragestellung: Gegeben eine Bahnkurve bezüglich eines raumfesten Koordinatensystems (KS) K, beschreibe die Bewegung bezüglich eines bewegten KS K'. Im Allgemeinen weist K' zwei unterschiedliche

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Universität Leipzig, Fakultät für Physik und Geowissenschaften 12 Relativitätstheorie Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 06. Juli 2009 Die Relativitätstheorie besteht aus

Mehr

Teil I. Spezielle Relativitätstheorie

Teil I. Spezielle Relativitätstheorie Teil I Spezielle Relativitätstheorie 1 Kapitel 1 Historischer Hintergrund und Grundlagen Die spezielle Relativitätstheorie (SRT) wird oft mit der Modifikation der Newton schen Mechanik in Verbindung gebracht,

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommersemester 2015 Gabriele Semino, Alexander Wolf, Thomas Maier Vorlesung 4 Elektromagnetische Wellen und spezielle Relativitätstheorie Nach dem Skript "Konzepte der Experimentalphysik

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild:

. Name motiviert durch (hängt von Einbettung in höher dimensionalen Raum ab) folgendes Bild: 1.4 Vektoren Jeder Vektor (Vierer-Vektor) lebt an einem bestimmten Punkt der Raumzeit. Dieser lässt sich bei Krümmung nicht einfach verschieben. Betrachte deshalb Menge alle Vektoren an einem Punkt p =

Mehr

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra

Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Spezielle Relativitätstheorie mit Zirkel, Lineal und GeoGebra Handout zur Konstruktion von Raumzeit-Diagrammen mit GeoGebra Stefan Völker und Karl-Heinz Lotze, Jena Stefan Völker AG Fachdidaktik der Physik

Mehr

Allgemeine Mechanik Musterlösung 1.

Allgemeine Mechanik Musterlösung 1. Allgemeine Mechanik Musterlösung. HS 24 Prof. Thomas Gehrmann Übung. Kraftfelder und Linienintegrale. a) Gegeben sei das Kraftfeld F, 2 ). Berechnen Sie das Linienintegral von r, ) nach r 2 2, ) entlang

Mehr

Raum, Zeit, Materie - Elemente der Relativitätstheorie

Raum, Zeit, Materie - Elemente der Relativitätstheorie Raum, Zeit, Materie - Elemente der Relativitätstheorie Ziel: Erarbeitung einer wissenschaftlichen Lernkartei die wesentliche Inhalte und mathematische Beschreibungen der entsprechenden physikalischen Phänomene

Mehr

Spezielle Relativitätstheorie. Schein oder Wirklichkeit

Spezielle Relativitätstheorie. Schein oder Wirklichkeit Spezielle Relatiitätstheorie Schein oder Wirklichkeit Spezielle Relatiitätstheorie im Widerspruch Es dauerte bekanntlich nahezu 40 Jahre bis zur ersten experimentellen Bestätigung der Speziellen Relatiitätstheorie.

Mehr

43 Vertiefendes zur SRT

43 Vertiefendes zur SRT Vertiefung und Kompetenzüberprüfung 43 Vertiefendes zur SRT 1 43 Vertiefendes zur SRT Vertiefung und Kompetenzüberprüfung Martin Apolin (Stand August 2012) Relativistischer Dopplereffekt A4 In der Tabelle

Mehr

T1: Theoretische Mechanik, SoSe 2016

T1: Theoretische Mechanik, SoSe 2016 T1: Theoretische Mechanik, SoSe 2016 Jan von Delft http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_16/t1_theor_mechanik Newtonsche Sätze (Originalformulierung) 1. Jeder Körper verharrt in seinem

Mehr

Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016

Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016 Kausalität Seminar zur Lorentz Geometrie Jonas Haferkamp 9. Juni 2016 1 Einleitung Kausalität ist das Prinzip von Ursache und Wirkung. Um dieses Konzept zu formalisieren, ist offenbar ein sinnvoller Zeitbegriff

Mehr

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck:

V4.3 Rotation, Satz von Stokes. Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: V4.3 Rotation, Satz von Stokes Rotation: Vektorfeld: Definition: 'Rotation von ': (nur in d=3 Dimensionen definiert) Notationscheck: Erinnerung: Gradiententelder sind 'wirbelfrei': Für ein beliebiges (zweifach

Mehr

1.5 Relativistische Kinematik

1.5 Relativistische Kinematik 1.5 Relativistishe Kinematik 1.5.1 Lorentz-Transformation Grundlage: Spezielle Relativitätstheorie à In jedem Inertialsystem gelten die gleihen physikalishen Gesetze; Inertialsystem: System in dem das

Mehr

Klassische Mechanik. Ein Lehr- und Übungsbuch. John R. Taylor

Klassische Mechanik. Ein Lehr- und Übungsbuch. John R. Taylor Klassische Mechanik Ein Lehr- und Übungsbuch John R. Taylor Klassische Mechanik - PDF Inhaltsverzeichnis Klassische Mechanik Inhaltsverzeichnis Vorwort zur Originalausgabe Vorwort zur deutschen Ausgabe

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 2, Montag nachmittag Differentiation und Integration von Vektorfunktionen Der Ortsvektor: Man kann

Mehr

Spezielle Relativiätstheorie. F. Hassler

Spezielle Relativiätstheorie. F. Hassler Spezielle Relativiätstheorie F. Hassler 2014 ii Professor Dr. F. Hassler Institut für Quanteninformationstheorie RWTH Aachen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte vorbehalten c 2014.

Mehr

Anmerkungen zur Speziellen Relativitätstheorie

Anmerkungen zur Speziellen Relativitätstheorie Mitteilung sd05211, Mai 2010 1 Anmerkungen zur Speziellen Relativitätstheorie Inhalt 1. Übersicht 1 2. Physikalischer Teil 3 2.1. Prinzipien....................... 3 2.2. Inertialsysteme....................

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Kinematik des Massenpunktes Kinematik: Beschreibt die Bewegung von Körpern, ohne die zugrunde liegenden Kräfte zu berücksichtigen. Bezugssysteme Trajektorien Zeit Raum Bezugssysteme Koordinatensystem,

Mehr

Einführung in die Robotik. Jianwei Zhang

Einführung in die Robotik. Jianwei Zhang - Jianwei Zhang zhang@informatik.uni-hamburg.de Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 20. April 2010 J. Zhang 63 Gliederung Allgemeine Informationen

Mehr

1 Einleitung: Die Lichtgeschwindigkeit

1 Einleitung: Die Lichtgeschwindigkeit 1 Einleitung: Die Lichtgeschwindigkeit In der zweiten Hälfte des 19. Jahrhunderts wurde die elektromagnetische Natur des Lichts erkannt (J. C. Maxwell, ca. 1870). Wir wollen die Argumentation kurz skizzieren.

Mehr

Wo ist eigentlich Gamma? - Die Mär vom Lorentzfaktor γ (Gemeinverständlich)

Wo ist eigentlich Gamma? - Die Mär vom Lorentzfaktor γ (Gemeinverständlich) Wo ist eigentlich Gamma? - Die Mär vom Lorentzfaktor γ (Gemeinverständlich) Gerd Termathe, Dipl.-Ing. gerd@termathe.net c Dezember 206 - Für Tobias - Abstract Es wird gezeigt, dass der Lorentzfaktor, Bestandteil

Mehr

Analytische Geometrie des Raumes

Analytische Geometrie des Raumes Analytische Geometrie des Raumes Als Begründer der analytischen Geometrie gilt René Descartes (Discours de la méthode). Seine grundliegende Idee bestand darin, geometrische Gebilde (Gerade, Kreis, Ellipse

Mehr

Spezielle Relativitätstheorie (Einstein, 1905)

Spezielle Relativitätstheorie (Einstein, 1905) Spezielle Relativitätstheorie (Einstein, 1905) A. Einstein, 1905, Annalen der Physik: "Zur Elektrodynamik bewegter Körper" http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf

Mehr

Nichtlokalität das Rätsel der Verschränkung

Nichtlokalität das Rätsel der Verschränkung Nichtlokalität das Rätsel der Verschränkung Spezielle Relativitätstheorie (A. Einstein, 1905) Wirkungen / Informationen können zwischen zwei Orten maximal mit der Vakuumlichtgeschwindigkeit (~300000 km/s)

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung

Mehr

Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation?

Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation? Warum ist die RAUMZEIT gekrümmt? Was ist eigentlich Gravitation? Was ist RAUMZEIT? z t 3 dimensionaler Raum y + Zeitachse x = 4 dimensionale RAUMZEIT Was ist RAUMZEIT? Zeitachse = t c http://www.ws5.com/spacetime

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( )

( ) sind. Für einen einzelnen. ( ) berechnet werden: ( ) 23 4 Abbildungen von Funktionsgraphen Der Graph zu einer gegebenen Funktion f ist die Menge aller ( ) sind. Für einen einzelnen Punkte, deren Koordinaten ; f () Punkt des Graphen gibt man einen Wert aus

Mehr

r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter

r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter 8 3. Darstellung der Geraden im Raum 3.. Parametergleichung der Geraden Die naheliegende Vermutung, dass eine Gerade des Raumes durch eine Gleichung der Form ax + by + cz +d = 0 beschrieben werden kann

Mehr

Relativität und Realität

Relativität und Realität Max Drömmer Relativität und Realität Zur Physik und Philosophie der allgemeinen und der speziellen Relativitätstheorie mentis PADERBORN Inhaltsverzeichnis Vorwort... 15 Einleitung... 17 Kapitel 1 Allgemeine

Mehr

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen

Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Einführung in den Symmetriebegriff und gruppentheoretische Grundlagen Stephanie Artmeier WS 0/ Inhaltsverzeichnis Einführung... Gruppen.... Beispiel gleichseitiges Dreieck... 3. Darstellung von Gruppen...

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

Vorlesung: Klassische Theoretische Physik I

Vorlesung: Klassische Theoretische Physik I Vorlesung: Klassische Theoretische Physik I M. Zirnbauer Institut für Theoretische Physik Universität zu Köln Sommersemester 2015 Contents 1 Newtonsche Mechanik 3 1.1 Affine und Euklidische Räume.............................

Mehr

2. Kinematik. Inhalt. 2. Kinematik

2. Kinematik. Inhalt. 2. Kinematik 2. Kinematik Inhalt 2. Kinematik 2.1 Grundsätzliche Bewegungsarten 2.2 Modell Punktmasse 2.3 Mittlere Geschwindigkeit (1-dimensional) 2.4 Momentane Geschwindigkeit (1-dimensional) 2.5 Beschleunigung (1-dimensional)

Mehr

2 Das Relativitätsprinzip und seine Folgen

2 Das Relativitätsprinzip und seine Folgen 2 Das Relativitätsprinzip und seine Folgen Kein Mensch wundert sich dabei darüber, daß man von einer Bewegung nichts bemerkt, auch dann nicht, wenn sie mit hoher Geschwindigkeit erfolgt. Wir schlendern

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 12. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 12. 06.

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Beispiel: Rollender Reifen mit

Beispiel: Rollender Reifen mit Beispiel: Rollender Reifen mit Kinetische Energie: Trägheitsmoment Potenzielle Energie: Zwangsbedingung: konstant nicht-gleitendes Rollen, holonome ZB Erweiterte Lagrange-Fkt.: t-abhängig: Interpretation:

Mehr