L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

Größe: px
Ab Seite anzeigen:

Download "L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren..."

Transkript

1 L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt - Mathematische Abstraktion: inneres Produkt - Länge - Winkel zwischen zwei Vektoren - Orthonormalbasis (alle Basisvektoren sind normiert, und zueinander orthogonal) - Falls Basisvektoren nicht orthonormal sind: Metrik L3.1 Sklararprodukt in Def: Skalarprodukt ist eine Verknüpfung v. zwei Vektoren in zu einer reellen Zahl: Sei Skalarprodukt: (Skalar) in Physik bevorzugte Notation Notation verdeutlicht, dass diese Zahl v. zwei Vektoren abhängt Index-Konvention: Indizes vom 'linken Vektor' unten, vom 'rechten Vektor' oben mit Unten/Oben Notation ist nützlich für Verallgemeinerungen; zb. - zu Vektorräumen mit 'nichtorthogonalen Basisvektoren' (siehe 'Metrik'); - oder zu kompl. Vektorraum, Beispiel: Für wäre die Notation genauso sinnvoll/nützlich!

2 Eigenschaften des Skalarprodukts: (i) Symmetrie: (ii) Linearität bzgl. Vektoraddition: (iii) Linearität bzgl. Skalarmultiplikation: (iv) Positiv definit: Eigenschaften (i) bis (iv) gelten offensichtlich: (i) Symmetrie: per Konstruktion (ii) & (iii) Linearität: denn Skalarprodukt is linear in Komponenten v. (iv) Positiv definit: denn 'wenn, und nur wenn' und ausgestattet mit Skalarprodukt heißt 'Euklidischer Raum': [derselbe Name wie für Vektorraum plus Ursprung! Grund: sie sind isomorph!, siehe AD-L3.3] Definition: Norm [Länge] (Skalarprodukt zweier gleichen Vektoren) Länge nach Pythagoras alternative Notation für Norm in Es gilt: Norm beantwortet die Frage: 'wie lang ist ein Vektor' Skalarprodukt beantwortet die Frage: 'wie parallel sind zwei Vektoren?'

3 Cauchy-Schwarz Ungleichung (CSU) Beweis: Betrachte (a zunächst beliebig) wähle nun: Skalare Umstellen: Geometrische Interpretation der CSU: Für 'kolineare', d.h. 'parallele' Vektoren, gilt Gleichheitszeichen in CSU: Check: Umkehrschluss: je kleiner je weniger sind und im Vergleich zu 'parallel'. CSU impliziert die Dreiecksungleichung: Geometrische Anschauung in 'gilt für beide Vorzeichen' Beweis:

4 'Winkel' zwischen zwei Vektoren Definition eines 'Relativwinkels': bereits bekannt aus CSU In entspricht dem geometrischem Winkel zwischen und Begründung: einerseits gilt andrerseits gilt, aus geometrischer Anschauung: Vergleich v. (2) und (3) liefert: 'Cosinus-Satz' Def. Einheitsvektor (wir nutzen 'Hut' für Enheitsvektoren) Für ein 'Einheitsvektor' / 'normierter Vektor', kolinear zu ist 'normiere einen Vektor' = 'bilde kolinearen Einheitsvektor' Falls werden sie 'orthogonale Vektoren' genannt: 'Projektion' v. auf denn 'Orthogonales Komplement' zu Check: 'Zerlegung von bezüglich :

5 Beispiel: Zerlege entspricht der Erwartung aus der Skizze! Check: Def: der Satz v. Vektoren - ist 'orthogonal' falls - ist 'orthonormalen' falls (d.h. orthogonal und normiert) - bildet eine 'Orthonormalbasis' falls er orthonormal und vollständig ist. Unsere Notationskonvention für Orthonormalbasis: [manchmal auch ohne '] Kanonisches Beispiel: (L2.5h.2) Rotierte Version von (4):

6 Jeder Vektor hat eindeutige Entwicklung bzgl. Orthonormalbasis: Entwicklungskoeffizient entspricht der 'Projektion' von (1) auf Basisvektor Kompaktversion mit ES-Notation: Beispiel:

7 Gram-Schmidt-Verfahren Gegeben eine Basis von V: vollständig, linear unabhängig, aber nicht orthogonal, nicht normiert Konstruiere daraus eine Orthonormalbasis! Strategie: orthogonalisiere, normalisiere, und wiederhole das iterativ: L3.3 Innere Produkträume Verallgemeinerung des Skalarprodukts auf allgemeinen ('reeller Vektorraum'): Vektorraum 'Inneres Produkt' ist eine bilineare Abbildung von zwei Vektoren auf eine Zahl, mit folgenden Eigenschaften [identisch zu Seite(3.1) ]: (i) Symmetrie: (ii) Linearität bzgl. Vektoraddition: (iii) Linearität bzgl. Skalarmultiplikation: (iv) Positiv definit: 'wenn, und nur wenn' Vektorraum ausgestattet mit innerem Produkt heißt 'Euklidischer Vektorraum' [schon wieder derselbe Name wie vorhin! Grund: sie sind isomorph!, siehe AD-L3.3]

8 Orthonormalbasis definiert einen Isomorphismus zwischen n-dim V und Gegeben Isomorphismus: Inneres Produkt in V liefern dasselbe Ergenis! Inneres Produkt in Das innere Produkt von zwei Vektoren in V entspricht dem standard-skalarprodukt ihrer Komponenten bezüglich einer Orthonormalbasis von V. In diesem Sinne: Nicht-orthonormale Basis in V: Metrik Was passiert, wenn Basis [nur zur Kenntnisnahme] v. V nicht orthonormal ist? Sei (g wird 'Metrik' genannt; bisher: nun Entwicklung v. zwei beliebigen Vektoren Inneres Produkt in V: Verallgemeinerung des Standard- Skalarprodukts für nicht-trivale Metrik mit Falls Metrik 'nicht-trivial' ist, bringt oben-unten-konvention für Indizes wirklich einen Mehrwert!

9 Zusammenfassung L3 Euklidische Vektorräume (V: reeller Vektorraum) Inneres Produkt: (i) Symmetrie, (ii-iii) Linearität bzgl. und (iv) Positiv definit Zahl Wichtigstes Beispiel: Skalarprodukt in Norm: Cauchy-Schwarz Ungleichung (CSU): Dreiecksungleichung: Winkel: Einheitsvektor: 'Projektion' v. auf 'Orthogonales Komplement' zu Orthonormalbasis: vollständig, normiert, orthogonal: Gram-Schmidt-Verfahren liefert Orthonormalbasis:

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren...

L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... L3 Euklidische Geometrie: Längen, Winkel, senkrechte Vektoren... (benötigt neue Struktur über Vektorraumaxiome hinaus) Sei Länge von nach Pythagoras: Länge quadratisch in Komponenten! - Für : Skalarprodukt

Mehr

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen)

L5.6 Symmetrische, hermitesche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) L5.6 Symmetrische, heresche, orthogonale und unitäre Matrizen (Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) In diesem Kapitel kommen Matrizen in Zusammenhang Skalarprodukt vor.

Mehr

Das innere Produkt von zwei Vektoren in V entspricht dem standard Skalarprodukt ihrer Komponenten bezüglich einer Orthonormalbasis von V.

Das innere Produkt von zwei Vektoren in V entspricht dem standard Skalarprodukt ihrer Komponenten bezüglich einer Orthonormalbasis von V. L5.6 Orthogonale und unitäre Matrizen (invertierbare Abbildungen, die reelles bzw. komplexes Skalarprodukt invariant lassen) Reelles inneres Produkt in -Vektorraum [siehe L3.1b]: 'reeller Vektorraum' (i)

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Mathe ist wie Liebe: Eine einfache Idee, aber sie kann kompliziert werden.

Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Mathe ist wie Liebe: Eine einfache Idee, aber sie kann kompliziert werden. TO Rechenmethoden Wise 2011-2012 Jan von Delft 18.10.2011 Das Buch der Natur ist mit mathematischen Symbolen geschrieben. Galileo Galilei Das Wunder der Anwendbarkeit der Sprache der Mathematik für die

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Definition: Euklidischer Raum mit Skalarprodukt. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander: Definition: Euklidischer Raum mit Skalarprodukt Einsteinsche Summenkonvention (ES): über doppelt vorkommende Indizes wird summiert. Die kanonische Basis von Einheitsvektoren sind paarweise orthogonal zueinander:

Mehr

Kapitel 5. Vektorräume mit Skalarprodukt

Kapitel 5. Vektorräume mit Skalarprodukt Kapitel 5 Vektorräume mit Skalarprodukt 119 120 Kapitel V: Vektorräume mit Skalarprodukt 5.1 Elementare Eigenschaften des Skalarprodukts Dienstag, 20. April 04 Wollen wir in einem Vektorraum wie in der

Mehr

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über

Unter einem reellen inneren Produktraum verstehen wir einen Vektorraum V über 9 Innere Produkte In diesem Kapitel betrachten wir immer Vektorräume über dem Körper der reellen Zahlen R oder dem Körper der komplexen Zahlen C. Definition 9.1: Sei V ein Vektorraum über R. Ein inneres

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele:

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele: L2. Vektorräume Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer Beispiele: 2) Vektoren: vollständig bestimmt durch Angabe einer und einer Beispiele: Übliche

Mehr

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele:

L2. Vektorräume. Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer. Beispiele: L2. Vektorräume Physikalische Größen lassen sich einteilen in: 1) Skalare: vollständig bestimmt durch Angabe einer Beispiele: Masse, Volumen, Energie, Arbeit, Druck, Temperatur 2) Vektoren: vollständig

Mehr

Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat. allgemein: ein Vektorraum mit, heisst 'Unterraum' von. ist ein Unterraum von V.

Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat. allgemein: ein Vektorraum mit, heisst 'Unterraum' von. ist ein Unterraum von V. L2.3 Basis und Dimension Ausgangsfrage: gegeben Vektorraum, wieviele Komponenten hat Formaler: was ist die 'Dimension' von Sei Definition: 'Span' 'lineare Hülle' = alle möglichen Linearkombination der

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß

Lineare Algebra I Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Lineare Algebra I - 26. Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß Donnerstag 8.12.: 8:30 Uhr - Vorlesung 10:15 Uhr - große Übung / Fragestunde Klausur: Mittwoch, 14.12. 14:15 Uhr, A3 001 Cauchy-Schwarz

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h.

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h. 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

9. Übung zur Linearen Algebra II -

9. Übung zur Linearen Algebra II - 9. Übung zur Linearen Algebra II - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. SS 00. Aufgabe 33 (i) Beweise oder widerlege: In einem euklidischen VR gilt x + y = x + y x y (Satz von Pythagoras).

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Einführung in die Grundlagen der Numerik

Einführung in die Grundlagen der Numerik Einführung in die Grundlagen der Numerik Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Wintersemester 2014/2015 Normierter Vektorraum Sei X ein R-Vektorraum. Dann heißt

Mehr

Technische Universität München

Technische Universität München Technische Universität München Michael Schreier Ferienkurs Lineare Algebra für Physiker Vorlesung Montag WS 2008/09 1 komplexe Zahlen Viele Probleme in der Mathematik oder Physik lassen sich nicht oder

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof Dr H Brenner Osnabrück SS 22 Mathematik für Anwender II Vorlesung Euklidische Vektorräume Im Anschauungsraum kann man nicht nur Vektoren addieren und skalieren, sondern ein Vektor hat auch eine Länge,

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Tutorium 7. Definition. Sei V ein C-Vektorraum. Eine Abbildung, : V V C heißt komplexes Skalarprodukt : det F k > 0 mit F k := (f i,j ) C k k

Tutorium 7. Definition. Sei V ein C-Vektorraum. Eine Abbildung, : V V C heißt komplexes Skalarprodukt : det F k > 0 mit F k := (f i,j ) C k k Skalarprodukte Tutorium 7 Bemerkung. Für jeden komplexen Vektorraum V mit dim V und jede komplexe Bilinearform P auf V findet man einen Vektor v mit P (v, v) =. Es gibt also keine positiv definite Bilinearformen

Mehr

Orthonormalbasis. Orthogonalentwicklung

Orthonormalbasis. Orthogonalentwicklung Orthonormalbasis Eine Orthogonal- oder Orthonormalbasis des R n (oder eines Teilraums) ist eine Basis {v,..., v n } mit v i = und v i, v j = für i j, d. h. alle Basisvektoren haben Norm und stehen senkrecht

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 6 4. Mai 2010 Definition 69. Der Vektor f 3 x 2 (x 1, x 2, x 3 ) f 2 x 3 (x 1, x 2, x 3 ) f 1 x 3 (x 1, x 2, x 3 ) f 3 x 1 (x 1, x 2, x 3 ) f 2 x

Mehr

12. R n als EUKLIDISCHER VEKTORRAUM

12. R n als EUKLIDISCHER VEKTORRAUM 12. R n als EUKLIDISCHER VEKTORRAUM 1 Orthogonalität in der Ebene. Die Vektoren in der Ebene, die (im üblichen Sinne) senkrecht zu einem Vektor x = (x 1, x 2 ) T stehen, lassen sich leicht angeben. Sie

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

1 Die Jordansche Normalform

1 Die Jordansche Normalform Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 4/5 A Die Jordansche Normalform Vierter Tag (9.03.205) Im Zusammenhang mit der Lösung komplexer Differentialgleichungssysteme

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Reelles Skalarprodukt

Reelles Skalarprodukt Reelles Skalarprodukt Ein Skalarprodukt auf einem reellen Vektorraum V ist eine Abbildung, : V V R mit folgenden Eigenschaften: Positivität: v, v > 0 für v 0 Symmetrie: Linearität: u, v = v, u λu + ϱv,

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

Skalarprodukt und Orthogonalität

Skalarprodukt und Orthogonalität Skalarprodukt und Orthogonalität Skalarprodukt und Orthogonalität in R n Wir erinnern an das euklidische Skalarprodukt im R 2 : Wir erinnern an das euklidische Skalarprodukt im R 2 : < a, b >:= α 1 β 1

Mehr

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt

Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt Mit Skalarprodukt und Vektorprodukt lässt sich ein weiteres, kombiniertes Produkt, das Spatprodukt a ( b c) bilden. Aus der geometrischen Interpretation von Skalarprodukt und Vektorprodukt ist sofort ersichtlich,

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Kapitel I: Vektorrechnung 2: Vektoren im Raum

Kapitel I: Vektorrechnung 2: Vektoren im Raum WS 1/14 - Prof Dr Manfred Leitz 2 Vektoren im Raum A Grundbegriffe B Rechnen mit Vektoren C Der euklidische Betrag D Das euklidische Skalarprodukt E Vektorprodukt und Spatprodukt F Geraden und Ebenen im

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof Dr H Brenner Osnabrück SS 26 Lineare Algebra und analytische Geometrie II Vorlesung 2 Orthogonalität Mit dem Skalarprodukt kann man die Eigenschaft zweier Vektoren, aufeinander senkrecht zu stehen,

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen

Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Technische Universität München Department of Physics Ferienkurs zur Linearen Algebra Bilinearformen, Euklidische Vektorräume und Endomorphismen Musterlösungen zu den Übungen Freitag, 6.. Sascha Frölich

Mehr

$Id: hilbert.tex,v /06/21 13:11:01 hk Exp hk $

$Id: hilbert.tex,v /06/21 13:11:01 hk Exp hk $ $Id: hilbert.tex,v 1.5 2013/06/21 13:11:01 hk Exp hk $ 7 Hilberträume In der letzten Sitzung hatten wir die Theorie der Hilberträume begonnen, und sind gerade dabei einige vorbereitende elementare Grundtatsachen

Mehr

7.2 Die adjungierte Abbildung

7.2 Die adjungierte Abbildung 7.2 Die adjungierte Abbildung Definition 7.2.1 Eine lineare Abbildung f : V K heißt lineares Funktional oder Linearform. (Diese Definition gilt für beliebige K-Vektorräume, nicht nur für innere Produkträume.)

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte Technische Universität München, Fakultät für Physik Ferienkurs - ineare Algebra Hanna Schäfer 03. März 04 0. inearität. f : M N, x : y = f(x) Merkinhalte. f(x + λy) = f(x) + λf(y), x, y V, λ K 3. ineare

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

34.3 Fourier-Entwicklung, parsevalsche Gleichung Elementare Eigenschaften

34.3 Fourier-Entwicklung, parsevalsche Gleichung Elementare Eigenschaften Abschnitt 4 Orthogonalität R Plato 77 an beachte, dass für diese Rechnung u erforderlich ist Das Ergebnis ist aber auch für u D (und u ) richtig Die Situation ist für die Wahl ˇ D in Abbildung 47 dargestellt

Mehr

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ))

Mathematik I. Vorlesung 18. Vielfachheiten und diagonalisierbare Abbildungen. µ λ = dim(eig λ (ϕ)) Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 18 Vielfachheiten und diagonalisierbare Abbildungen Satz 18.1. Es sei K ein Körper und es sei V ein endlichdimensionaler K- Vektorraum.

Mehr

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren

Nützliches Hilfsmittel (um Schreiberei zu reduzieren): 'Erweiterte Matrix': Gauß- Verfahren L5.4 Inverse einer Matrix Ausgangsfrage: Wie löst man ein lineares Gleichungsystem (LSG)? Betrachte n lineare Gleichungen für n Unbekannte: Ziel: durch geeignete Umformungen bringe man das LSG in folgende

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k v 1 v 1 v 2 v 2 W 2 -v (v, v ) 1 1 2 Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k. Schritt: Subtraktion der Komponenten von ṽ k in Richtung von v 1,v 2,...,v k 1 und Normierung von w k auf

Mehr

Mathematik für Chemische Technologie 2

Mathematik für Chemische Technologie 2 Mathematik für Chemische Technologie 2 Themenüberblick: Funktionen mehrerer unabhängigen Veränderlichen Vektoralgebra Lineare Gleichungssysteme und Determinanten Fehlerrechnung Schwerpunkt des Sommersemesters

Mehr

L5 Matrizen I. Matrix: (Plural: Matrizen)

L5 Matrizen I. Matrix: (Plural: Matrizen) L5 Matrizen I Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen - Beschreibung von Lorenz-Transformationen (spezielle

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik für Informatik Inhalt: Lineare Algebra Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare Abbildungen Eigenwerte und Eigenvektoren Literatur

Mehr

Vektorprodukte und analytische Geometrie

Vektorprodukte und analytische Geometrie KAPITEL 4 Vektorprodukte und analytische Geometrie 4. Vektorprodukte.................................... 8 4. Skalarprodukt für Vektoren im R n.......................... 8 4. Anwendung des Skalarprodukts..........................

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

Aufgaben zu Kapitel 20

Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v

Mehr

Lineare Algebra. 9. Übungsstunde. Steven Battilana.

Lineare Algebra. 9. Übungsstunde. Steven Battilana. Lineare Algebra 9. Übungsstunde Steven Battilana stevenb@student.ethz.ch November 2, 26 Erinnerung Sei x, y 2 E n, 2 E, danngilt: hx, yi = kxkkyk cos( ). Ist m eine beliebige natürliche Zahl, apple i,

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5

Vektorrechnung. 10. August Inhaltsverzeichnis. 1 Vektoren 2. 2 Grundlegende Rechenoperationen mit Vektoren 3. 3 Geometrie der Vektoren 5 Vektorrechnung 0. August 07 Inhaltsverzeichnis Vektoren Grundlegende Rechenoperationen mit Vektoren 3 3 Geometrie der Vektoren 5 4 Das Kreuzprodukt 9 Vektoren Die reellen Zahlen R können wir uns als eine

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: 4.613 Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9

Mehr

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1

Lineare Algebra II. Inhalt und Begriffe. Lineare Algebra II p. 1 Lineare Algebra II Inhalt und Begriffe Lineare Algebra II p. 1 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen Algebra... Lineare Algebra II p. 2 Inhaltsverzeichnis Kapitel II Grundlagen der Linearen

Mehr

10 Unitäre Vektorräume

10 Unitäre Vektorräume 10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösungen Serie 6 (Vektorräume, Skalarprodukt Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b

Vektorprodukt. Der Vektor. ist zu a und b orthogonal, gemäß der. Rechten-Hand-Regel orientiert und hat die Länge c = a b Vektorprodukt Der Vektor c = a b ist zu a und b orthogonal, gemäß der Rechten-Hand-Regel orientiert und hat die Länge c = a b sin( ( a, b)), die dem Flächeninhalt des von den Vektoren a und b aufgespannten

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Lineare Algebra für Physiker 11. Übungsblatt

Lineare Algebra für Physiker 11. Übungsblatt Lineare Algebra für Physiker 11. Übungsblatt Fachbereich Mathematik SS 01 Prof. Dr. Matthias Schneider./. Juli 01 Dr. Silke Horn Dipl.-Math. Dominik Kremer Gruppenübung Aufgabe G1 (Minitest) (a) Welche

Mehr

Länge, Skalarprodukt, Vektorprodukt

Länge, Skalarprodukt, Vektorprodukt Länge, Skalarprodukt, Vektorprodukt Jörn Loviscach Versionsstand: 20. April 2009, 19:39 1 Überblick Ein Vektorraum muss nur eine Minimalausstattung an Rechenoperationen besitzen: die Addition zweier Vektoren

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

Klausur zur Mathematik I (Modul: Lineare Algebra I)

Klausur zur Mathematik I (Modul: Lineare Algebra I) Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Sommersemester 4 Klausur zur Mathematik I (Modul: Lineare Algebra I) 6.8.4 Sie haben 6 Minuten Zeit zum Bearbeiten

Mehr

4.2 Quotientenvektorräume

4.2 Quotientenvektorräume 306 LinAlg II Version 1 6. Juni 2006 c Rudolf Scharlau 4.2 Quotientenvektorräume Zum Verständnis der folgenden Konstruktion ist es hilfreich, sich noch einmal den Abschnitt 1.4 über Restklassen vom Beginn

Mehr

Kapitel 6. Metrik, Norm und Skalarproduktl. 6.1 Metrik (Abstand)

Kapitel 6. Metrik, Norm und Skalarproduktl. 6.1 Metrik (Abstand) Kapitel 6 Metrik, Norm und Skalarproduktl Aus Ihrer täglichen Praxis sind Ihnen die Begriffe Abstand und Länge, möglicherweise gar Winkel wohlvertraut. 6.1 Metrik (Abstand) Definition Metrik : Sei M eine

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

r i w i (siehe (3.7)). r i v, w i = 0.

r i w i (siehe (3.7)). r i v, w i = 0. Orthogonales Komplement und Orthogonalprojektion Wir betrachten weiterhin einen euklidischen Vektorraum V,,. (6.13) Def.: Ist M V, so heißt das orthogonale Komplement von M. (6.14) Fakt. (i) M ist Untervektorraum

Mehr

Physikalischer Raum. Euklidischer Raum

Physikalischer Raum. Euklidischer Raum Physikalischer Raum Aus unserer Erfahrung schreiben wir dem Raum intuitiv bestimmte Eigenschaften zu. Intuition ist aber nicht ausreichend zum Aufbau einer Theorie. Es bedarf vielmehr einer präzisen mathematischen

Mehr

L5 Matrizen I: Allgemeine Theorie

L5 Matrizen I: Allgemeine Theorie L5 Matrizen I: Allgemeine Theorie Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen - Beschreibung von Lorenz-Transformationen

Mehr

14 Skalarprodukt Abstände und Winkel

14 Skalarprodukt Abstände und Winkel 4 Skalarprodukt Abstände und Winkel Um Abstände und Winkel zu definieren benötigen wir einen neuen Begriff. Zunächst untersuchen wir die Länge eines Vektors v. Wir schreiben dafür v und sprechen auch von

Mehr

Skalarprodukte (Teschl/Teschl Kap. 13)

Skalarprodukte (Teschl/Teschl Kap. 13) Skalarprodukte (Teschl/Teschl Kap. ) Sei V Vektorraum über R. Ein Skalarprodukt auf V ist eine Abbildung V V R, (x, y) x, y mit den Eigenschaften () x, y = y, x (symmetrisch), () ax, y = a x, y und x +

Mehr