Schulinterner Lehrplan Mathematik Qualifikationsphase Leistungskurs

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Schulinterner Lehrplan Mathematik Qualifikationsphase Leistungskurs"

Transkript

1 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/8 Stand: Schulinterner Lehrplan Mathematik Qualifikationsphase Leistungskurs 1.Halbjahr Kapitel I Ableitung 1. Die natürliche Exponentialfunktion und ihre Ableitung 2. Exponentialgleichungen und natürlicher Logarithmus 3. Neue Funktionen aus alten Funktionen: Produkt, Quotient, Verkettung 4. Kettenregel 5. Produktregel 6. Quotientenregel 7. Trigonometrische Funktionen Bogenmaß 8. Die Ableitung der Sinus- und Kosinusfunktion 9. Logarithmusfunktion und Umkehrfunktion 10. Stetigkeit und Differenzierbarkeit von Funktionen - kennen Verknüpfungen und Verkettungen der e-funktion mit ganzrationalen Funktionen zur Beschreibung von inner- und außermathematischen Problemen, - verwenden Produkt-, Quotienten- und Kettenregel beim Ableiten von Funktionen, - nutzen bei Exponentialfunktionen charakteristische Merkmale wie Extremstellen, Wendestellen und Krümmungsverhalten zum Lösen inner- und außermathematischer Probleme, - wenden Potenz- und Logarithmengesetze an, - lösen einfache Exponentialgleichungen, - berechnen Ableitungen komplexer Funktionen und bestimmen Tangentengleichungen Lernbereich: Wachstumsmodelle Exponentialfunktion - e-funktion - Verknüpfungen/Verkettung mit ganzrationalen Funktionen - Produkt-, Quotienten- und Kettenregel - Definitionsbereich Wiederholen - Vertiefen -Vernetzen

2 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 2/8 Stand: Halbjahr Kapitel II Integral 1. Rekonstruieren einer Größe 2. Das Integral 3. Der Hauptsatz der Differenzial-und Integralrechnung 4. Bestimmung von Stammfunktionen 5. Integralfunktionen 6. Integral und Flächeninhalt 7. Unbegrenzte Flächen-uneigentliche Integrale 8. Mittelwerte von Funktionen 9. Integration von Produkten partielle Integration 10. Integration durch Substitution 11. Numerische Integration Wiederholen - Vertiefen Vernetzen Exkursion in die Theorie Analyse: Integral - deuten das bestimmte Integral als aus Änderungen rekonstruierter Bestand und als Flächeninhalt - kennen den Zusammenhang zwischen Differenzieren und Integrieren (Änderungsrate Wirkung), - kennen Stammfunktionen der Funktionen,. und ;, darunter auch - nutzen den Zusammenhang zwischen Ableitung und Integral zur Bestätigung von Stammfunktionen, - wenden Rechengesetze für bestimmte Integrale an, - berechnen unbestimmte Integrale mithilfe der Summen- und Faktorregel. partieller Integration und Substitution - interpretieren uneigentliche Integrale als Grenzwerte sowohl von Beständen als auch von Flächeninhalten, - begründen geometrisch anschaulich den Hauptsatz Differenzial-und Integralrechnung, - berechnen den Mittelwert einer Funktion mit Hilfe der Integralformel Leitidee: Messen - berechnen Bestände aus Änderungsraten, - bestimmen Flächeninhalte begrenzter Flächen. - bestimmen Flächeninhalte unbegrenzter Flächen. Lernbereich: Von der Änderung zum Bestand Integralberechnung - Integralbegriff - Rekonstruktion von Beständen - Zusammenhang zwischen Differenzieren und Integrieren - Stammfunktionen spezieller Funktionen - Summen- und Faktorregel - unbestimmte Integrale - Rechengesetze für bestimmte Integrale - Inhalte begrenzter Flächen - geometrische Begründung des Hauptsatzes - uneigentliche Integrale - Mittelwert von Funktionen

3 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 3/8 Stand: Kapitel III Ganzrationale Funktionen und Exponentialfunktionen 1. Funktionenscharen 2. Exponentialfunktionen und exponentielles Wachstum 3. Zusammengesetze Funktionen untersuchen 4. Zusammengesetzte Funktionen im Sachzusammenhang 5. Extremwertprobleme lösen - kennen Verknüpfungen und Verkettungen der e-funktion mit ganzrationalen Funktionen zur Beschreibung von inner- und außermathematischen Problemen - führen Parametervariationen zur Anpassung von Funktionen an Daten durch - nutzen bei Funktionen und Scharen ganzrationaler Funktionen, charakteristische Merkmale wie Extremstellen, Wendestellen und Krümmungsverhalten zum Lösen inner- und außermathematischer Probleme, - nutzen bei Scharen von Funktionen, die durch Verknüpfungen und Verkettungen der e-funktion mit ganzrationalen Funktionen entstehen, charakteristische Merkmale zum Lösen inner- und außermathematischer Probleme, - erkennen den Zusammenhang zwischen Funktion und Ableitungsfunktion und deuten dies im Sachkontext der Wachstumsmodelle, Lernbereich: Kurvenanpassung Interpolation - Funktionenscharen Lernbereich: Wachstumsmodelle Exponentialfunktion - e-funktion - Verknüpfungen/Verkettung mit ganzrationalen Funktionen - Angleichung an Daten durch Parametervariation Kapitel IV Vertiefende Aspekte der Funktionsuntersuchung 1. Definitionslücken und senkrechte Asymptoten 2. Verhalten für - waagerechte Asymptoten 3. Schiefe Asymptoten und Näherungsfunktionen 4. Untersuchung von Logarithmusfunktionen 5. Eigenschaften von trigonometrischen Funktionen - untersuchen das Grenzverhalten von Funktionen unter Berücksichtigung von Polstellen und waagerechten Asymptoten der zugehörigen Graphen, Lernbereich: Wachstumsmodelle Exponentialfunktion - asymptotisches Verhalten - Definitionsbereich - Funktionenscharen Lernbereich: Kurvenanpassung Interpolation - Bestimmung von Funktionen aus gegebenen Eigenschaften - Funktionenscharen

4 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 4/8 Stand: Kapitel V Vektoren-Geraden im Raum 1. Punkte im Raum 2. Vektoren 3. Rechnen mit Vektoren 4. Lineare Abhängigkeit und Unabhängigkeit von Vektoren 5. Geraden 6. Gegenseitige Lage von Geraden 7. Längen Messen - Einheitsvektoren Leitidee: Räumliches Strukturieren/Koordinatisieren - nutzen die bildliche Darstellung und Koordinatisierung zur Beschreibung und Lösung von inner- und außermathematischen Problemen in Ebene und Raum, - wenden die Addition, Subtraktion und skalare Multiplikation von Vektoren an und veranschaulichen sie geometrisch, - erkennen die lineare Abhängigkeit zweier Vektoren, - wenden Vektoren beim Arbeiten mit geradlinig begrenzten geometrischen Objekten an, - erfassen und begründen die unterschiedlichen Lagebeziehungen von Geraden sowie von Gerade und Ebene und lösen Schnittprobleme. Lernbereich: Raumanschauung und Koordinatisierung - Punkte im Raum - Darstellungen im kartesischen Koordinatensystem - Vektoren im Anschauungsraum - Rechengesetze für Vektoren, lineare Abhängigkeit zweier Vektoren Kapitel VI Ebenen im Raum 1. Gauß-Verfahren 2. Lösungsmenge linearere Gleichungssysteme 3. Ebenen im Raum-Parameterform 4. Zueinander orthogonale Vektoren Skalarprodukt 5. Winkel zwischen Vektoren Skalarprodukt 6. Normalengleichung und Koordinatengleichung einer Ebene 7. Lagen von Ebenen erkennen und Ebenen zeichnen 8. Gegenseitige Lage von Ebenen und Geraden 9. Gegenseitige Lage von Ebenen 10. Wahlthema: Das Vektorprodukt Leitidee: Räumliches Strukturieren/Koordinatisieren - nutzen die bildliche Darstellung und Koordinatisierung zur Beschreibung und Lösung von inner- und außermathematischen Problemen in Ebene und Raum, sowohl bildlich als auch mithilfe von Koordinaten, - beschreiben Geraden und Ebenen durch Gleichungen in Parameter- und Koordinatenform, - erfassen und begründen die unterschiedlichen Lagebeziehungen von Geraden sowie von Gerade und Ebene und lösen Schnittprobleme, - deuten das Skalarprodukt geometrisch. - erfassen und begründen die unterschiedlichen Lagebeziehungen von Ebenen und lösen Schnittprobleme. Leitidee: Messen - nutzen das Skalarprodukt zur Bestimmung der Winkelgröße zwischen Vektoren, - bestimmen Streckenlängen im Raum. Lernbereich: Raumanschauung und Koordinatisierung - Parametergleichungen von Gerade und Ebene - Lagebeziehungen und Schnittpunkte - Skalarprodukt - Längen von Strecken und Größen von Winkeln im Raum - Schnittmengen von Ebenen

5 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 5/8 Stand: Halbjahr Q2 Kapitel VII Abstände und Winkel 1. Abstand eines Punktes von einer Ebene 2. Die Hesse sche Normalenform 3. Abstand eines Punkts von einer Geraden 4. Abstand windschiefer Geraden 5. Schnittwinkel 6. Lineare Unabhängigkeit 7. Verktorräume Basis und Dimension Leitidee: Messen - bestimmen den Abstand eines Punktes von einer Geraden bzw. einer Ebene - bestimmen den Abstand zweier Geraden - bestimmen den Schnittwinkel zwischen Geraden und Ebenen Lernbereich: Raumanschauung und Koordinatisierung - Normalenform und Koordinatengleichung von Ebene - Abstand windschiefer Geraden

6 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 6/8 Stand: Halbjahr Q2 Kapitel IX Übergangsmatrizen 1. Beschreibung von einstufigen Prozessen durch Matrizen 2. Prozesse analysieren-rechnen mit Matrizen 3. Zweistufige Prozesse Matrizenmultiplikation 4. Umkehrungvon Prozessen Inverse Matrizen 5. Austauschprozesse und stabile Verteilungen Wahlthema: Populationsentwicklung Zyklisches Verhalten Leitidee: Algorithmus - beherrschen die Addition, Subtraktion und Vielfachbildung von Matrizen sowie die Rechengesetze für Matrizen, - nutzen die Matrizenmultiplikation - wenden Potenzen von Matrizen bei mehrstufigen Prozessen an und interpretieren Grenzmatrizen sowie Fixvektoren. - erkennen zyklisches Verhalten und interpretieren dies im Sachzusammenhang. Lernbereich: Mehrstufige Prozesse Matrizenrechnung - Matrizen und Prozessdiagramme zur strukturierten Darstellung von Daten - Rechengesetze für Matrizen - Grenzmatrix und Fixvektor im Sachzusammenhang mit Käufer- und Wahlverhalten - Populationsentwicklung - zyklische Prozesse

7 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 7/8 Stand: Q2 Kapitel X Wahrscheinlichkeit - Statistik 1. Wiederholung: Wahrscheinlichkeitsrechnung, Pfadregeln 2. Bedingte Wahrscheinlichkeit, Unabhängigkeit 3. Bayes sche Regel 4. Daten darstellen und auswerten 5. Erwartungswert und Standardabweichung bei Zufallsgrößen 6. Bernoulli - Experimente und Binominalverteilung 7. Praxis der Binominialverteilung 8. Problemlösen mit der Binominalverteilung 9. Binominalverteilung - Erwartungswert und Standardabweichung-Sigmaregeln 10. Zweiseitiger Signifikanztest 11. Einseitiger Signifikanztest 12. Fehler beim Testen von Hypothesen - beschreiben die Zufallsgröße als Funktion und stellen diese tabellarisch und grafisch dar, - stellen Binomialverteilungen auch unter Verwendung der eingeführten Technologie grafisch dar. Leitidee: Daten und Zufall - stellen Häufigkeits- und Wahrscheinlichkeitsverteilungen in Histogrammen dar, interpretieren und nutzen diese Darstellungen, - charakterisieren und interpretieren Datenmaterial mithilfe der Kenngrößen arithmetisches Mittel, Standardabweichung und Stichprobenumfang und setzen die eingeführte Technologie sinnvoll ein, - verwenden die Grundbegriffe Ergebnis, Ereignis, Ergebnismenge zur Beschreibung von Zufallsexperimenten, - nutzen Zufallsgrößen zur sachgerechten Strukturierung der Ergebnismenge eines Zufallsexperiments, - charakterisieren Wahrscheinlichkeitsverteilungen anhand der diese auch unter Verwendung der eingeführten Technologie und nutzen sie für Interpretationen, - kennen das Modell der BERNOULLI-Kette, können in diesem Modell rechnen und es zum Modellieren sachgerecht anwenden, - nutzen den Erwartungswert und die Standardabweichung einer binomialverteilten Zufallsgröße für Interpretationen, Leitidee: Messen - kennen und bestimmen das arithmetische Mittel als Lagemaß und die empirische Standardabweichung sn als Streumaß einer Stichprobe, - berechnen den Erwartungswert und die Standardabweichung einer binomialverteilten Zufallsgröße. Lernbereich: Daten darstellen und auswerten - Beschreibende Statistik - Histogramm - Standardabweichung Lernbereich: Mit dem Zufall rechnen - Wahrscheinlichkeitsrechnung - Ergebnis, Ereignis, Ergebnismenge - Zufallsgröße - Wahrscheinlichkeitsverteilung - Erwartungswert und Standardabweichung - BERNOULLI-Kette und Binomialverteilung - σ-umgebungen Lernbereich: Daten beurteilen - Beurteilende Statistik - Grundgesamtheit - repräsentative Stichprobe

8 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 8/8 Stand: Q2 Kapitel XI Stetige Zufallsgrößen 1. Stetige Zufallsgröße: Integrale besuchen die Stochastik 2. Die Analysis der Gauß schen Glockenfunktion 3. Die Normalverteilung, Satz von Moivre-Laplace 4. Testen bei der Normalverteilung 5. Die Exponentialverteilung - grenzen diskrete von stetigen Zufallsgrößen ab, - verwenden die Normalverteilung als spezielle stetige Wahrscheinlichkeitsverteilung. Leitidee: Daten und Zufall - Vertrauensintervalle um diese Schätzwerte zu beliebig vorgegebener Vertrauenswahrscheinlichkeit unter Nutzung der Normalverteilung bestimmen, - verwenden die Normalverteilung als Näherung für die Binomialverteilung. Lernbereich: Mit dem Zufall rechnen - Wahrscheinlichkeitsrechnung - stetige Zufallsgrößen - Normalverteilung

Schulinterner Lehrplan Mathematik Qualifikationsphase Grundkurs

Schulinterner Lehrplan Mathematik Qualifikationsphase Grundkurs Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/6 Schulinterner Lehrplan Mathematik Qualifikationsphase Grundkurs Kapitel I Ableitung 1 Die natürliche Exponentialfunktion und ihre Ableitung 2 Exponentialgleichungen

Mehr

HAUSCURRICULUM MATHEMATIK Qualifikationsphase 11, 1. Halbjahr: Analysis

HAUSCURRICULUM MATHEMATIK Qualifikationsphase 11, 1. Halbjahr: Analysis HAUSCURRICULUM MATHEMATIK Qualifikationsphase 11, 1. Halbjahr: Analysis 1 / 2 0. Funktionsanalyse Nachweis von Eigenschaften 1 Nullstellen 2 Monotonieverhalten 3 Symmetrieverhalten 4 Definitionsmenge 5

Mehr

Stoffverteilungsplan für das Fach Mathematik Qualifikationsphase

Stoffverteilungsplan für das Fach Mathematik Qualifikationsphase Stoffverteilungsplan für das Fach Mathematik Qualifikationsphase Schuljahrgang 11 Analysis Ableitungen und Funktionsuntersuchungen Ableitungsregeln, insbesondere Produkt-, Quotienten- und Kettenregel graphisches

Mehr

Schulinterne Vereinbarungen für den Unterricht in Sekundarstufe II

Schulinterne Vereinbarungen für den Unterricht in Sekundarstufe II Schulinterne ereinbarungen für den Unterricht in Sekundarstufe (Beschluss der Fachkonferenz Mathematik vom 16.11.2011) Einführungsphase Funktionen (LS und ) (LS ) Kurvendiskussion ganzrationaler Funktionen

Mehr

Fachschaft Mathematik. Schuleigenes Curriculum für die Klassen 11 und 12

Fachschaft Mathematik. Schuleigenes Curriculum für die Klassen 11 und 12 Fachschaft Schuleigenes Curriculum für die 15. April 2010 Bildungsplan für die Klassen 11 u. 12 Stufenspezifische Hinweise (Klasse 11 und 12) Kurzform: Die formal bestimmte und die anwendungs- und problemlöseorientierte

Mehr

Kern- und Schulcurriculum Mathematik Klasse 11/12. Stand Schuljahr 2012/13

Kern- und Schulcurriculum Mathematik Klasse 11/12. Stand Schuljahr 2012/13 Kern- und Schulcurriculum Mathematik Klasse 11/12 Stand Schuljahr 2012/13 UE 1 Wiederholung Funktionen Änderungsrate Ableitung Ableitung berechnen Ableitungsfunktion Ableitungsregeln für Potenz, Summe

Mehr

Georg-Büchner-Gymnasium Fachgruppe Mathematik. Schuleigenes Curriculum Mathematik

Georg-Büchner-Gymnasium Fachgruppe Mathematik. Schuleigenes Curriculum Mathematik Georg-Büchner-Gymnasium Fachgruppe Mathematik Schuleigenes Curriculum Mathematik Gymnasiale Oberstufe Erhöhtes Anforderungsniveau Verbindliche Themenreihenfolge verabschiedet Dezember 2011 [1] Analytische

Mehr

Georg-Büchner-Gymnasium Fachgruppe Mathematik. Schuleigenes Curriculum Mathematik

Georg-Büchner-Gymnasium Fachgruppe Mathematik. Schuleigenes Curriculum Mathematik Georg-Büchner-Gymnasium Fachgruppe Mathematik Schuleigenes Curriculum Mathematik Gymnasiale Oberstufe Grundlegendes Anforderungsniveau Verbindliche Themenreihenfolge verabschiedet Dezember 2011 [1] Analytische

Mehr

Inhalte Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Fächerübergriff. Hinweise

Inhalte Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Fächerübergriff. Hinweise Inhalte Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Fächerübergriff 11.1-1 Analysis I - Kurvenanpassung (10 Wochen) Ableitung und - Qualitatives und quantitatives Funktion Differenzieren zur

Mehr

Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- Westfalen

Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- Westfalen Abdeckung der inhaltlichen Schwerpunkte im Fach Mathematik für die Abiturprüfung 2009 in Nordrhein- durch die Schülerbücher Lambacher-Schweizer - Analysis Grundkurs Ausgabe Nordrhein- (ISBN 978-3-12-732220-0)

Mehr

Probleme lösen mit Hilfe von Ableitungen, Extrem- und Wendepunkten

Probleme lösen mit Hilfe von Ableitungen, Extrem- und Wendepunkten Kompetenzen und Inhalte des Bildungsplans Unterrichtsinhalte Die Schülerinnen und Schüler können - besondere Eigenschaften von Funktionen rechnerisch und mithilfe des GTR bestimmen; Bestimmung von Extrem-

Mehr

EdM Nordrhein-Westfalen Qualifikationsphase Bleib fit in Funktionsuntersuchungen. 1 Kurvenanpassung Lineare Gleichungssysteme

EdM Nordrhein-Westfalen Qualifikationsphase Bleib fit in Funktionsuntersuchungen. 1 Kurvenanpassung Lineare Gleichungssysteme EdM Nordrhein-Westfalen Qualifikationsphase 978-3-507-87900-3 Bleib fit in Differenzialrechnung Bleib fit in Funktionsuntersuchungen 1 Kurvenanpassung Lineare Gleichungssysteme Lernfeld: Krumm, aber doch

Mehr

Fachcurriculum Mathematik Kursstufe Kepler-Gymnasium Pforzheim

Fachcurriculum Mathematik Kursstufe Kepler-Gymnasium Pforzheim Kompetenzen und Inhalte des Bildungsplans - besondere Eigenschaften von Funktionen rechnerisch und mithilfe des CAS bestimmen; Unterrichtsinhalte Analysis Bestimmung von Extrem- und Wendepunkten (ca. 8-11

Mehr

Unterrichtsinhalte. Der Aufbau zusammengesetzter Funktionen aus elementaren Funktionen (ca. 3 5 Std.) Produkt, Quotient und Verkettung von Funktionen

Unterrichtsinhalte. Der Aufbau zusammengesetzter Funktionen aus elementaren Funktionen (ca. 3 5 Std.) Produkt, Quotient und Verkettung von Funktionen Kompetenzen und Inhalte des Bildungsplans Unterrichtsinhalte Hinweise/Vorschläge zur Erweiterung und Vertiefung des Kompetenzerwerbs - besondere Eigenschaften von Funktionen rechnerisch und mithilfe des

Mehr

Gymnasium Sulingen Fachschaft Mathematik Schulcurriculum Oberstufe (Stand ) Inhaltsbezogene Kompetenzen (hilfsmittelfrei)

Gymnasium Sulingen Fachschaft Mathematik Schulcurriculum Oberstufe (Stand ) Inhaltsbezogene Kompetenzen (hilfsmittelfrei) 1. Halbjahr (Analysis I) Prozessbezogene Kompetenzen Kurvenanpassung Teilthema Biegelinien entfällt ab 2017. Kompetenzen (hilfsmittelfrei) Kompetenzen (mit CAS) Zusätzliche Hinweise der Fachschaft Die

Mehr

EdM Hessen Qualifikationsphase Bleib fit in Exponentialfunktionen und Logarithmen

EdM Hessen Qualifikationsphase Bleib fit in Exponentialfunktionen und Logarithmen EdM Hessen Qualifikationsphase 978-3-507-87911-9 Bleib fit in Differenzialrechnung 1 Integralrechnung Lernfeld: Wie groß ist? 1.1 Der Begriff des Integrals 1.1.1 Aus Änderungsraten rekonstruierter Bestand

Mehr

Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg

Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg Grundlagen: 1.) Rahmenstoffplan Mathematik für die gymnasiale Oberstufe, herausgegeben von der Senatsverwaltung für Bildung, Jugend

Mehr

Schulinternes Curriculum Mathematik SII

Schulinternes Curriculum Mathematik SII Schulinternes Curriculum Mathematik SII Koordinatengeometrie Gerade, Parabel, Kreis Lösen von LGS mithilfe des Gaußverfahrens zur Bestimmung von Geraden und Parabeln 11 Differentialrechnung ganzrationaler

Mehr

Stoffverteilungsplan für das Fach Mathematik Qualifikationsphase (Stand: 04.02.2016)

Stoffverteilungsplan für das Fach Mathematik Qualifikationsphase (Stand: 04.02.2016) Stoffverteilungsplan für das Fach Mathematik Qualifikationsphase (Stand: 04.02.2016) Schuljahrgang 11 Analysis Anwendung von Verfahren zur Lösung linearer und quadratischer Gleichungen mit einfachen Koeffizienten

Mehr

Schulinternes Curriculum Mathematik Sekundarstufe II/Lk. Stand: November 2011

Schulinternes Curriculum Mathematik Sekundarstufe II/Lk. Stand: November 2011 Schulinternes Curriculum Mathematik Sekundarstufe II/Lk Stand: November 2011 Bemerkungen: - Die angegebenen Seitenzahlen beziehen sich auf das eingeführt Lehrwerk Lambacher-Schweizer Leistungskurs aus

Mehr

Jahrgangscurriculum 11.Jahrgang

Jahrgangscurriculum 11.Jahrgang Jahrgangscurriculum 11.Jahrgang Koordinatengeometrie Geraden (Lage von Geraden; Schnittwinkel) Abstände im KOSY Kreise Kreise und Geraden Parabeln und quadratische Funktionen (Parabel durch 3 Punkte, Anwendungsaufgaben)

Mehr

Wie steht s mit dir? Buch Schätze dich ein! Inhaltsbezogene Kompetenzen LS 11/12

Wie steht s mit dir? Buch Schätze dich ein! Inhaltsbezogene Kompetenzen LS 11/12 Mathematik - Lernstandsbogen Kurs: Jahrgang Q1.1 Thema: Analysis I / Stochastik I Zeitraum: 40 U- Wochen Wie steht s mit dir? Buch Schätze dich ein! Inhaltsbezogene Kompetenzen LS 11/12 0. Themenbereich:

Mehr

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name:

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name: Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK 1. Prüfungsteil Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell

Mehr

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK

Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Muster für einen Studienbericht (in Auszügen) im Fach Mathematik LK Name: Zur Vorbereitung verwendetes Hilfsmittel GTR (Modell und Typbezeichnung sind vom Bewerber anzugeben. ) (Modell und Typ sind mit

Mehr

Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation)

Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation) 1. Halbjahr EF 2. Halbjahr EF Einführungsphase (EF) Vektoren, ein Schlüsselkonzept (Punkte, Vektoren, Rechnen mit Vektoren, Betrag) Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen,

Mehr

Schulcurriculum für das Mathematik

Schulcurriculum für das Mathematik Schulcurriculum für das Fach Mathematik Oberstufe (Klassen 11+12) 2 2 Übernahme des gemeinsamen Curriculums für die Sekundarstufe II für das Fach Mathematik der Deutschen Schulen in Prag, Warschau und

Mehr

Jahrgangsstufe Koordinatengeometrie 2. Analysis 3. Beschreibende Statistik ( in Projektwochen)

Jahrgangsstufe Koordinatengeometrie 2. Analysis 3. Beschreibende Statistik ( in Projektwochen) Jahrgangsstufe 11 1. Koordinatengeometrie Geraden und Geradengleichungen ( Steigungswinkel, Parallelität, Orthogonale, Schnittpunkt zweier Geraden) Parabeln und quadratische Funktionen Lagebeziehungen

Mehr

Schulinterner Lehrplan Jahrgang 11/12

Schulinterner Lehrplan Jahrgang 11/12 Schulinterner Lehrplan Jahrgang 11/12 Benutztes Schulbuch: Schroedel : Elemente der Mathematik EdM Niedersachsen ISBN-Nr: 978-3-507-87920-1 Im Unterricht benutzter Taschenrechner: Sharp EL-9900G bzw. Nachfolgermodelle

Mehr

Lambacher Schweizer für berufliche Gymnasien. Ausgabe Wirtschaft. Stoffverteilungsplan für das berufliche Gymnasium

Lambacher Schweizer für berufliche Gymnasien. Ausgabe Wirtschaft. Stoffverteilungsplan für das berufliche Gymnasium Lambacher Schweizer für berufliche Gymnasien. Lambacher Schweizer Mathematik für berufliche Gymnasien Wirtschaft 12/13 Stoffverteilungsplan für das berufliche Gymnasium in Rheinland-Pfalz Stoffverteilungsplan

Mehr

Schulinterner Arbeitsplan für die Qualifikationsphase unter Berücksichtigung des Kerncurriculums für das Gymnasium - gymnasiale Oberstufe (2009)

Schulinterner Arbeitsplan für die Qualifikationsphase unter Berücksichtigung des Kerncurriculums für das Gymnasium - gymnasiale Oberstufe (2009) Schulinterner Arbeitsplan für die Qualifikationsphase unter Berücksichtigung des Kerncurriculums für das Gymnasium - gymnasiale Oberstufe (2009) Für die im Kerncurriculum für das Gymnasium gymnasiale Oberstufe

Mehr

- Zusammenhang lineare, quadratische Funktion betonen

- Zusammenhang lineare, quadratische Funktion betonen Curriculum Mathematik JS 11/ Eph Kernlehrplan Methodische Vorgaben/ Koordinatengeometrie - Gerade, Parabel, Kreis - Lineare Gleichungssysteme zur Bestimmung von Geraden und Parabeln - Zusammenhang lineare,

Mehr

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover

RRL GO- KMK EPA Mathematik. Ulf-Hermann KRÜGER Fachberater für Mathematik bei der Landesschulbehörde, Abteilung Hannover RRL GO- KMK EPA Mathematik Jahrgang 11 Propädeutischer Grenzwertbegriff Rekursion /Iteration Ableitung Ableitungsfunktion von Ganzrationalen Funktionen bis 4. Grades x 1/(ax+b) x sin(ax+b) Regeln zur Berechnung

Mehr

Inhaltsverzeichnis. A Analysis... 9

Inhaltsverzeichnis. A Analysis... 9 Inhaltsverzeichnis A Analysis... 9 1 Funktionale Zusammenhänge Wiederholung und Erweiterungen... 11 Rückblick... 11 1.1 Ganzrationale Funktionen... 14 1.2 Grenzwert einer Funktion f an einer Stelle x 0...

Mehr

Lambacher Schweizer für berufliche Gymnasien. Ausgabe Wirtschaft

Lambacher Schweizer für berufliche Gymnasien. Ausgabe Wirtschaft Lambacher Schweizer für berufliche Gymnasien. Lambacher Schweizer Mathematik für berufliche Gymnasien Wirtschaft 12/13 Stoffverteilungsplan für die Qualifikationsphase Grundkurs am Beruflichen Gymnasium

Mehr

Hauscurriculum des Kreisgymnasium St. Ursula Haselünne (Stand: Dez. 2014)

Hauscurriculum des Kreisgymnasium St. Ursula Haselünne (Stand: Dez. 2014) für die Qualifikationsphase unter Berücksichtigung des s für das Gymnasium die gymnasiale Oberstufe Mathematik (2009) Für die im für das Gymnasium die gymnasiale Oberstufe (KC) aufgeführten n Kompetenzen

Mehr

Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Grundkurs

Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Grundkurs Stand 04.11.2016 Grundlage Kernlehrplan G8 für die Sekundarstufe II (2014) Seite 1 von 6 Die angegebenen Zeiträume sind nur Anhaltswerte. Bei einem Rahmen von 30 Wochen ergeben sich mögliche Freiräume.

Mehr

Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Leistungskurs

Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Leistungskurs Stand: 19.08.2016 Grundlage Kernlehrplan G8 für die Sekundarstufe II (2014) Seite 1 von 7 Die angegebenen Zeiträume sind nur Anhaltswerte. Bei einem Rahmen von 30 Wochen ergeben sich mögliche Freiräume.

Mehr

Kepler-Gymnasium Freudenstadt. Mathematikcurriculum Kursstufe. Legende: Aufbau: Kompetenzbereiche:

Kepler-Gymnasium Freudenstadt. Mathematikcurriculum Kursstufe. Legende: Aufbau: Kompetenzbereiche: Kepler-Gymnasium Freudenstadt Mathematikcurriculum Kursstufe Legende: Kerncurriculum: normale Darstellung Schulcurriculum: gelb hinterlegt Wahlberreich: blaugrau unterlegt (geklammert) Aufbau: Zunächst

Mehr

Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik

Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe. Mathematik Vorläufiger schulinterner Lehrplan zum Kernlehrplan für die gymnasiale Oberstufe Mathematik 2.1.1 ÜBERSICHTSRASTER UNTERRICHTSVORHABEN EINFÜHRUNGSPHASE Unterrichtsvorhaben I: Unterrichtsvorhaben II: Beschreibung

Mehr

Schulinternes Curriculum Goethe-Oberschule Mathematik Sekundarstufe II

Schulinternes Curriculum Goethe-Oberschule Mathematik Sekundarstufe II Schulinternes Curriculum Goethe-Oberschule Mathematik Sekundarstufe II Auf Zeitangeben wurde bewusst verzichtet, da im kommenden Schuljahr 2010/2011 zum ersten Mal der Übergang von Klasse 10 ins Kurssystem

Mehr

Qualifikationsphasen Q1.1 bis Q2.2 / Leistungskurs

Qualifikationsphasen Q1.1 bis Q2.2 / Leistungskurs Qualifikationsphasen Q1.1 bis Q2.2 / Leistungskurs Inhalte/Lehrbuchkapitel Lambacher Schweizer, Qualifikationsphase LK NW I. Fortsetzung der Differenzialrechnung / Q1.1 Die natürliche Exponentialfunktion

Mehr

Qualifikationsphase Schülerbuch Lösungen zum Schülerbuch Schülerbuch Lehrerfassung

Qualifikationsphase Schülerbuch Lösungen zum Schülerbuch Schülerbuch Lehrerfassung Die Umsetzung der Lehrplaninhalte in Fokus Mathematik Qualifikationsphase auf der Basis des Kernlehrplans Sekundarstufe II Mathematik in Nordrhein-Westfalen. Schulinternes Curriculum Erwartete prozessbezogene

Mehr

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser

LEISTUNGSKURS GESAMTBAND. bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser nsivsr i, LEISTUNGSKURS GESAMTBAND Mathematisches Unterrichtswerk für das Gymnasium Ausgabe A bearbeitet von Heidi Bück Rolf Dürr Hans Freudigmann Günther Reinelt Manfred Zinser unter Mitwirkung von Jürgen

Mehr

Stoffverteilungsplan Sek II

Stoffverteilungsplan Sek II Klasse 11 (3-stündig) Stoffverteilungsplan Sek II Analysis - Differenzialrechnung Inhalte Hinweise Schulbuch Funktionen - Begriff der Funktion 12-15 - Symmetrien 22-24 - Verhalten im Unendlichen 20-21

Mehr

Hauscurriculum im Fach Mathematik für die Jahrgänge 11-12

Hauscurriculum im Fach Mathematik für die Jahrgänge 11-12 Gymnasium Marianum Meppen Hauscurriculum im Fach Mathematik für die Jahrgänge 11-12 Stand: September 2013 Anzahl wöchentlicher Unterrichtstunden... 2 Leistungsbewertung... 2 Lehrbücher... 3 Digitale Mathematikwerkzeuge

Mehr

Exkurs: Kreisgleichung mit Tangenten; LGS zur Bestimmung von Parabeln Exkurs: Umkehrfunktion

Exkurs: Kreisgleichung mit Tangenten; LGS zur Bestimmung von Parabeln Exkurs: Umkehrfunktion Grundkurs Jahrgangstufe Eph Eingeführtes Lehrbuch: Lambacher Schweizer Einführungsphase (Klett) Eph/1 1) Funktionen und ihre Eigenschaften - Modellieren von Sachverhalten Funktionsbegriff, Definitions-

Mehr

Mathematik Sekundarstufe II - Themenübersicht

Mathematik Sekundarstufe II - Themenübersicht Mathematik Sekundarstufe II - Themenübersicht Unterrichtsvorhaben EF-I: Einführungsphase Unterrichtsvorhaben EF-II: Grundlegende Eigenschaften von Potenzfunktionen, ganzrationalen Funktionen und Sinusfunktionen

Mehr

(in Klammern: Abschnitte aus dem Lehrbuch Lambacher-Schweizer, Analysis Leistungskurs NRW, Stuttgart )

(in Klammern: Abschnitte aus dem Lehrbuch Lambacher-Schweizer, Analysis Leistungskurs NRW, Stuttgart ) Herder-Gymnasium Köln-Buchheim: Schulinterner Lehrplan Mathematik Leistungskurs Q1/Q2 (Stand: März 2013) Schulinterner Lehrplan M LK Q1/Q2 (Abi 2014 und 2015) ANALYSIS (1) (in Klammern: Abschnitte aus

Mehr

Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik

Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik Berufliche Schulen des Landes Hessen Lehrplan Fachoberschule Allgemein bildender Lernbereich Mathematik Unterrichtsinhalte Funktionale Zusammenhänge Ausbildungsabschnitt I, 50Stunden Lineare Funktionen

Mehr

Schulinternes Curriculum. Mathematik

Schulinternes Curriculum. Mathematik Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen

Mehr

2 Fortführung der Differenzialrechnung... 48

2 Fortführung der Differenzialrechnung... 48 Inhaltsverzeichnis Inhaltsverzeichnis 1 Folgen und Grenzwerte................................................................................... 10 1.1 Rekursive und explizite Vorgabe einer Folge...........................................................

Mehr

Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für die Oberstufe (11/12) ea und ga Juni 2011

Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für die Oberstufe (11/12) ea und ga Juni 2011 Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für die Oberstufe (11/12) ea und ga Juni 2011 Anzahl der Klausuren Gewichtung der schriftlichen Leistungen 11 1 + 2 oder 2 + 1 50%-60% bei 2 Klausuren,

Mehr

Tabellenkalkulation: Computer Algebra System (CAS):

Tabellenkalkulation: Computer Algebra System (CAS): Das Curriculum basiert auf dem Kerncurriculum für die gymnasiale Oberstufe, herausgegeben vom Niedersächsischen Kultusministerium, Hannover 2009, den Bildungsstandards,, herausgegeben von der Kultusministerkonferenz

Mehr

Ernst Klett Verlag GmbH, Stuttgart 2017 Alle Rechte vorbehalten Von dieser Druckvorlage ist die Vervielfältigung für den eigenen Unterrichtsgebrauch

Ernst Klett Verlag GmbH, Stuttgart 2017 Alle Rechte vorbehalten Von dieser Druckvorlage ist die Vervielfältigung für den eigenen Unterrichtsgebrauch Ernst Klett Verlag GmbH, Stuttgart 2017 Alle Rechte vorbehalten Von dieser Druckvorlage ist die Vervielfältigung für den eigenen Unterrichtsgebrauch gestattet. Seite 1 Ernst Klett Verlag GmbH, Stuttgart

Mehr

MATHEMATIK OBERSTUFE - SCHULCURRICULUM DEUTSCHE SCHULE LONDON - STAND:

MATHEMATIK OBERSTUFE - SCHULCURRICULUM DEUTSCHE SCHULE LONDON - STAND: Organisatorisches: - Die Abiturvorschläge werden aus zwei verschiedenen Varianten bestehen (A: ohne GTR / B: mit GTR). Die Schulen der Region geben zu einem geeigneten Zeitpunkt an, welche der beiden Varianten

Mehr

Schulcurriculum für die Qualifikationsphase im Fach Mathematik

Schulcurriculum für die Qualifikationsphase im Fach Mathematik Schulcurriculum für die Qualifikationsphase im Fach Mathematik Fach: Mathematik Klassenstufe: 11/12 Anzahl der zu unterrichtenden Wochenstunden: 4 Die folgenden Standards im Fach Mathematik benennen sowohl

Mehr

Fachcurriculum Mathematik Profiloberstufe am Gymnasium Trittau

Fachcurriculum Mathematik Profiloberstufe am Gymnasium Trittau Fachcurriculum Mathematik Profiloberstufe am Gymnasium Trittau (Alle Angaben zur vorgesehenen zahl gehen von 30 eingeplanten je Schuljahr aus!) WICHTIG: Nach Absprache in der Fachschaft ist die Reihenfolge

Mehr

Neue gymnasiale Oberstufe neue Chancen für CAS-Einsatz?

Neue gymnasiale Oberstufe neue Chancen für CAS-Einsatz? Neue gymnasiale Oberstufe neue Chancen für CAS-Einsatz? Beschluss der KMK vom 07.05.2009: Aufwertung der MINT-Bildung, u.a. CAS in allen MINT-Fächern verbindlich nutzen Die veränderte Unterrichtsstruktur

Mehr

Thema 1: Eigenschaften von Funktionen

Thema 1: Eigenschaften von Funktionen HARDTBERG-GYMNASIUM DER STADT BONN Stand: Juni 2015 Schulinternes Curriculum Mathematik für die Qualifikationsphase (Q1 und Q2) Lehrbuch: Lambacher Schweizer: Mathematik Qualifikationsphase, Klett Verlag

Mehr

1. Lernbereich: Kurvenanpassung Interpolation

1. Lernbereich: Kurvenanpassung Interpolation 1. Lernbereich: Kurvenanpassung Interpolation Grober Zeitrahmen: 6 Wochen, 12 Doppelstunden Ansprechpartner: Rk, Hag Hinweise: (Abfolge der Lernbereiche zur Analysis: Kurvenanpassung Interpolation, Von

Mehr

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen: In den Jahrgangsstufen 11 und 12 arbeitet das SGR mit dem Lehrbuch Lambacher Schweizer Qualifikationsphase LK / GK und dem TI-nspire CX CAS. Die im eingeführten Lehrbuch vorhandenen Hinweise im Hinblick

Mehr

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86

Inhalt. 1 Rechenoperationen Gleichungen und Ungleichungen... 86 Inhalt 1 Rechenoperationen.................................. 13 1.1 Grundbegriffe der Mengenlehre und Logik............................. 13 1.1.0 Vorbemerkung.................................................

Mehr

Schulinterner Lehrplan Mathematik: Einführungsphase

Schulinterner Lehrplan Mathematik: Einführungsphase Schulinterner Lehrplan Mathematik: Einführungsphase Schulinterner Lehrplan Mathematik: Qualifikationsphase Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, besondere Punkte

Mehr

Lehrbuch: Lambacher Schweizer Qualifikationsphase Leistungskurs / Grundkurs Bestelln.:

Lehrbuch: Lambacher Schweizer Qualifikationsphase Leistungskurs / Grundkurs Bestelln.: Kernlehrplan Mathematik LFS Bonn (Q1/Q2) (Stand 09/2015) Lehrbuch: Lambacher Schweizer Leistungskurs / Grundkurs Bestelln.: 978-3-12-735441-6 Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere

Mehr

ToDo-Liste für s Mathe-Abi 2009

ToDo-Liste für s Mathe-Abi 2009 ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares

Mehr

Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung

Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung Dimensionen Mathematik 7 GK Grundkompetenzen für die neue Reifeprüfung Inhaltsverzeichnis Buchkapitel Inhaltsbereiche Seite Komplexe Zahlen Algebra und Geometrie Grundbegriffe der Algebra (Un-)Gleichungen

Mehr

Leitidee: Algorithmus und Zahl Die Schülerinnen und Schüler nutzen Grenzwerte zur Bestimmung von Ableitungen und Integralen.

Leitidee: Algorithmus und Zahl Die Schülerinnen und Schüler nutzen Grenzwerte zur Bestimmung von Ableitungen und Integralen. GYMNASIUM HARKSHEIDE Fachcurriculum Mathematik SEK II Einführungsjahr Inhalte I Analysis ganzrationale Funktionen Wurzelfunktion f (x)=1/x f (x) = x q mit q aus Q mittlere Änderungsrate Differenzenquotient

Mehr

Box. Mathematik ZU DEN KERNCURRICULUM-LERNBEREICHEN:

Box. Mathematik ZU DEN KERNCURRICULUM-LERNBEREICHEN: Box Mathematik Schülerarbeitsbuch P (μ o- X μ + o-) 68,3 % s rel. E P (X = k) f g h A t μ o- μ μ + o- k Niedersachsen Wachstumsmodelle und Wahrscheinlichkeitsrechnung ZU DEN KERNCURRICULUM-LERNBEREICHEN:

Mehr

2. Curriculum Sekundarstufe II

2. Curriculum Sekundarstufe II 2. Curriculum Sekundarstufe II 2.1 Kompetenzbereiche Mathematik Der Beitrag des Faches Mathematik zur erweiterten Allgemeinbildung beschränkt sich nicht auf die Bearbeitung verbindlicher Inhalte, sondern

Mehr

Mathematik Schulinterner Lehrplan Qualifikationsphase (GK/LK) Geschwister-Scholl-Gymnasium Pulheim. gültig ab 2015/16

Mathematik Schulinterner Lehrplan Qualifikationsphase (GK/LK) Geschwister-Scholl-Gymnasium Pulheim. gültig ab 2015/16 Mathematik Schulinterner Lehrplan (GK/LK) Geschwister-Scholl-Gymnasium Pulheim gültig ab 2015/16 Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, besondere Punkte von Funktionsgraphen,

Mehr

Deutsche Schule New Delhi. Schulcurriculum im Fach Mathematik

Deutsche Schule New Delhi. Schulcurriculum im Fach Mathematik Deutsche Schule New Delhi Schulcurriculum im Fach Mathematik Stand 12. März 2013 1 Schulcurriculum Mathematik, Klasse 11-12 Themen/Inhalte: Kompetenzen Hinweise Zeit Die Nummerierung schreibt keine verbindliche

Mehr

Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl:

Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl: Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl: 401546 Thema 1: Zahlenbereiche und Rechengesetze Reflektieren über das Erweitern von Zahlenbereichen

Mehr

Regionalcurriculum Mathematik

Regionalcurriculum Mathematik Regionalcurriculum Mathematik Die folgenden Standards im Fach Mathematik benennen sowohl allgemeine als auch inhaltsbezogene mathematische Kompetenzen, die Schülerinnen und Schüler in aktiver Auseinandersetzung

Mehr

Fachbereich Mathematik

Fachbereich Mathematik Qualifikationsphase Leistungskurse 12. und 13. Schuljahr (Abitur nach 13 Schuljahren) Semesterübersicht Semester 12. und 13. Schuljahr Leistungskursfach Gewichtung 1 Differentialrechnung I 2/3 Integralrechnung

Mehr

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks 2.1.2 Konkretisierte Unterrichtsv auf der Basis des Lehrwerks Einführungsphase 1 Buch: Bigalke, Dr. A., Köhler, Dr. N.: Mathematik Gymnasiale Oberstufe Nordrhein-Westfalen Einführungsphase, Berlin 2014,

Mehr

Einführungsphase. Analysis

Einführungsphase. Analysis Einführungsphase Analysis Differenzenquotient, Differentialquotient Grundlagen der Differentialrechnung Untersuchung von Funktionsgraphen Die SuS kennen Grenzwerte von Folgen von Funktionswerten reeller

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis Teil I Analysis 1 Mengen... 3 1.1 Grundbegriffe..... 3 1.2 Mengenverknüpfungen... 5 1.3 Zahlenmengen... 6 1.3.1 Natürliche,ganzeundrationaleZahlen... 7 1.3.2 ReelleZahlen... 8 2 Elementare

Mehr

Schulinternes Curriculum Mathematik Qualifikationsphase Leistungskurs / Grundkurs

Schulinternes Curriculum Mathematik Qualifikationsphase Leistungskurs / Grundkurs Unterrichtsvorhaben I: Eigenschaften von Funktionen (Höhere Ableitungen, Besondere Punkte von Funktionsgraphen, Funktionen bestimmen, Parameter) Modellieren, Problemlösen Inhaltsfeld: Funktionen und Analysis

Mehr

Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017

Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017 Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017 Übersicht: Q2.3 im Raum Q2.4 Matrizen zur Beschreibung von Q2.6 Vertiefung der Analytischen Geometrie (nur Grundkurs) verbindlich:

Mehr

Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik

Klaus-Groth-Schule - Neumünster Fachcurriculum Mathematik Jahrgang 10 Funktionen Funktionsbegriff - Definition - vielfältige Anwendungen - Umkehrbarkeit (intuitiv, Anwendungen) ganzrationale Funktionen Modellierung - Ablesen der Werte - Ungefähre Bestimmung der

Mehr

Stoffverteilungsplan im Rahmen des schulinternen Lehrplans für die Jahrgangsstufe EF bezogen auf das Lehrwerk Fokus Mathematik

Stoffverteilungsplan im Rahmen des schulinternen Lehrplans für die Jahrgangsstufe EF bezogen auf das Lehrwerk Fokus Mathematik Stoffverteilungsplan im Rahmen des schulinternen Lehrplans für die Jahrgangsstufe EF bezogen auf das Lehrwerk Zeitraum 6 UE Kapitel 1 Wiederholung zu linearen und quadratischen Funktionen 1.1 Fit im Umgang

Mehr

Stoffverteilungsplan Mathematik Qualifikationsphase (GK und LK) auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Qualifikationsphase (GK und LK) auf der Grundlage des Kernlehrplans Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Goerdeler-Gymnasium Paderborn. Schulinternes Curriculum für das Fach Mathematik in der Sekundarstufe II (EF, Q1, Q2) bis zum Abiturjahrgang 2016

Goerdeler-Gymnasium Paderborn. Schulinternes Curriculum für das Fach Mathematik in der Sekundarstufe II (EF, Q1, Q2) bis zum Abiturjahrgang 2016 Goerdeler-Gymnasium Paderborn Schulinternes Curriculum für das Fach Mathematik in der Sekundarstufe II (EF, Q1, Q2) bis zum Abiturjahrgang 2016 auf Grundlage der Richtlinien und Lehrpläne sowie der fachlichen

Mehr

Curriculum für das Fach: Mathematik

Curriculum für das Fach: Mathematik Curriculum für das Fach: Mathematik Prinzipien der Unterrichtsgestaltung und Bewertung. Prinzipien der Unterrichtsgestaltung. Ziel des Mathematikunterrichts ist, die Kollegiatinnen und Kollegiaten auf

Mehr

Einführungsphase. Kapitel I: Funktionen. Arithmetik/ Algebra

Einführungsphase. Kapitel I: Funktionen. Arithmetik/ Algebra Einführungsphase prozessbezogene Kompetenzen Die SuS sollen... inhaltliche Kompetenzen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I: - Realsituationen in ein mathematisches Modell

Mehr

Grundkompetenzen (Mathematik Oberstufe)

Grundkompetenzen (Mathematik Oberstufe) Grundkompetenzen (Mathematik Oberstufe) AG: Algebra und Geometrie (14 Deskriptoren) FA: Funktionale Abhängigkeiten (35 Deskriptoren) AN: Analysis (11 Deskriptoren) WS: Wahrscheinlichkeit und Statistik

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag. Grundkurs, Leistungskurs

Lehrwerk: Lambacher Schweizer, Klett Verlag. Grundkurs, Leistungskurs Jahrgangsstufe Q1 Analysis Lerninhalte Q1 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Hilfsmittel und Methoden 1 Funktionen und Analysis Funktionen als mathematische Modelle Fortführung der

Mehr

Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken

Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken Heinrich-Heine-Gymnasium Herausforderungen annehmen Haltungen entwickeln Gemeinschaft stärken Schulinterner Lehrplan Mathematik in der ab dem Schuljahr 2014/15 Eingeführtes Schulbuch: Mathematik Gymnasiale

Mehr

Stoffverteilungsplan Mathematik Qualifikationsphase Grundkurs

Stoffverteilungsplan Mathematik Qualifikationsphase Grundkurs Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Stoffverteilungsplan Mathematik Qualifikationsphase auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik Qualifikationsphase auf der Grundlage des Kernlehrplans Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Gymnasium der Stadt Menden Stoffverteilung Mathematik Q1/Q2, LK und GK, Stand August 2015 (vorläufig)

Gymnasium der Stadt Menden Stoffverteilung Mathematik Q1/Q2, LK und GK, Stand August 2015 (vorläufig) Stoffverteilung Mathematik Q1/Q2, LK und GK, Stand August 2015 (vorläufig) Vorbemerkung: Der folgende Lehrplan wird erstmalig im Schuljahr 2015/16 umgesetzt. Nach einem erstmaligen Durchlauf zur Erprobung

Mehr

Fachkommission zentrale Abschlussprüfungen Mathematik Berufliches Gymnasium

Fachkommission zentrale Abschlussprüfungen Mathematik Berufliches Gymnasium Seite 1 Themenkorridore 1 für die zentralen Abschlussprüfungen Mathematik an Beruflichen Gymnasien in Schleswig-Holstein für die Jahre 2012 und 2013 (Inhaltliche Erläuterungen zu den EPA) Beim Nachweis

Mehr

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen: Die hier vereinbarte Reihenfolge der Unterrichtsvorhaben ist verbindlich. Bei besonderen inhaltlichen Schwerpunktsetzungen in den offiziellen Abiturvorgaben kann die jeweilige Fachlehrergruppe des Abiturjahrgangs

Mehr

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen: Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen:

Thema: Das Integral, ein Schlüsselkonzept (Von der Änderungsrate zum Bestand, Integral- und Flächeninhalt, Integralfunktion) Zentrale Kompetenzen: Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Polynomfunktion Typische Verläufe von Graphen in Abhängigkeit vom Grad der Polynomfunktion (er)kennen Zwischen tabellarischen und grafischen

Polynomfunktion Typische Verläufe von Graphen in Abhängigkeit vom Grad der Polynomfunktion (er)kennen Zwischen tabellarischen und grafischen AG AG 1 AG 1.1 AG 1.2 AG 2 AG 2.1 AG 2.2 AG 2.3 AG 2.4 AG 2.5 AG 3 AG 3.1 AG 3.2 AG 3.3 AG 3.4 AG 3.5 AG 4 AG 4.1 AG 4.2 Inhaltsbereich Algebra und Geometrie Grundbegriffe der Algebra Wissen über die Zahlenmengen

Mehr

Stoffprogramm für die Maturaprüfung im Grundlagenfach Mathematik

Stoffprogramm für die Maturaprüfung im Grundlagenfach Mathematik Stoffprogramm für die Maturaprüfung im Grundlagenfach Mathematik Beni Keller 21. August 2016 Grundsatz Es gehört alles zum Prüfungsstoff, was in den letzten drei Jahren vor der Matura im Unterricht behandelt

Mehr

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie

Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie Mathematik für Fachhochschule, Duale Hochschule und Berufsakademie mit ausführlichen Erläuterungen und zahlreichen Beispielen Bearbeitet von Prof. Dr. Guido Walz 1. Auflage 2010. Taschenbuch. xi, 580 S.

Mehr

Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17

Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17 Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17 Thema 1: Zahlenbereiche und Rechengesetze Reflektieren über das Erweitern von Zahlenbereichen von den natürlichen Zahlen zu den ganzen,

Mehr