Wissenschaftliche Nachrichten: Vol. 125/2004, 35-37

Größe: px
Ab Seite anzeigen:

Download "Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 125/2004, 35-37"

Transkript

1 Wissenschaftliche Nachrichten: Vol. 5/004, 5-7 Das Ziegenproblem in Excel NORBERT BRUNNER und MANFRED KÜHLEITNER Das folgende Problem stammt aus einer Fernsehshow: Hinter einem von drei Toren ist der Hauptpreis versteckt, hinter den anderen Ziegen als Symbol für die Niete. Der Kandidat wählt im ersten Schritt eines der Tore. Das Tor wird jedoch nicht geöffnet; stattdessen öffnet der Moderator (der weiß hinter welchem Tor sich der Hauptpreis versteckt) eines der beiden anderen Tore, mit einer Niete natürlich, und bietet dem Kandidaten an, seine ursprüngliche Auswahl zu überdenken, d.h. der Kandidat kann zum anderen noch verschlossenen Tor wechseln oder bei seiner ersten Wahl bleiben. Anschließend öffnet der Moderator das vom Kandidaten gewählte Tor und der Kandidat gewinnt den Inhalt. Die entscheidende Frage lautet: Soll der Kandidat bei seiner ersten Wahl bleiben oder zum anderen Tor wechseln? Da zwei unverschlossene Tore übrig bleiben vermutet der gesunde Menschenverstand, dass ein Wechsel auf keinen Fall etwas bringen kann. (Es scheint sich nur die Frage zu stellen, ob die Gewinnwahrscheinlichkeit bleibt oder nach dem Öffnen des Ziegentors bei jedem der beiden Tore ½ ist.) Die überraschende Antwort lautet aber: Der Wechsel verdoppelt die Gewinnchance auf den Hauptpreis! Bei dieser scheinbar simplen Aufgabe zeigt sich, wie schwierig das Schätzen von Wahrscheinlichkeiten ist. Es ist daher besser, Problemen der Wahrscheinlichkeitsrechnung mathematisch auf den Grund zu gehen, statt mit der Anschauung. Das ist aber oft schwierig: In seltenen Fällen lassen sich exakte Lösungen angeben. Und auch dann können geringfügige Modifikation dazu führen, dass eine neue Problemstellung unlösbar wird. Aus diesem Grund bieten sich Simulationen an. Sie lassen sich auch mit geringen Kenntnissen aufstellen und an neue Probleme anpassen. Entsprechend vielfältig sind die Einsatzgebiete dafür. Als Hindernis stellt sich meist das Erlernen einer Programmiersprache dar. Dies ist bei der Verwendung eines Tabellenkalkulationsprogramms wie z.b. Microsoft Excel überflüssig.. Monte-Carlo Simulation. Wir stellen uns vor, die Show werde 000 Mal wiederholt und betrachten einen Kandidaten, der ein Tor stets nach dem Zufallsprinzip auswählt und das Angebot des Showmasters zu wechseln niemals wahrnimmt. Die Häufigkeit seines Erfolgs ist dann ein Schätzwert dafür, dass die Strategie S, niemals wechseln, zum Erfolg führt. Parallel dazu betrachten wir einen Kandidaten, der das Angebot jedes Mal annimmt, der also die Strategie S, immer wechseln, anwendet. Dazu fertigen wir folgendes Tabellenblatt an: In die Zeile kommt erklärender Text (siehe Tabelle ). Tabelle. Simulation des Ziegenproblems. A B C D E F G Nr. Gewinn Wahl Ziegen Wahl S S tor -Tor tor -Tor In Spalte A nummerieren wir die Anzahl der Spiele. Wir schreiben daher in die Zelle A die Zahl, in A die Funktion = +A und kopieren sie bis einschließlich A hat SAT. die Sendung Geh aufs Ganze! gestartet, die 999 von Kabel übernommen und zuletzt 00 ausgestrahlt worden ist. Ihr Konzept basiert auf dem Originalspiel Lets make a deal, das 96 bei NBC auf Sendung gegangen ist. Eine ausführliche Diskussion findet man bei Gero von Randow: Das Ziegenproblem, Denken in Wahrscheinlichkeiten. Rowolth TB-V,. Aufl., 004.

2 Im ersten Schritt werden der Gewinn platziert und der Kandidat wählt ein Tor. Dies erfolgt in Spalte B und C (Auswahl des Kandidaten) mit der Wahl je einer gleich wahrscheinlichen Zufallszahl aus der Menge {,, }. In Excel realisiert man dies mit Hilfe des Befehls ZUFALLSBEREICH(min; max). Er liefert eine ganze Zufallszahl aus dem über zwei Grenzen min und max festgelegten Bereich. Wir schreiben daher in die Zellen B und C den Befehl =ZUFALLSBEREICH(;) Bei jeder Neuberechnung (Funktionstaste F9) der Tabelle wird eine neue Zufallszahl ausgegeben. Ist diese Funktion nicht verfügbar, so muss man aus dem Menü Extras den Add- In-Manager aufrufen und die Analyse-Funktionen installieren. Für die Strategie S können wir (in Zelle D) bereits den Erfolg auswerten, weil es für den Kandidaten irrelevant ist, in welchem der beiden nicht gewählten Tore die Ziege ist: Wenn er Erfolg hat, geben wir ein, sonst 0. In Excel schreibt man solche Fallunterscheidungen mit der Funktion WENN(Bedingung; Dann; Sonst) an: Wenn die Bedingung erfüllt ist, also B = C, dann ist das Ergebnis, sonst (d.h. B C) 0. In D steht also die Funktion =WENN(B=C;;0) Wir kopieren den Bereich B:D bis in Zeile 00. Zur Auswertung der Erfolgshäufigkeiten berechnen wir in D00 den Mittelwert, also: =MITTELWERT(D:D00) Bei 000 Spielen wird man rund Mal auf Anhieb das erfolgreiche Tor erraten, weswegen dieser Mittelwert rund / sein wird. Für die Strategie S ist das Öffnen einer Ziegentür durch den Moderator von Interesse: Der Moderator präsentiert ein Tor mit einer Niete. Die Nummer dieses Tores schreiben wir in die Zelle E. Im Folgenden überlegen wir uns, wie wir zu dieser Tornummer kommen: Wenn B und C unterschiedlich sind, ist das einfach das Tor mit der Nummer 6 B C, weil für die Summe der Tore gilt: ++ = 6. Für B = C liefert diese Formel aber keine zulässige Auswahl. Ist B=C=, so kann der Moderator die Tore oder öffnen. Damit er keine Information über das Gewinntor preisgibt, wählt er bzw. zufällig. Dies geschieht mit Hilfe des Befehls ZUFALLSBEREICH(;). Ist B=C=, so kann der Moderator die Tore oder öffnen. Dies geschieht mit Hilfe des Befehls ZUFALLSBEREICH(;). Der schwierigste Fall ist B=C=. In diesem Fall erfolgt die Auswahl eines der beiden Tore oder mit Hilfe des Befehls *ZUFALLSBEREICH(0;)+. (Die beiden gleichwahrscheinlichen Zufallszahlen 0 und werden zu den Zufallszahlen und transformiert.) In Excel schreibt man diese Fallunterscheidungen mit der Funktion WENN an, die aber ineinander verschachtelt wird. (Wir arbeiten so in vier Ebenen, wobei in Excel bis zu sieben Ebenen zulässig sind.) In E steht somit (Achtung auf die Klammern) die Funktion: =WENN(B=C; WENN(B=;ZUFALLSBEREICH(;); WENN(B=;ZUFALLSBEREICH(;); *ZUFALLSBEREICH(0;)+)); 6-B-C) Nach der Strategie S wechselt der Kandidat auf das einzig noch verbleibende Tor mit der Nummer 6-C-E. Wir schreiben daher in die Zelle F die Formel =6-C-E In Zelle G werten wir die Strategie S aus: Wir tragen in diese Zelle die Formel =WENN(F=B;;0)

3 ein. Schließlich zählen wir, wie oft diese Strategie zum Erfolg führt. Dazu kopieren wir E:G bis in Zeile 00 und berechnen in G00 den Mittelwerte: =MITTELWERT(G:G00) Wie man beobachten kann, gewinnt man mit der Strategie S genau dann, wenn die Strategie S verliert, weswegen man einen Mittelwert von rund / erwarten kann.. Exakte Lösung. Die Berechnung der exakten Wahrscheinlichkeit kann auf verschiedene Arten erfolgen. Eine durch die Simulation nahe gelegte Möglichkeit ist es, alle Spielausgänge für die beiden Strategien immer wechseln bzw. nie wechseln zu bestimmen. Dies erfolgt in Tabelle. Angegeben ist, hinter welchem Tor sich das Auto befindet und wie die erste Wahl des Kandidaten ausfällt. Dies definiert neun gleich wahrscheinliche Szenarien, für die der weitere Spielverlauf in den nachfolgenden Spalten beschrieben ist: Welches Tor öffnet der Moderator, welche Wahl trifft der Kandidat anschließend, gewinnt er schließlich den Hauptpreis? Wir sehen, dass der Spieler mit der Strategie S in von 9 Fällen gewinnt und mit der Strategie S in den anderen 6 Fällen. Tabelle. Mögliche Ausgänge der Strategien nie wechseln bzw. immer wechseln. Gewinn hinter Tor Nr. Kandidat wählt Tor Nr. Moderator öffnet Tor Nr. Kandidat beharrt S gewinnt Kandidat wechselt S gewinnt oder X oder X X X oder X oder X X X oder X oder. Schlussbemerkungen. a) Wegen der geringen Zahl von Simulationen sind in unserem Tabellenblatt die Häufigkeiten nur ungenaue Näherungen der exakten Wahrscheinlichkeiten / und /. Wiederholt man die Rechnungen durch Drücken der Taste F9, so sieht man, dass die Mittelwerte in den Zellen D00 bzw. G00 ab der zweiten Dezimale variieren. Eine theoretische Begründung dafür liefert die Ungleichung von Tschebyscheff: Ist X eine Zufallsvariable mit Erwartungswert E(X) und Varianz V(X) und schätzt man den Erwartungswert mit Hilfe einer Stichprobe vom Umfang n, so lässt sich die Wahrscheinlichkeit, dass der Stichprobenmittelwert X vom Erwartungswert um mehr als ε abweicht, zu V( X) Pr ( X EX ( ) > ε ) <. n ε berechnen. Insbesondere konvergiert die Wahrscheinlichkeit für eine Abweichung von mehr als ε > 0 mit n gegen 0 (Konvergenz nach der Wahrscheinlichkeit). Die Simulation führt zu einer Umformulierung der Aufgabe in Häufigkeiten, was die Lösung erleichtert; vgl. Krauss, S. und Wang, X.T. (00): The psychology of the Monty Hall problem: Discovering psychological mechanisms for solving a tenacious brain teaser. In: J. Experimental Psychology: General. Jg., S. -.

4 Zählt X die Erfolge der Strategie S, so gilt E(X) = / und V(X)= /*/ = /9. Für eine Stichprobe vom Umfang n =.000 ist die Wahrscheinlichkeit, dass der Stichprobenmittelwert vom Erwartungswert um mehr als 0, abweicht (somit die erste Dezimalstelle variiert) kleiner als /90 0,0 (analog bei S). Somit ist nur in % der Neuberechnungen mit der Taste F9 eine Veränderung der ersten Dezimalstelle zu erwarten. Insbesondere wird die 50:50 Gewinn- Hypothese, welche der gesunde Menschenverstand propagiert, nicht unterstützt. b) Das Tabellenblatt kann auch leicht ergänzt werden, um andere Strategien auszuwerten. Eine solche Strategie S könnte z.b. sein, mit einem Münzwurf zu entscheiden, ob man auf der ersten Wahl beharrt oder wechselt. Bestimmt man in diesem Fall die Gewinnchance, so ist sie 50:50. c) Eine weitere Situation entsteht, wenn der Moderator das Spiel beenden kann, indem er gleich das vom Kandidaten in Schritt gewählte Tor öffnet, sofern es ein Ziegentor ist. Um keine Information preiszugeben, wird er das zufällig mit einer gewissen Wahrscheinlichkeit p machen. (Der Fall p = 0 ist das ursprüngliche Spiel.) Bei gegebenem p lassen sich die Erfolgsaussichten der beiden Strategien S und S wieder mit einer Simulation berechnen: Wendet der Spieler die Strategie S an, so ist die Gewinnchance /. Verwendet er hingegen immer S, so beträgt die Erfolgsaussicht ( p), nämlich die Wahrscheinlichkeit, dass er zuerst ein falsches Tor erwischt, mal die bedingte Wahrscheinlichkeit, dass es der Moderator nicht öffnet. d) Bei dieser Variante stehen sich somit die Strategien des Moderators (Wahl von p) und des Kandidaten (Wahl von S oder S) gegenüber. Um (langfristig) den Erfolg der Spieler zu minimieren (die Zielfunktion ist das Maximum der beiden oben berechneten Erfolgsaussichten), sollte der Moderator p ½ wählen. Dann wird für den Spieler beharren (S) zur besseren Strategie. e) Man kann am Beispiel c) auch das Thema bedingte Wahrscheinlichkeiten (Satz von Bayes) illustrieren: A i sei das Ereignis, dass sich der Gewinn hinter Tor i versteckt. Vor der ersten Auswahl ist die Wahrscheinlichkeit Pr( A i ) =. Nun wählt der Spieler ein Tor, etwa Nr.. Anschließend öffnet der Moderator ein Tor mit einer Niete. Dies erfolgt zufällig unter der Einschränkung, dass keinesfalls das Gewinntor aufgedeckt wird. Betrachten wir jetzt das Ereignis B, dass Tor geöffnet wird: Wenn man weiß, dass der Gewinn bei Tor i liegt (Annahme A i ), dann lässt sich die bedingte Wahrscheinlichkeit für B berechnen: Wenn der Gewinn hinter dem vom Spieler gewählten Tor liegt, wird der Moderator zufällig zwischen Tor und wählen, entscheidet sich also mit 50% Wahrscheinlichkeit für Tor : Pr ( BA ) =. Wenn der Gewinn bei Tor liegt, dann darf der Moderator dieses Tor gemäß der eben formulierten Einschränkung nicht öffnen, es ist also Pr ( BA ) = 0. Ist schließlich der Gewinn hinter Tor, dann hat der Moderator die Wahl zwischen Tor oder. Das vom Kandidaten gewählte Tor öffnet er mit der Wahrscheinlichkeit p und Tor daher mit der Pr BA = p. Wahrscheinlichkeit ( ) Daraus lässt sich umgekehrt die Wahrscheinlichkeit für B berechnen (die Ereignisse A i schließen sich gegenseitig aus, eines tritt aber ein): 4

5 ( B) = ( B A ) + ( B A ) + ( B A ) Pr Pr Pr Pr ( BA) ( A) ( BA) ( A) ( BA) ( A) = Pr Pr + Pr Pr + Pr Pr = p Von Interesse ist für den Spieler, der Tor gewählt hat, ob nach dem Eintreten des Ereignisses B (Tor mit einer Niete ist geöffnet worden) der Gewinn eher in Tor oder in Tor liegt. Dazu berechnet er die bedingten Wahrscheinlichkeiten für A bzw. A neu: Pr( A ( ) ( ) B) Pr BA Pr A Pr ( A B) = = = Pr( B) Pr B p ( A B) ( ) ( BA) Pr ( A) Pr( A B) Pr = = = Pr( B) Pr B p Pr ( ) Für p < ½ ist S die bessere Strategie (Wechsel zu Tor ) und für p > ½ ist es S. Für p = ½ haben beide Strategien die Gewinnchance von 50%; jeweils unter der Bedingung, dass der Moderator weitergespielt hat. (Ohne diese Bedingung ist sie /, nach Beispiel c.) Anschrift der Verfasser: a.o. Univ. Prof. Dr. Norbert Brunner und a.o. Univ. Prof. Dr. Manfred Kühleitner Univ. Bodenkultur, Dept. Integrative Biologie, Inst. Math., Peter-Jordan-Str. 8, 90 Wien norbert.brunner@boku.ac.at, manfred.kuehleitner@boku.ac.at 5

Paradoxien bei bedingten Wahrscheinlichkeiten - Das Ziegenproblem

Paradoxien bei bedingten Wahrscheinlichkeiten - Das Ziegenproblem Paradoxien bei bedingten Wahrscheinlichkeiten - Das Ziegenproblem Ein Referat von Maren Hornischer & Anna Spitz Wuppertal, den 28. Mai 2014 Inhalt 1 Das Ziegenproblem oder auch das "3-Türen-Problem"...

Mehr

Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 131/2006, 19-21

Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 131/2006, 19-21 Der T-Test in Excel NORBERT BRUNNER und MANFRED KÜHLEITNER Ein häufiges Problem ist der Vergleich eines beobachteten Stichprobenmittelwerts mit einem Sollwert. Dabei wird der T-Test angewandt. Wir zeigen

Mehr

Anhang 9: 3. Szenario

Anhang 9: 3. Szenario Anhang 9: 3. Szenario Monty Hall s Problem (Ziegenproblem) 268 3. Szenario Monty Hall s Problem oder das Ziegenproblem 269 Ziegenproblem nach Wikipedia, der freien Enzyklopädie Das Ziegenproblem (auch

Mehr

Cusanus-Gymnasium Wittlich Statistik Das Ziegenproblem DIE ZEIT Nr.48. W.Zimmer. Tür 1 Tür 2 Tür 3

Cusanus-Gymnasium Wittlich Statistik Das Ziegenproblem DIE ZEIT Nr.48. W.Zimmer. Tür 1 Tür 2 Tür 3 Das Ziegenproblem DIE ZEIT 18.11.2004 Nr.48 Tür 1 Tür 2 Tür 3 Cusanus-Gymnasium Wittlich Statistik Das Ziegenproblem DIE ZEIT 18.11.2004 Nr.48 Du bist Kandidat einer Fernsehshow. Als Sieger darfst du eine

Mehr

Simulation des Ziegenproblems

Simulation des Ziegenproblems Simulation des Ziegenproblems Die Einführung des Wahrscheinlichkeitsbegriffs ist in den Bildungsstandards (L5: Daten und Zufall) vorgeschrieben. Als motivierendes Einstiegsproblem für die Klassenstufe

Mehr

Wahrscheinlichkeitsrechnung und Stochastik

Wahrscheinlichkeitsrechnung und Stochastik Wahrscheinlichkeitsrechnung und Stochastik 2-stündige Vorlesung für den Bachelor-Studiengang Angewandte Informatik Vorläufige Version Gerhard Freiling und Hans-Bernd Knoop Inhalt Inhalt..........................................................................

Mehr

Satz von der totalen Wahrscheinlichkeit

Satz von der totalen Wahrscheinlichkeit htw saar 1 Satz von der totalen Wahrscheinlichkeit Sei (Ω, P) ein Wahrscheinlichkeitsraum, und B 1,, B n seien paarweise disjunkte Ereignisse mit B i = Ω. Für jedes Ereignis A gilt dann: P(A) = P(A B 1

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 112 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Das Ziegenproblem. Nils Schwinning und Christian Schöler Juni 2010

Das Ziegenproblem. Nils Schwinning und Christian Schöler  Juni 2010 Das Ziegenproblem Nils Schwinning und Christian Schöler http://www.esaga.uni-due.de/ Juni 2010 Die Formulierung Obwohl das sogenannte Ziegenproblem in der Mathematik allgegenwärtig erscheint, wurde es

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Ziegenproblem. Inhaltsverzeichnis. aus Wikipedia, der freien Enzyklopädie

Ziegenproblem. Inhaltsverzeichnis. aus Wikipedia, der freien Enzyklopädie 1 von 11 11.06.2012 15:45 Ziegenproblem aus Wikipedia, der freien Enzyklopädie Das Ziegenproblem, Drei-Türen-Problem, Monty-Hall-Problem oder Monty-Hall-Dilemma (nach Monty Hall, dem Moderator der US-amerikanischen

Mehr

DWT 1 Grundlagen 17/476 c Ernst W. Mayr

DWT 1 Grundlagen 17/476 c Ernst W. Mayr Ē heißt komplementäres Ereignis zu E. Allgemein verwenden wir bei der Definition von Ereignissen alle bekannten Operatoren aus der Mengenlehre. Wenn also A und B Ereignisse sind, dann sind auch A B, A

Mehr

RECHNEN MIT WORD 2010

RECHNEN MIT WORD 2010 RECHNEN MIT WORD 2010 Viele Anwender wissen wahrscheinlich gar nicht, dass Word 2010 über eine versteckte Funktion verfügt, mit der man einfache Berechnungen im ganz normalen (Fließ)Text durchführen kann.

Mehr

Mathematik W27. Mag. Rainer Sickinger LMM. v 1 Mag. Rainer Sickinger Mathematik W27 1 / 51

Mathematik W27. Mag. Rainer Sickinger LMM. v 1 Mag. Rainer Sickinger Mathematik W27 1 / 51 Mathematik W27 Mag. Rainer Sickinger LMM v 1 Mag. Rainer Sickinger Mathematik W27 1 / 51 Einführung Wir befinden uns in einer kleinen Stadt. In dieser Stadt gibt es zwei Taxiunternehmen. Die Taxis des

Mehr

Lösungsvorschläge zur Gruppenaufgabe "Das eigene Auto"

Lösungsvorschläge zur Gruppenaufgabe Das eigene Auto Lösungsvorschläge zur Gruppenaufgabe "Das eigene Auto" Aufgabe a) Kandidatenwahl Max überlegt sich, wenn er mit seiner Mutter im Publikum sitzt, einer von beiden mit Wahrscheinlichkeit von 0,87% als Kandidat

Mehr

Pr[A] = Pr[C (A B)] = Pr[C] + Pr[A B]. Wegen A B = C B folgt daraus. Pr[A B] = Pr[C B] = Pr[C] + Pr[B] = Pr[A] Pr[A B] + Pr[B]

Pr[A] = Pr[C (A B)] = Pr[C] + Pr[A B]. Wegen A B = C B folgt daraus. Pr[A B] = Pr[C B] = Pr[C] + Pr[B] = Pr[A] Pr[A B] + Pr[B] Beweis: Wir betrachten zunächst den Fall n = 2. Dazu setzen wir C := A \ B = A \ (A B). Gemäß dieser Definition gilt, dass C und A B sowie C und B disjunkt sind. Deshalb können wir Eigenschaft 5 von Lemma

Mehr

Demo-Text für STOCHASTIK. Tschebyscheff-Ungleichung. Einführung mit Anwendungsbeispielen. Datei Nr Friedrich W.

Demo-Text für   STOCHASTIK. Tschebyscheff-Ungleichung. Einführung mit Anwendungsbeispielen. Datei Nr Friedrich W. STOCHASTIK Tschebyscheff-Ungleichung Einführung mit Anwendungsbeispielen Datei Nr. 36111 Friedrich W. Buckel Stand 1. April 010 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mathe-cd.de Inhalt 1 Wiederholung:

Mehr

Lösungsskizzen zur Präsenzübung 09

Lösungsskizzen zur Präsenzübung 09 Lösungsskizzen zur Präsenzübung 09 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 2015/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 07. Februar 2016 von:

Mehr

Station Ziegenproblem. Hilfestellungen

Station Ziegenproblem. Hilfestellungen Station Ziegenproblem Hilfestellungen Liebe Schülerinnen und Schüler! Dies ist das Hilfestellungsheft zur Station Ziegenproblem. Ihr könnt es nutzen, wenn ihr bei einer Aufgabe Schwierigkeiten habt. Falls

Mehr

Ü b u n g s b l a t t 4

Ü b u n g s b l a t t 4 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 30. 4. 2007 Ü b u n g s b l a t t 4 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Ziegenproblem (Monty Hall Problem)

Ziegenproblem (Monty Hall Problem) Ziegenproblem (Monty Hall Problem) Proseminar Schlüsselprobleme der Informatik Das Ziegenproblem (MontyHall Problem) Universität Potsdam Institut für Informatik 1 Schlüsselprobleme der Informatik Ziegenproblem

Mehr

Sprechstunde zur Klausurvorbereitung

Sprechstunde zur Klausurvorbereitung htw saar 1 Sprechstunde zur Klausurvorbereitung Mittwoch, 15.02., 10 12 + 13.30 16.30 Uhr, Raum 2413 Bei Interesse in Liste eintragen: Max. 20 Minuten Einzeln oder Kleingruppen (z. B. bei gemeinsamer Klausurvorbereitung)

Mehr

Simulation des Ziegenproblems

Simulation des Ziegenproblems Simulation des Ziegenproblems Jürgen Appel Kurzfassung des Inhalts: Es wird beschrieben, wie man mit dem Ziegenproblem in das Thema Wahrscheinlichkeit einsteigen kann. Dabei wird das Ziegenproblem zunächst

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 08.01.2009 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 32 Einführung Wahrscheinlichkeit Verteilungen

Mehr

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung Aufgabe : Wahrscheinlichkeitsrechnung Löse die Aufgabe auf diesem Aufgabenblatt. Trage die Lösung in die Tabelle ein. Ein Rechenweg ist hier nicht erforderlich. Hinweis: Das Casinospiel besteht aus dem

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative en Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder mit einer

Mehr

Wettspiele auswerten

Wettspiele auswerten Benötigte Hard- oder Software Tabellenkalkulationsprogramm Anmerkung: Die Anleitung ist optimiert für Microsoft Excel 07 Ziel Mit Hilfe einer Excel-Tabelle Wettspiele auswerten können Aufträge Von deiner

Mehr

Bedingte Wahrscheinlichkeiten und stochastische Unabhängigkeit

Bedingte Wahrscheinlichkeiten und stochastische Unabhängigkeit Bedingte Wahrscheinlichkeiten und stochastische Unabhängigkeit Stochastische Unabhängigkeit von Ereignissen Beispiel: das Ziegenproblem Gewinnspiel: Hinter einer von drei Türen ist ein Preis, hinter den

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber 173 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird die Anordnung von unterschiedlichen Objekten eines Experiments untersucht, so handelt es sich um eine. Möchte man die Anzahl der möglichen

Mehr

Grundlagen der Mathematik II Lösungsvorschlag zum 9. Tutoriumsblatt

Grundlagen der Mathematik II Lösungsvorschlag zum 9. Tutoriumsblatt Mathematisches Institut der Universität München Sommersemester 4 Daniel Rost Lukas-Fabian Moser Aufgabe. rlagen der Mathematik II Lösungsvorschlag zum 9. Tutoriumsblatt a) Es bietet sich Ω = {(a,b) a,b

Mehr

Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten.

Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten. 26 6. Bedingte Wahrscheinlichkeit Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten. Alarmanlage Tritt bei einer Sicherungsanlage ein Alarm

Mehr

1 Univariate Statistiken

1 Univariate Statistiken 1 Univariate Statistiken Im ersten Kapitel berechnen wir zunächst Kenngrößen einer einzelnen Stichprobe bzw. so genannte empirische Kenngrößen, wie beispielsweise den Mittelwert. Diese können, unter gewissen

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder

Mehr

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II

Musterlösung. Abitur Mathematik Bayern G Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Stochastik II Abitur Mathematik: Bayern 2012 Aufgabe 1 a) VIERFELDERTAFEL P(R ) = 88 % und P(V) = 18 % stehen in der Aufgabenstellung. 60 % in der Angabe stehen für die bedingte Wahrscheinlichkeit P R (V). P(R V) =

Mehr

p = h n (K)= Juli vl smart vp qk notebook Praktische Lösung des Problems: mit den Werten

p = h n (K)= Juli vl smart vp qk notebook Praktische Lösung des Problems: mit den Werten I. Eigenschaften von Schätzfunktionen Wir wollen den unbekannten Anteil p von Autos ermitteln, die mit Katalysator fahren. Mathematisch können wir das Problem wie folgt beschreiben: Sei X der Autotyp eines

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 0/ 5.03.0 Dr. Sebastian Petersen Klausur: Diskrete Strukturen I Aufgabe. (8 Punkte) a) Sei X = {0, }. Geben Sie die Potenzmenge P (X) (durch Auflisten ihrer Elemente) an.

Mehr

Berechnen und Darstellen von Wahrscheinlichkeiten

Berechnen und Darstellen von Wahrscheinlichkeiten Schule Bundesgymnasiu um für Berufstätige Salzburg Modul Thema Mathematik 8 Arbeitsblatt A 8-: Berechnen und Darstellen von Wahrscheinlichkeiten & Binomialverteilung Berechnen und Darstellen von Wahrscheinlichkeiten

Mehr

108 IV Abhängige Zufallsvariable und bedingte Verteilungen

108 IV Abhängige Zufallsvariable und bedingte Verteilungen 108 IV Abhängige Zufallsvariable und bedingte Verteilungen Zufällige Permutationen Sei Y die Anzahl der Zyklen in einer rein zufälligen Permutation der Zahlen 1,2,,n Um ihren Erwartungswert e n zu berechnen,

Mehr

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 19 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 19 Peter Hartmann Verständnisfragen 1. Welches sind die charakteristischen Eigenschaften eines Laplace-Raums? Der Raum ist endlich, die Wahrscheinlichkeit für alle Elementarereignisse ist gleich. 2. Unter welchen Bedingungen

Mehr

Stochastik im SoSe 2018 Hausaufgabenblatt 1

Stochastik im SoSe 2018 Hausaufgabenblatt 1 Stochastik im SoSe 208 Hausaufgabenblatt K. Panagiotou/ L. Ramzews / S. Reisser Lösungen zu den Aufgaben. Aufgabe Seien n N 0, x, y, z R. Zeigen Sie, dass (x + y + z) n i+j+kn i,j,k N 0 ( ) n x i y j z

Mehr

Kapitel N. Wahrscheinlichkeitsrechnung

Kapitel N. Wahrscheinlichkeitsrechnung Kapitel N Wahrscheinlichkeitsrechnung Inhalt dieses Kapitels N000 1 Diskrete Wahrscheinlichkeitsräume 2 Bedingte Wahrscheinlichkeit und Unabhängigkeit 1 Produktexperimente 2 Kombinatorik und Urnenmodelle

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 19/21, 29.04.2019 Wahrscheinlichkeit und Statistik Patric Müller WBL 2019 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Bei Anwendung statistischer Verfahren benutzen Sie die unten aufgeführten Abkürzungen!

Bei Anwendung statistischer Verfahren benutzen Sie die unten aufgeführten Abkürzungen! Bei Anwendung statistischer Verfahren benutzen Sie die unten aufgeführten Abkürzungen! t-test für Korrelationskoeffizient Einstichproben-t-Test Zweistichproben-t-Test F-Test Wilcoxon-Rangtest: tr t t2

Mehr

Tutorial Excel Übung 1&2 Kartenverkauf -1- Kartenverkauf Die Aufgabenstellung ist der folgenden URL zu entnehmen: Übung1&2.

Tutorial Excel Übung 1&2 Kartenverkauf -1- Kartenverkauf Die Aufgabenstellung ist der folgenden URL zu entnehmen: Übung1&2. Tutorial Excel Übung 1&2 Kartenverkauf -1-1 Aufgabenstellung Kartenverkauf Die Aufgabenstellung ist der folgenden URL zu entnehmen: Übung1&2. 2 Strukturierter Entwurf zur Lösung 2.1 Definition des Problems

Mehr

Anleitung: Standardabweichung

Anleitung: Standardabweichung Anleitung: Standardabweichung So kann man mit dem V200 Erwartungswert und Varianz bzw. Standardabweichung bei Binomialverteilungen für bestimmte Werte von n, aber für allgemeines p nach der allgemeinen

Mehr

Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 2013 Bergische Universität Wuppertal Autor: Prof. Dr.

Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 2013 Bergische Universität Wuppertal Autor: Prof. Dr. Zufallszahlen Mathematik zum Nachbilden von Zufälligkeit SommerUni 23 Bergische Universität Wuppertal Autor: Prof. Dr. Roland Pulch Aufgabe: Konstruiere Zufallszahlen aus der Menge {,, 2, 3, 4, 5, 6, 7,

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Stochastik. Station 1. Kombinatorik

Stochastik. Station 1. Kombinatorik Der fx-991de im Mathematik- Unterricht Stochastik Station 1 Kombinatorik Die vier Grundformeln zur Kombinatorik sind in der Tabelle zusammengefasst: Mit Zurücklegen Ohne Zurücklegen Reihenfolge egal ncr

Mehr

Stochastische Paradoxa

Stochastische Paradoxa Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Lösungen zum Thema Stochastische Paradoxa Lösung zu Aufgabe 1. a) Nachfolgende Abbildung verdeutlicht die Analogie zum Ziegenproblem.

Mehr

Zwei Ziegen und ein Auto

Zwei Ziegen und ein Auto Prof. Dr. Ludwig Paditz 29.10.2002 Zwei Ziegen und ein Auto In der amerikanischen Spielshow "Let`s make a deal" ist als Hauptpreis ein Auto ausgesetzt. Hierzu sind auf der Bühne drei verschlossene Türen

Mehr

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung )

Mathematik LK 12 M1, 4. Kursarbeit Matrizen und Stochastik Lösung ) Aufgabe 1: Berechne die Determinante und die Transponierte der folgenden Matrizen: 0 1 1.1 M =( 0 4 1 4 det M =0 4 1 4= 4 M T =( 5 3 3 1.2 1 1 3 A=( =( A T 3 0 1 5 1 3 3 1 0 3 3 1 4 4 det M = 5 1 1+3 3

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 24. Oktober 2007 1. Statistik Wir denken an Experimente, bei deren Durchführung die Variable X, um die es dabei geht, verschiedene Werte annehmen

Mehr

Elemente der Stochastik (SoSe 2016) 10. Übungsblatt

Elemente der Stochastik (SoSe 2016) 10. Übungsblatt Dr. M. Weimar 3.06.206 Elemente der Stochastik (SoSe 206) 0. Übungsblatt Aufgabe (2+2+2+2+3= Punkte) Zur zweimaligen Drehung des nebenstehenden Glücksrads (mit angenommener Gleichverteilung bei jeder Drehung)

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

8. Wahrscheinlichkeitsrechnung

8. Wahrscheinlichkeitsrechnung Didaktik der Geometrie und Stochastik WS 09/10 Bürker 27. 1. 11 8. Wahrscheinlichkeitsrechnung 8.1 Begriffe 8.1.1 Zufallsexperiment Was ist ein Zufallsexperiment? a) Mehrere Ergebnisse möglich b) Ergebnis

Mehr

Roulette und Zahlenlotto 18

Roulette und Zahlenlotto 18 1 7 Miniroulette mit 9 Zahlen Spielregeln Bei Gewinn wird der Wetteinsatz verdoppelt, wenn auf «gerade», «ungerade», «rot» oder «schwarz» gesetzt wurde. vervierfacht, wenn auf (1, 2), (3, 4), (5, 6) oder

Mehr

Inhaltsverzeichnis: Lösungen zur Vorlesung Statistik Kapitel 4 Seite 1 von 19 Prof. Dr. Karin Melzer, Fakultät Grundlagen

Inhaltsverzeichnis: Lösungen zur Vorlesung Statistik Kapitel 4 Seite 1 von 19 Prof. Dr. Karin Melzer, Fakultät Grundlagen Inhaltsverzeichnis: Aufgabenlösungen zu Kapitel 4 3 Lösung zu Aufgabe 3 Lösung zu Aufgabe 9 3 Lösung zu Aufgabe 30 3 Lösung zu Aufgabe 3 3 Lösung zu Aufgabe 3 3 Lösung zu Aufgabe 33 3 Lösung zu Aufgabe

Mehr

Der Weg eines Betrunkenen

Der Weg eines Betrunkenen Der Weg eines Betrunkenen 2 Hätte es damals schon Computer gegeben, wäre es für unseren Mathematiker um einiges leichter gewesen, den Weg des Betrunkenen zu bestimmen. Er hätte nicht nur eine beliebige

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Verfahren 7. Die Berechnungsoptionen für Cohens Kappa in den Q-DAS Software-Produkten

Verfahren 7. Die Berechnungsoptionen für Cohens Kappa in den Q-DAS Software-Produkten Verfahren 7 Die Berechnungsoptionen für Cohens Kappa in den Q-DAS Software-Produkten Verfahren 7: Berechnungsoptionen für Cohens Kappa 1/23 Verfahren 7: Berechnungsoptionen für Cohens Kappa Inhalt Verfahren

Mehr

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Name: Vorname: Matrikelnummer: Lösungsvorschlag zur Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik (Stochastik) Datum: 07.

Mehr

Kapitel 10 VERTEILUNGEN

Kapitel 10 VERTEILUNGEN Kapitel 10 VERTEILUNGEN Fassung vom 18. Januar 2001 130 VERTEILUNGEN Zufallsvariable. 10.1 10.1 Zufallsvariable. HäuÞg wird statt des Ergebnisses ω Ω eines Zufalls-Experiments eine zugeordnete Zahl X(ω)

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben) Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen

Mehr

Abitur 2012 Mathematik Stochastik III

Abitur 2012 Mathematik Stochastik III Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2012 Mathematik Stochastik III Für eine Quizshow sucht ein Fernsehsender Abiturientinnen und Abiturienten als Kandidaten. Jeder Bewerber gibt in einem

Mehr

Aufgabe 8: Stochastik (WTR)

Aufgabe 8: Stochastik (WTR) Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 8 a) (1) WAHRSCHEINLICHKEIT FÜR KEINE ANGABE ERMITTELN Nach der Laplace Formel ist Anzahl der Personen, die keine Angabe machten keine Angabe Gesamtzahl

Mehr

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.

Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. .3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil

Mehr

Modelle für Vorgänge mit zufälligem Ergebnis und Kombinatorik Teil 2

Modelle für Vorgänge mit zufälligem Ergebnis und Kombinatorik Teil 2 Modelle für Vorgänge mit zufälligem Ergebnis und Kombinatorik Teil 2 Dr. Elke Warmuth Sommersemester 2018 1 / 35 Mehrstufige Vorgänge und Baumdiagramme Pfade und Ergebnismenge Wahrscheinlichkeiten im Baumdiagramm

Mehr

Bayern Aufgabe 1. Abitur Mathematik: Musterlösung

Bayern Aufgabe 1. Abitur Mathematik: Musterlösung Abitur Mathematik: Bayern 2013 Aufgabe 1 a) 1. SCHRITT: SITUATION MODELLIEREN Es handelt sich näherungsweise um eine Bernoullikette der Länge n = 25 mit Erfolgswahrscheinlichkeit p = 0,37 + 0,06 = 0,43.

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Ü 419 a Absolute Bezüge

Ü 419 a Absolute Bezüge Ü 419 a Absolute Bezüge Bezüge Benötigte Datei: Übungsmappe.xls Es gibt noch ein Problem: Wenn Sie eine einzige Zahl für mehrere Berechnungen brauchen, funktionieren relative Bezüge nicht. Aber - nach

Mehr

Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 134/2008, 17-20

Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 134/2008, 17-20 Rückrechnung der Blutalkoholkonzentration: Kritik am forensischen Ansatz, II NORBERT BRUNNER und MANFRED KÜHLEITNER Die Messung des Alkoholgehalts aus der Atemluft ist ungenau. Wir untersuchen, ob zusätzliche

Mehr

Klausur zur Statistik

Klausur zur Statistik Klausur zur Statistik. Hinweis: Es können 94 Punkte erreicht werden. Zum Bestehen reichen 4 Punkte sicher aus.. Hinweis: Achten Sie darauf das Ihre Rechnungen nachvollziehbar sind und geben Sie alle Schritte

Mehr

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 7. Grenzwertsätze Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Mittelwerte von Zufallsvariablen Wir betrachten die arithmetischen Mittelwerte X n = 1 n (X 1 + X 2 + + X n ) von unabhängigen

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

Aufgabeneinheit 2: Termen auf der Spur

Aufgabeneinheit 2: Termen auf der Spur Aufgabeneinheit 2: Termen auf der Spur Armin Baeger / Sandra Gerhard / Hellen Ossmann Methodische Vorbemerkungen Das Spiel Termen auf der Spur ist ein Strategiespiel für zwei Personen, bei dem jeder Spieler

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 13.0.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Excel Formeln und Funktionen clever nutzen. Peter Wies 1. Ausgabe, 2. Aktualisierung, März 2014 EX2010FKT

Excel Formeln und Funktionen clever nutzen. Peter Wies 1. Ausgabe, 2. Aktualisierung, März 2014 EX2010FKT Peter Wies 1. Ausgabe, 2. Aktualisierung, März 2014 Excel 2010 Formeln und clever nutzen EX2010FKT 7.6 Zufallszahlen automatisch generieren eispiel: Sortierte Fragen in zufälliger Reihenfolge wiedergeben

Mehr

Statistik Einführung // Stichprobenverteilung 6 p.2/26

Statistik Einführung // Stichprobenverteilung 6 p.2/26 Statistik Einführung Kapitel 6 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // 6 p.0/26 Lernziele 1. Beschreiben

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Das Zweikinderproblem

Das Zweikinderproblem Das Zweikinderproblem Definition Zweikinderproblem Eine Familie besitzt zwei Kinder. Wie groß ist die Wahrscheinlichkeit Pr[ Beide Kinder sind Mädchen. Eines der Kinder ist ein Mädchen ]? Lösung: Sei A

Mehr

Unterlagen, Literatur. Grundlegende Einstellungen. HILFE!? Wenn Excel nicht mehr so aussieht wie beim letzten mal!

Unterlagen, Literatur. Grundlegende Einstellungen. HILFE!? Wenn Excel nicht mehr so aussieht wie beim letzten mal! Unterlagen, Literatur Excel Einsteiger Teil 2 Herdt Skript : Excel Grundlagen der Tabellenkalkulation am Service-Punkt (34-209). täglich von 13:00-15:00 Uhr Preis: ca. 5,50 Oder diese Folien unter: www.rhrk-kurse.de.vu

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Konzept diskreter Zufallsvariablen

Konzept diskreter Zufallsvariablen Statistik 1 für SoziologInnen Konzept diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder

Mehr