1. Runde 8. Klasse 1999

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1. Runde 8. Klasse 1999"

Transkript

1 1. Runde 8. Klasse 1999 Es gilt: 1 = 2 (2 2) : (2 + 2) 2 = (22 : 22) 2 3 = : 22 Stelle die Zahlen 4, 5, 6 und 7 ebenfalls mit Hilfe von genau fünf Zweiern dar. Verwende dabei nur die Rechenzeichen +,,, : und Klammern. Die Big-Band einer Schule probt für einen Festumzug. Stellen sich die jungen Musiker in Dreier-Reihen auf, so fehlt in der letzten Reihe eine Person. Genauso ergeht es ihnen bei Zweier- und Vierer-Reihen. Erst wenn sie Fünfer-Reihen bilden, sind alle Reihen vollständig. Wie viele Musiker könnte die Big-Band haben, wenn es weniger als 100 Personen sind? Gib alle Möglichkeiten an! Das Quadrat ABCD hat die Seitenlänge 5 cm. E und F werden so gewählt, dass die Strecke BF doppelt so lang ist wie die Strecke AE. Der Flächeninhalt des Vierecks EFCD soll doppelt so groß sein wie der Flächeninhalt des Vierecks ABFE. Wie lang ist die Strecke AE? A B Rund 32 % der deutschen Haushalte haben inzwischen einen PC und davon besitzen 24 % einen Internetanschluss, das sind 2,7 Millionen Haushalte. a) Wie viele Haushalte gibt es in Deutschland? b) Wie viele Haushalte haben zwar einen PC, aber keinen Internetanschluss? Gib die Ergebnisse in Millionen an und runde auf eine Nachkommastelle. Vor dem Einkauf hat Max genau 18 Münzen, und zwar nur Zweimark- und Fünfzigpfennigstücke. Vom Gesamtbetrag dieses Geldes gibt er genau die Hälfte aus. Nach dem Einkauf stellt er fest, dass er jetzt wieder ausschließlich Zweimark- und Fünfzigpfennigstücke hat, und zwar so viele Zweimarkstücke, wie er vor dem Einkauf Fünfzigpfennigstücke besaß, und so viele Fünfzigpfennigstücke, wie er vorher Zweimarkstücke hatte. Welchen Geldbetrag besitzt Max nach dem Einkauf? D E C F

2 1. Runde 8. Klasse 2000 Für die Nummerierung der Seitenzahlen eines Lexikons wurde 195 mal die Ziffer 3 verwendet. Wie viele Seiten kann das Lexikon höchstens haben? Zur Herstellung von 1 kg Rosenöl benötigt man 0,5 t Rosenblüten. Zur Herstellung von einem Liter Parfüm braucht man zwei Tropfen Rosenöl. 25 Tropfen Rosenöl wiegen genau 0,001 kg. Wie viele Liter Parfüm lassen sich aus 0,6 t Rosenblüten herstellen? a) Gib zwei verschiedene Abbildungen an, die das Rechteck ABCD auf das Rechteck AEFG abbilden. b) Zeichne zwei Geraden g und h so ein, dass das Rechteck PQRS bei Spiegelung an g und dann dessen Spiegelbild bei Spiegelung an h auf das Rechteck WXYZ abgebildet wird. a) b) Die 30 Preisträger des Landeswettbewerbs Mathematik sollen mit jeweils einem Buch prämiiert werden. Es stehen zwei verschiedene Bücher im Wert von 23 DM bzw. 18 DM zur Auswahl. Wie viele Bücher zu 23 DM und wie viele zu 18 DM müssen gekauft werden, wenn für die Prämiierung genau 600 DM ausgegeben werden können? Ein Mechaniker kauft einen Gebrauchtwagen. Er gibt dafür 45% des Autoneuwertes und zusätzlich 2640 DM für einen neuen Motor aus. Anschließend verkauft er das Auto für DM. Dieser Betrag ist um 30% höher als seine Ausgaben. Berechne den Neuwert des Autos!

3 1. Runde - 8. Klasse werden. In den meisten Fällen ist es nützlich, die Lösungen mit Hilfe einer Skizze, Ute und Pia fahren mit dem Fahrrad. Die sportliche Ute schafft 25 Kilometer pro Stunde, Pia dagegen nur 15 km pro Stunde. 20 Kilometer nach dem gemeinsamen Start macht Ute eine Rast. Wie lange muss sie warten, bis Pia ebenfalls den Rastplatz erreicht? Der Tank eines Lastwagens wurde mit Diesel randvoll gefüllt. Auf der ersten Fahrt wurden 20% des Treibstoffes, auf der zweiten 20% von der restlichen Treibstoffmenge und auf er dritten Fahrt nochmals 20% vom Rest verbraucht. Nach dieser Fahrt waren noch 64 Liter Diesel im Tank. a) Wieviel Liter fasst der Tank des Lastwagens? b) Wieviel % der Gesamtmenge wurden verbraucht? Herr May fliest sein Wohnzimmer mit quadratischen Fliesen. Beim Aneinanderstoßen der Fliesen entstehen an den Ecken wieder kleine Quadrat wie in der Mitte einer Fliese. a) Wie viele kleine Quadrate gibt es insgesamt bei 9 bzw. 81 Fliesen, die wie im obigen Muster quadratisch angeordnet sind? b) Wie viele Fliesen hat Herr May verlegt, wenn es 1741 kleine Quadrate sind? Du hast 10 Koffer und 10 Schlüssel; zu jedem Koffer passt genau ein Schlüssel. Du weißt aber nicht, welcher Schlüssel zu welchem Koffer gehört. a) Wie oft musst Du im günstigsten Fall probieren, um zu jedem Koffer den passenden Schlüssel zu finden? b) Erläutere, warum Du nach höchstens 45 Versuchen zu jedem Koffer den passenden Schlüssel gefunden hast. Von einer Ecke eines Quadrates gehen zwei Geraden aus, die die Fläche des Quadrates in drei gleich große Teile zerlegen. Wie groß ist x im Vergleich zu a? x x a a

4 1. Runde 8. Klasse 2002 In der Abbildung hat das innere Quadrat die halbe Seitenlänge des äußeren Quadrats. Zeichne die Figur dreimal ab und zerlege die graue Fläche a) durch zwei Geraden in vier gleich große Teilstücke, b) durch drei Geraden in sechs gleich große Teilstücke, c) durch vier Geraden in acht gleich große Teilstücke x y Die Zahl soll als Summe von zwei gekürzten Brüchen, also in der Form = +, m n geschrieben werden. Für die natürlichen Zahlen x, y, m und n sollen die folgenden Bedingungen gelten: a) m = n und x = y b) m = n und x y c) m n und x y d) m n und x = y Gib jeweils ein Beispiel an! Wie groß ist der Flächeninhalt der Sternfigur? 6cm Zwei Kerzen haben unterschiedliche Brenndauer. Die rote Kerze ist 14 cm hoch und brennt in 3½ Stunden herunter, während die gelbe dazu 5 Stunden braucht. Nach zwei Stunden Brenndauer haben beide die gleich Höhe. Wie hoch war anfangs die gelbe Kerze? Bei einer Schülersprecherwahl bewarben sich zwei Kandidatinnen. 90% aller Schüler beteiligten sich an der Wahl. 128 der abgegebenen Stimmen waren ungültig. Obwohl die Siegerin nur von 49% aller Schüler gewählt wurde, erhielt sie doch 248 Stimmen mehr als die Verliererin. Wie viele Stimmen erhielt die Siegerin?

5 1. Runde 8. Klasse 2003 D Zeichne das Rechteck ABCD mit AF = CE = 1,5cm. a) Bestimme den Flächeninhalt des Dreiecks FBE. b) Spiegele das Rechteck ABCD an der Geraden EF. Wie groß ist der Flächeninhalt der Gesamtfigur? c) Die Gesamtfigur kann man als Netz eines oben offenen Quaders auffassen. Welches Volumen hat dieser Quader? A Pauls Klasse hat 21 Schülerinnen und Schüler. Das Durchschnittsalter beträgt genau 14 Jahre. Als Paul das Alter des neuen Klassenlehrers wissen will, verrät dieser ihm: Wenn ihr mich zu eurer Klasse dazu rechnet, beträgt unser gemeinsames Durchschnittsalter genau 16 Jahre. Wie alt ist Pauls Klassenlehrer? In einer Reihe stehen sich genau so viele volle wie leere Gläser gegenüber. Durch Vertauschen von jeweils einem leeren mit einem vollen Glas soll eine gemischte Reihe von abwechselnd vollen und leeren Gläsern hergestellt werden. Bei 4 vollen Gläsern, d.h. insgesamt 8 Gläsern, musst du mindestens zweimal tauschen. Wie oft musst du bei 5, 6, 99, 100, n vollen Gläsern mindestens tauschen? Ein Kino hat Platz für 240 Personen. Der Eintrittspreis beträgt 7 für Erwachsene und 5 für Schüler. Täglich gibt es 5 Vorstellungen. Wie viele Schüler und wie viele Erwachsene waren während eines Tages im Kino, wenn dieses stets ausverkauft war und die Tageseinnahme 7520 betrug? Frisch gesammelter Nektar enthält 65% Wasser. Durch die Lagerung im warmen Bienenstock wird aus diesem Nektar Honig, der nur noch 20% Wasser enthält. Wie viel Kilogramm Honig erhält man aus 6 kg Nektar? F 7cm E C 4cm B

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 00/00 DES LANDES HESSEN AUFGABEN DER GRUPPE A PFLICHTAUFGABEN P. Von 40 Schülern fahren 44 mit öffentlichen Verkehrsmitteln zur Schule. Wie viel Prozent sind das? P. Nach einer Preiserhöhung

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

Mathematik 1 (ohne Taschenrechner)

Mathematik 1 (ohne Taschenrechner) Kanton St.Gallen Bildungsdepartement Gymnasium Aufnahmeprüfung 2018 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note: Aufgabe 1 2 3 4

Mehr

1-Punkt-Aufgaben. 1) Berechne! 99, ,9 + 9, ,9999 =? 2) Berechne! A) B) 7 C) D) E) 3) Subtrahiere von! A) B) C) D) E) ~ 5 ~

1-Punkt-Aufgaben. 1) Berechne! 99, ,9 + 9, ,9999 =? 2) Berechne! A) B) 7 C) D) E) 3) Subtrahiere von! A) B) C) D) E) ~ 5 ~ 1-Punkt-Aufgaben 1) Berechne! 99,99 + 999,9 + 9,999 + 0,9999 =? A) 1020,8979 B) 1110,8889 C) 1200,8790 D)2010,7989 E) 10109,9889 2) Berechne! A) B) 7 C) D) E) 3) Subtrahiere von! A) B) C) D) E) ~ 5 ~ 2-Punkte-Aufgaben

Mehr

Probeunterricht 2011 an Wirtschaftsschulen in Bayern

Probeunterricht 2011 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Nachtermin Arbeitszeit Teil I (Zahlenrechnen) Seiten bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 8: 45 Minuten 45 Minuten Name:....

Mehr

JAHRGANGSSTUFENARBEIT AN DER MITTELSCHULE. MATHEMATIK Jahrgangsstufe 6

JAHRGANGSSTUFENARBEIT AN DER MITTELSCHULE. MATHEMATIK Jahrgangsstufe 6 JAHRGANGSSTUFENARBEIT AN DER MITTELSCHULE MATHEMATIK Jahrgangsstufe 6 9. Oktober 2015 Arbeitszeit: 45 Minuten; innerhalb der ersten beiden Unterrichtsstunden Benötigtes Arbeitsmaterial: Stift, Bleistift,

Mehr

Musterprüfung Gymnasiale Maturitätsschulen. Name/Vorname: Wohnort:

Musterprüfung Gymnasiale Maturitätsschulen. Name/Vorname: Wohnort: Musterprüfung Gymnasiale Maturitätsschulen Name/Vorname: Wohnort: Mathematik schriftlich Zeit: 120 Minuten Hinweise: Schreibe auf jedes Blatt deinen Namen. Löse alle Aufgaben direkt auf den Prüfungsblättern.

Mehr

JAHRGANGSSTUFENTEST 2012 IM FACH MATHEMATIK WAHLPFLICHTFÄCHERGRUPPE I NAME: KLASSE: 8 PUNKTE: / 21 NOTE:

JAHRGANGSSTUFENTEST 2012 IM FACH MATHEMATIK WAHLPFLICHTFÄCHERGRUPPE I NAME: KLASSE: 8 PUNKTE: / 21 NOTE: JAHRGANGSSTUFENTEST 2012 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 8 DER REALSCHULEN WAHLPFLICHTFÄCHERGRUPPE I (ARBEITSZEIT: 45 MINUTEN) NAME: KLASSE: 8 PUNKTE: / 21 NOTE: 1 Auf dem Oktoberfest wirbt die

Mehr

MATHEMATIK-WETTBEWERB 1998/99 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1998/99 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 1998/99 DES LANDES HESSEN Hinweis : Von jeder Schülerin / jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet, so werden die mit der besten Punktzahl

Mehr

Probeunterricht 2011 an Wirtschaftsschulen in Bayern

Probeunterricht 2011 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 6. Jahrgangsstufe - Haupttermin Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten Name:....

Mehr

MATHEMATIK-WETTBEWERB 2002/2003 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2002/2003 DES LANDES HESSEN MATHEMATIK-WETTEWER 2002/2003 DES LANDES HESSEN AUFGAEN DER GRUPPE A PFLICHTAUFGAEN P1. Die Seiten eines Quadrates sind in fünf gleich lange Teilstrecken unterteilt. Gib jeweils den Anteil der Flächen

Mehr

MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 1997/98 DES LANDES HESSEN AUFGABEN DER GRUPPE A 1. Gib die jeweilige Lösungsmenge in aufzählender Form an; G = Z. a) 5(2x 4) + 3x 16 = 5(8 5x) b) 8(x 6) 3(8 x) = 4(x + 3) c) 12(2x

Mehr

Fach Mathematik. (Schuljahr 2008/2009) Name: Klasse: Schülercode:

Fach Mathematik. (Schuljahr 2008/2009) Name: Klasse: Schülercode: Kompetenztest für Schülerinnen und Schüler der Klassenstufe 6 an Regelschulen, Gymnasien, Gesamtschulen und Förderzentren mit dem Bildungsgang der Regelschule Fach Mathematik (Schuljahr 2008/2009) Name:

Mehr

1. Teil Der Taschenrechner darf nicht benutzt werden! Bitte alle Aufgaben auf diesem Blatt rechnen!

1. Teil Der Taschenrechner darf nicht benutzt werden! Bitte alle Aufgaben auf diesem Blatt rechnen! 1. Teil Der Taschenrechner darf nicht benutzt werden! Bitte alle Aufgaben auf diesem Blatt rechnen! 1. Ein Zug soll um 14.32 Uhr ankommen. Er hat 85 Minuten Verspätung. Wann kommt er jetzt an? Der Zug

Mehr

Repetition Mathematik 8. Klasse

Repetition Mathematik 8. Klasse Repetition Mathematik 8. Klasse. Berechne schrittweise mit einem korrekten Lösungsweg: + 3 3 4 : 3. Berechne schrittweise mit einem korrekten Lösungsweg: 0 + 0 b.) 3 4 + 3 5 c.) 9 8 8 9 5 3. Berechne schrittweise

Mehr

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K:

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: Serie W1, Kl. 5 1. 89 + 32 = 2. 17 8 = 3. 120 : 5 = 4. 123 42 = 5. Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: 6. 165 cm = dm 7. 48 000 g = kg 8. Skizziere das abgebildete Würfelnetz.

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN

MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN AUFGABEN DER GRUPPE A 1. Gib die jeweilige Lösungsmenge in aufzählender Form an: G = Z. a) (x + 7) 2 = 100 b) (x + 7) 2 > 18 c) (2x 4) 2 (2x + 4) 2 < 64

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

Orientierungsarbeit Mathematik Schuljahr 2013/2014

Orientierungsarbeit Mathematik Schuljahr 2013/2014 Name: Klasse: Orientierungsarbeit Mathematik Schuljahr 2013/2014 In der Welt der Figuren und Körper Aufgabe 1 Die Tabelle beschreibt die Eigenschaften eines Quaders. Ergänze die fehlenden Angaben. Eigenschaft

Mehr

Mathematik Aufnahmeprüfung Teil 1

Mathematik Aufnahmeprüfung Teil 1 Berufsmaturitätsschulen St.Gallen, Buchs, Rapperswil, Uzwil 2010 Mathematik Aufnahmeprüfung Teil 1 Technische Richtung Name, Vorname:... Zeit: 60 Minuten Erlaubte Hilfsmittel: Massstab, Zirkel, kein Rechner,

Mehr

Probeunterricht 2010 an Wirtschaftsschulen in Bayern

Probeunterricht 2010 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 8. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten Name:.... Vorname:.

Mehr

Mathematik Aufnahmeprüfung 2013 Profile m,n,s

Mathematik Aufnahmeprüfung 2013 Profile m,n,s Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe

Mehr

Känguru der Mathematik 2001 LÖSUNGEN

Känguru der Mathematik 2001 LÖSUNGEN Känguru der Mathematik 2001 LÖSUNGEN GRUPPE ÉCOLIER 1) Wie viel ist 123 + 45 =? (A) 678 (B) 573 (C) 568 (D) 178 (E) 168 2) Karin wog vor 2 Jahren 37 kg. Jetzt wiegt sie 41 kg. Wie viel hat sie zugenommen?

Mehr

Probeunterricht 2010 an Wirtschaftsschulen in Bayern

Probeunterricht 2010 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 8. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten Name:.... Vorname:.

Mehr

Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren

Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren Schüler/in Aufgabe 1 G: Fläche und Umfang von geradlinig begrenzten Figuren LERNZIELE: Flächeninhalt mit Rasterzählmethode bestimmen Flächeninhalt und Umfang mit Formeln berechnen Flächeninhalt durch Zerlegen

Mehr

Mathematik 1 (ohne Taschenrechner)

Mathematik 1 (ohne Taschenrechner) Kanton St.Gallen Bildungsdepartement Gymnasium Aufnahmeprüfung 2018 Mathematik 1 (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen Aufgaben

Mehr

Probeunterricht 2011 an Wirtschaftsschulen in Bayern

Probeunterricht 2011 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 6. Jahrgangsstufe - Haupttermin Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 7: 45 Minuten 45 Minuten Name:....

Mehr

Schriftliche Abschlussprüfung Mathematik

Schriftliche Abschlussprüfung Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/2001 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Qualifizierender

Mehr

Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen

Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen Grundwissen Mathematik für die Jahrgangsstufe 6 - Lösungen 1. Gib mindestens drei Eigenschaften der natürlichen Zahlen an. Jede natürliche Zahl hat einen Nachfolger und jede natürliche Zahl außer 1 hat

Mehr

31. Essener Mathematikwettbewerb 2015/2016

31. Essener Mathematikwettbewerb 2015/2016 Klasse 5 a) Ermittle alle zweistelligen natürlichen Zahlen, bei denen die Summe aus der Einer- und der Zehnerziffer 7 und das Produkt aus Einer- und Zehnerziffer 12 beträgt. b) Bestimme alle natürlichen

Mehr

BMT A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN PUNKTE: / 21 NOTE:

BMT A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN PUNKTE: / 21 NOTE: BMT8 2009-1 - A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN NAME: KLASSE: PUNKTE: 1 NOTE: Aufgabe 1 Ein Würfel der Kantenlänge 2 cm wird, wie in der Abbildung dargestellt, durch

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Mathematik Aufnahmeprüfung Klasse FMS

Mathematik Aufnahmeprüfung Klasse FMS Mathematik Aufnahmeprüfung 2017 1. Klasse FMS Zeit: 2 Stunden Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg soll direkt auf das Aufgabenblatt geschrieben werden. Er muss nachvollziehbar

Mehr

=? ; = 3? ; 3. Gib drei verschiedene Brüche an, die den gleichen Wert haben wie 1, 5.

=? ; = 3? ; 3. Gib drei verschiedene Brüche an, die den gleichen Wert haben wie 1, 5. Mathematik 6a Übungstest Nr.1 21.10.2005 1. Gib an, welcher Anteil jeweils gefärbt ist. 211-216-230 Markiere in dem Quader 1. Die gesamte Fläche ist 36m 2 groß. Wie groß ist die markierte Fäche? 6 2. a)

Mehr

1-Punkt-Aufgaben =? A) 351 B) 400 C) 449 D) 450 E) 451 A) 67 B) 77 C) 100 D) 167 E) 200

1-Punkt-Aufgaben =? A) 351 B) 400 C) 449 D) 450 E) 451 A) 67 B) 77 C) 100 D) 167 E) 200 1-Punkt-Aufgaben 1) Berechne! 46 + 47 + 48 + 49 + 50 + 51 + 52 + 53 + 54 =? A) 351 B) 400 C) 449 D) 450 E) 451 2) Berechne! 133 33 2 =? A) 67 B) 77 C) 100 D) 167 E) 200 3) Was erhältst du, wenn du viertausendzweihundertfünf

Mehr

(3r) r 2 =? xy 3y a + 6b 14. ( xy

(3r) r 2 =? xy 3y a + 6b 14. ( xy Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:

Mehr

Lernzielkontrolle natürliche Zahlen A

Lernzielkontrolle natürliche Zahlen A SEITE: Lernzielkontrolle natürliche Zahlen A Welche Zahlen sind am Zahlenstrahl markiert? a 00 = mm 0 00 b c d Zeichne einen Zahlenstrahl mit der Einheitsstrecke von mm und trage folgende Zahlen darauf

Mehr

Mathematik für Gymnasien Übungsaufgaben - Jahrgangsstufe 6

Mathematik für Gymnasien Übungsaufgaben - Jahrgangsstufe 6 Mathematik für Gymnasien Übungsaufgaben - Jahrgangsstufe I. Brüche. Allgemein: a) Aus welchen Bestandteilen besteht ein Bruch? b) Was besagt der Nenner? c) Was besagt der Zähler? d) In welchen Diagrammen

Mehr

1. a) Vereinfache den Term so weit wie möglich. 4a a 6 a 3 3. b) Vereinfache den Term so weit wie möglich. (3a)2 + 16a 2 : 15.

1. a) Vereinfache den Term so weit wie möglich. 4a a 6 a 3 3. b) Vereinfache den Term so weit wie möglich. (3a)2 + 16a 2 : 15. 1. a) Vereinfache den Term so weit wie möglich. 4a + 8 4 + 2a 6 a 3 3 b) Vereinfache den Term so weit wie möglich. (3a)2 + 16a 2 : 15 2a 2 4a 2 von 15 2. a) Löse die Gleichung nach x auf. 7x 3(5x 16) =

Mehr

Aufgabe 1 E: Fläche und Umfang von geradlinig begrenzten Figuren

Aufgabe 1 E: Fläche und Umfang von geradlinig begrenzten Figuren Schüler/in Aufgabe 1 E: Fläche und Umfang von geradlinig begrenzten Figuren LERNZIELE: Flächeninhalt mit Rasterzählmethode bestimmen Flächeninhalt und Umfang mit Formeln berechnen Flächeninhalt durch Zerlegen

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

ILeA. SCHÜLERHEFT Mathematik. Name: Wissenschaftliche Mitarbeit

ILeA. SCHÜLERHEFT Mathematik. Name: Wissenschaftliche Mitarbeit ILeA Indiiduelle Lernstandsanalysen SCHÜLERHEFT Mathematik 5 Name: Wissenschatliche Mitarbeit ILeA-Augaben Form und Veränderung 5 Augabe 1 Fülle aus. Körper Anzahl der Flächen Anzahl der Kanten Anzahl

Mehr

Känguru der Mathematik 2001 LÖSUNGEN

Känguru der Mathematik 2001 LÖSUNGEN Känguru der Mathematik 200 LÖSUNGEN GRUPPE BENJAMIN ) Josef hat 7 Stücke Schnur. Er schneidet eines entzwei. Wie viele Stücke hat er jetzt? (A) 5 (B) 6 (C) 7 (D) 8 (E) 9 6 Stücke Schnur bleiben unversehrt,

Mehr

MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN Hinweis : Von jeder Schülerin / jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet, so werden die mit der besten Punktzahl

Mehr

MTG Grundwissen Mathematik 5.Klasse

MTG Grundwissen Mathematik 5.Klasse MTG Grundwissen Mathematik 5.Klasse Umgang mit großen Zahlen Beispiel: 47.035.107.006 = 4 10 10 + 7 10 9 + 3 10 7 + 5 10 6 + 10 5 + 7 10 3 + 6 10 0 A1: Schreibe 117 Billionen 12 Milliarden vierhundertsiebentausendsechzig

Mehr

Arbeitsblatt Lösen von Problemen mit Gleichungen

Arbeitsblatt Lösen von Problemen mit Gleichungen Arbeitsblatt Lösen von Problemen mit Gleichungen 203 L Die Summe von zwei aufeinander folgenden ganzen Zahlen ist a) 35, b) 50. Berechne die beiden Zahlen. 204 L Das 10fache einer Zahl ist um a) 32, b)

Mehr

Orientierungsarbeit Mathematik

Orientierungsarbeit Mathematik Sächsisches Staatsministerium Geltungsbereich: für Klassen 8 für Kultus an Mittelschulen Schuljahr 2002/2003 Orientierungsarbeit Mathematik Hauptschulbildungsgang Allgemeine Arbeitshinweise Die Orientierungsarbeit

Mehr

Lösungen Benjamin 2015, Känguru der Mathematik - Österreich

Lösungen Benjamin 2015, Känguru der Mathematik - Österreich Lösungen Benjamin 2015, Känguru der Mathematik - Österreich 1. In welcher Figur ist genau die Hälfte grau gefärbt? Lösung: In (A) ist 1/3 gefärbt, in (B) die Hälfte, in (C) ¾, in (D) ¼ und in (E) 2/5.

Mehr

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm².

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm². Einsetzbar ab Lerneinheit Zuordnungen a) Runde 34,92 auf Zehntel. 35,0 b) Berechne: 3 5 11 3 +. = 1 4 8 8 8 z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne

Mehr

HS Pians St. Margarethen. Alles Gute!

HS Pians St. Margarethen. Alles Gute! Vorübungen auf die 6. M-Schularbeit KL, KV 01 Ich habe mich bemüht, dir möglichst wieder früh Unterlagen zur Verfügung zu stellen, die Pfingstferien klopfen an die Türe, HS Pians St. Margarethen Alles

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte

St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 Punkte Löse

Mehr

JAHRGANGSSTUFENTEST 2015 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 6 DER REALSCHULEN IN BAYERN (ARBEITSZEIT: 45 MINUTEN) b)9096 : 758

JAHRGANGSSTUFENTEST 2015 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 6 DER REALSCHULEN IN BAYERN (ARBEITSZEIT: 45 MINUTEN) b)9096 : 758 JAHRGANGSSTUFENTEST 205 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 6 DER REALSCHULEN IN BAYERN (ARBEITSZEIT: 45 MINUTEN) LÖSUNGSMUSTER Berechne. a) 000 0 :0 0 0 0 b)9096 : 758 /2 900 2 2 MIT SYMBOLISCHEN,

Mehr

6,5 34,5 24,375 46,75

6,5 34,5 24,375 46,75 Teste dich! - (/5) Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (0 km; x km) Fahrt als Term dar. 2,5 +,6

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Name:... Vorname:...

Name:... Vorname:... Zentrale Aufnahmeprüfung 2013 für die Kurzgymnasien des Kantons Zürich Mathematik Bisheriges Lehrmittel Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 Von einer Baustelle soll Schutt abgefahren werden. Der Lkw einer Firma fährt jeweils zweimal am Tag. a) Am ersten Tag transportierte er insgesamt 9500 kg. Bei der ersten Fahrt waren

Mehr

5. Jgst Tag. 1. Berechne: Punkte. a) = b) : 53 = 2. Berechne die Zahl, für die der Platzhalter steht.

5. Jgst Tag. 1. Berechne: Punkte. a) = b) : 53 = 2. Berechne die Zahl, für die der Platzhalter steht. Schulstempel Probeunterricht 00 Mathematik 5. Jgst. -. Tag. Tag. Tag gesamt Note Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen gut erkennbar

Mehr

Mathematik für Gymnasien

Mathematik für Gymnasien Mathematik für Gymnasien Übungsaufgaben- LÖSUNGEN -Jahrgangsstufe I. Brüche. Allgemein: a) Zähler, Bruchstrich, Nenner b) Der Nenner gibt die Anzahl der gleichen Teile an, in die das Ganze zerlegt werden

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

Probeunterricht 2011 an Wirtschaftsschulen in Bayern

Probeunterricht 2011 an Wirtschaftsschulen in Bayern an Wirtschaftsschulen in Bayern Mathematik 8. Jahrgangsstufe - Haupttermin Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 4: Arbeitszeit Teil II (Textrechnen) Seiten 5 bis 8: 45 Minuten 45 Minuten Name:....

Mehr

Grundkenntnisse: Mathematik

Grundkenntnisse: Mathematik Grundkenntnisse: Mathematik nach der 4. Klasse Grundschule (Lösungsgeheft) 1. Umgang mit Zahlen 1.1 Zahlenstrahl A: 350 B: 470 C: 545 D: 590 E: 695 42500 45100 410073 410100 42 000 43 000 44 000 45 000

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 FMS / WMS / WMI Mathematik / 1. Teil

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 FMS / WMS / WMI Mathematik / 1. Teil St.Gallische Kantonsschulen Aufnahmeprüfung 010 FMS / WMS / WMI Mathematik / 1. Teil ohne Taschenrechner Dauer: 40 Minuten Kandidatennummer: Geburtsdatum: Abteilung: 1. Teil. Teil Summe Punkte Note Die

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Basiswissen Klasse 5, Algebra (G8)

Basiswissen Klasse 5, Algebra (G8) Basiswissen Klasse, Algebra (G8) Natürliche Zahlen Sicherer Umgang mit den vier Grundrechenarten MH 1, S. 4- Große Zahlen schreiben und lesen Rechenregeln, wie Punkt vor Strich, Klammern Rechengesetze:

Mehr

Mathematik für die Ferien Seite 1

Mathematik für die Ferien Seite 1 Mathematik für die Ferien Seite. Zähle die natürlichen geraden Zahlen auf, die größer als 0 und kleiner oder gleich 20 sind: 2, 4, 6, 8, 20 2. Schreib als Zahl: Deutschland hat 8 Millionen = 8 000 000

Mehr

Pangea Mathematikwettbewerb FRAGENKATALOG Klasse

Pangea Mathematikwettbewerb FRAGENKATALOG Klasse Pangea Mathematikwettbewerb FRAGENKATALOG 2015 5. Klasse Pangea Ablaufvorschrift Antwortbogen Fülle den Bereich Anmeldedaten auf dem Antwortbogen vollständig aus und achte darauf, dass die entsprechenden

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

Kompetenztest. Testheft

Kompetenztest. Testheft Kompetenztest Testheft Klassenstufe 3 Grundschulen und Förderschulen Schuljahr 2012/2013 Fach Mathematik Name: ANWEISUNGEN Es gibt verschiedene Arten von Aufgaben in diesem Mathematiktest. Bei einigen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Genial! Mathematik 1 - Einstein Junior

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Genial! Mathematik 1 - Einstein Junior Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Genial! Mathematik 1 - Einstein Junior Das komplette Material finden Sie hier: School-Scout.de Günther Iby Einstein 1 Junior Vorwort

Mehr

Ausgabe: Freitag, Abgabe: Freitag, Name:

Ausgabe: Freitag, Abgabe: Freitag, Name: Ausgabe: Freitag, 04.06.2004 Abgabe: Freitag, 11.06.2004 Name: Wie lange hast du ungefähr benötigt, um die Aufgaben zu bearbeiten? Erklärung Messen des Flächeninhalts Man zählt, wie oft ein Einheitsquadrat

Mehr

MSA Mathematik HEFT (c) MSB. Zentrale Abschlussarbeit Mittlerer Schulabschluss

MSA Mathematik HEFT (c) MSB. Zentrale Abschlussarbeit Mittlerer Schulabschluss Zentrale Abschlussarbeit 016 Mittlerer Schulabschluss Herausgeber Ministerium für Schule und Berufsbildung des Landes Schleswig-Holstein Jensendamm 5, 410 Kiel Aufgabenentwicklung Ministerium für Schule

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

Mathematik I - Prüfung für den Übertritt aus der 8. Klasse

Mathematik I - Prüfung für den Übertritt aus der 8. Klasse gyrnjmatur Aufnahmeprüfung 2015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I - Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: Bearbeitungsdauer: 60 Minuten

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite. Bruchteil 3 4 von 00kg =75 kg NR: 00kg :4 3=25 kg 3=75 kg 3 4 heißt Anteil ; 75kg heißt Bruchteil.2 Erweitern

Mehr

Übungsbeispiele zur Flächenberechnung 1. Klasse 5. Schulstufe

Übungsbeispiele zur Flächenberechnung 1. Klasse 5. Schulstufe Übungsbeispiele zur Flächenberechnung 1. Klasse 5. Schulstufe (1) Um ein Denkmal wurde ein Rasen verlegt. Berechne die Rasenfläche (grau!)! 0,5m 30m 1m 0,5m 20m 3m 129,75m² 40m (2) Dieses Grundstück soll

Mehr

Mathematik, 2. Sekundarschule

Mathematik, 2. Sekundarschule Zentrale Aufnahmeprüfung 2009 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name:........................

Mehr

Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note:

Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: MATHEMATIK - Teil A Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2016 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und

Mehr

Pangea Ablaufvorschrift

Pangea Ablaufvorschrift Pangea Mathematik-Wettbewerb 2011 Klassenstufe 7 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten

Mehr

Aufgaben für die Klassenstufen 9/10

Aufgaben für die Klassenstufen 9/10 Aufgaben für die Klassenstufen 9/10 mit Lösungen Aufgabe ME1: Auf einem Parkplatz stehen einige Autos, darunter sind einige Sportwagen. Ein Besucher stellt fest: ˆ Genau die Hälfte aller Autos auf dem

Mehr

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte

3.C Gruppe A 1. Schularbeit Name: Mo / Schw. 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 8 Punkte 3.C Gruppe A 1. Schularbeit Name: Mo 27.10.97 / Schw 1) Berechne: - 18 : ( - 2 ) - [ ( - 12 ) 3 + 2 ( - 6 ) ] + ( + 16 ) + ( - 12 ) = 2) Gib die Elemente der Menge A = { x Z / x < 3 } und B = { y Z / -5

Mehr

Vierte Schularbeit Mathematik Klasse 3B am

Vierte Schularbeit Mathematik Klasse 3B am Vierte Schularbeit Mathematik Klasse 3B am 23.05.2016 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19

Mehr

Grundwissen 5 Lösungen

Grundwissen 5 Lösungen Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2012 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe

St.Gallische Kantonsschulen Aufnahmeprüfung 2012 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe St.Gallische Kantonsschulen Aufnahmeprüfung 2012 Gymnasium Mathematik 2 mit Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 Punkte Löse die

Mehr

Hauptschulabschlussprüfung 2005

Hauptschulabschlussprüfung 2005 Hauptschulabschlussprüfung 2005 Pflichtaufgaben 1. Teil Mathematik x+3 45 Name: Vorname: Klasse: Die Aufgabenblätter sind Bestandteil der Prüfungsarbeit und müssen mit deinem Namen versehen werden. Du

Mehr

2006/1. Ist diese Aussage gerechtfertigt? Schreib deine Begründung im Antwortbogen auf. Zuordnung: H3/I4

2006/1. Ist diese Aussage gerechtfertigt? Schreib deine Begründung im Antwortbogen auf. Zuordnung: H3/I4 2006/1. In einer Zeitschrift ist zu lesen: Untenstehende Graphik demonstriert, dass die Anzahl der Alkoholkranken in der Stadt X von 2002 bis 2003 stark zugenommen hat Ist diese Aussage gerechtfertigt?

Mehr

Aufgaben für die Klassenstufen 9/10

Aufgaben für die Klassenstufen 9/10 Aufgaben für die Klassenstufen 9/10 Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben ME1, ME2, ME3 Aufgaben MG1, MG2, MG3, MG4 Aufgaben MS1, MS2, MS3, MS4, MS5, MS6, MS7, MS8 Aufgabe ME1: Aus

Mehr

Kompetenztest. Testheft

Kompetenztest. Testheft Kompetenztest Testheft Klassenstufe 6 Mittelschule und Förderschule Schuljahr 2009/2010 Fach Mathematik 1. Schule In eine Schule gehen insgesamt 280 Schülerinnen und Schüler. Die Hälfte der Schülerinnen

Mehr

5. 7. Brüche und Dezimalzahlen. Mathematik. Das 3-fache Training für bessere Noten: Klasse. Klasse

5. 7. Brüche und Dezimalzahlen. Mathematik. Das 3-fache Training für bessere Noten: Klasse. Klasse Das 3-fache Training für bessere Noten: WISSEN ÜBEN TESTEN Die wichtigsten Regeln zum Thema Brüche und Dezimalzahlen mit passenden Beispielen verständlich erklärt Zahlreiche Übungsaufgaben in drei Schwierigkeitsstufen

Mehr

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name:

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Für unsaubere Darstellung gibt es Abzug Die angegebenen Punkte gelten unter Vorbehalt. Aufgabe 1 (6 Punkte): Hier ist eine Zahl mit Plättchen

Mehr

Lösungen Mathematik Serie: A1

Lösungen Mathematik Serie: A1 Aufnahmeprüfung 206 für die Berufsmaturitätsschulen des Kantons Zürich Lösungen Mathematik Serie: A. Vereinfachen Sie den Term so weit wie möglich. 2a 2 b : -4a 9b 2 2a 2 b : -4a 9b = 2a2 9b 2 2 b (-4a)

Mehr

Aufgaben zum Basiswissen 5. Klasse

Aufgaben zum Basiswissen 5. Klasse Aufgaben zum Basiswissen 5. Klasse 1. Daten 1. Aufgabe: Familie Tierlieb besitzt 4 Katzen, 2 Hunde, 5 Kaninchen, 2 Papageien, 4 Mäuse und ein Pferd. Zeichne hierfür ein Kreisdiagramm. 2. Aufgabe: Zeichne

Mehr

Modulare Förderung Mathematik

Modulare Förderung Mathematik 1) 1 Umfang und Fläche begrifflich verstehen Welche Aussagen stimmen? Kreuze an. Der Umfang einer Figur ist immer größer als sein Flächeninhalt. Der Flächeninhalt wird kleiner, wenn ich eine Fläche zerschneide

Mehr

Probeunterricht 2012 Mathematik Jgst Tag

Probeunterricht 2012 Mathematik Jgst Tag Schulstempel Probeunterricht 202 Mathematik Jgst. 5. Tag Punkte. Tag Punkte 2. Tag Name: Punkte gesamt Note Lies die Aufgaben genau durch. Arbeite sorgfältig und schreibe sauber. Deine Lösungswege und

Mehr

Lösungen des Mathematik-Basis-Tests

Lösungen des Mathematik-Basis-Tests FACHMITTELSCHULE GLARUS AUFNAHMETEST / 1. TEIL SEPTEMBER 2015 Lösungen des Mathematik-Basis-Tests 1. Schreibe folgende Grössen mit der in der Klammer angegebenen Einheit: a) 3.71 10 g=37.1 t b) 860 cm

Mehr

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2016 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 29. Juni Platzziffer (ggf. Name/Klasse): Teil B

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2016 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 29. Juni Platzziffer (ggf. Name/Klasse): Teil B QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2016 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK 29. Juni 2016 Platzziffer (ggf. Name/Klasse): Teil B 9:10 Uhr 10:20 Uhr Die Benutzung von für den Gebrauch an

Mehr

VA TYP 2 Gymnasium Gymnasialschulzweig der KGS

VA TYP 2 Gymnasium Gymnasialschulzweig der KGS Niedersächsisches Kultusministerium Vergleichsarbeit Mathematik 8. Schuljahrgang 6. März 2007 VA TYP 2 Gymnasium Gymnasialschulzweig der KGS Schule: Klasse: Name: Von der Lehrkraft auszufüllen: Erstsprache

Mehr

Tägliche Nutzungsdauer in Minuten

Tägliche Nutzungsdauer in Minuten Mathematik 6. Schulstufe 1) Von einem Dreieck sind die Winkel α = 20 und β = 70 bekannt. Warum muss in diesem Dreieck der dritte Winkel 90 betragen? 2) Bei der Schuluntersuchung stellte der Schularzt fest,

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2009 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte

St.Gallische Kantonsschulen Aufnahmeprüfung 2009 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte St.Gallische Kantonsschulen Aufnahmeprüfung 2009 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 Punkte Löse

Mehr