Hilfestellungen zu Relationen, Automatenübergänge und Hüllen

Größe: px
Ab Seite anzeigen:

Download "Hilfestellungen zu Relationen, Automatenübergänge und Hüllen"

Transkript

1 Hilfestellungen zu Relationen, Automatenübergänge und Hüllen Erik Fäßler December 18, Relationen Die gültigen Übergänge eines endlichen Automaten - oder Finite State Automaton, FSA - werden formal über Relationen dargestellt. Deshalb werden zunächst die Grundbegriffe von Relationen erläutert. Mit Relation ist im Allgemeinen eine Beziehung zwischen den Elementen einer Menge gemeint. Das heißt, um eine Relation zu erhalten wird stets benötigt: 1. eine Menge, über die die Relation definiert ist, 2. die Definition der Relation selbst. Wir beschränken uns hier auf binäre Relationen. Das heißt, dass immer genau zwei Elemente der Grundmenge miteinander in Relation gesetzt werden. Ein Beispiel dafür ist die Verwandschaftsrelation. Wir gehen erstmal nur von der direkten Verwandtschaft aus. Es sei folgende Menge von Personen P gegeben: P = {Maria, P eter, Harald, Matthias, Kerstin, Diego, Sarah} Die Relation V bezeichne nun die direkte V erwandtschaftsrelation zwischen Elementen der Menge P (oder in Prosa : V bezeiche, welche oben genannten Personen ohne eine Zwischenperson miteinander verwandt sind - also Eltern und Kinder). Formal ist die Relation V eine Menge von Paaren über P : V P P P P bezeichnet hierbei das kartesische Produkt von P und P. Das sind gerade alle Paare über P : (Maria, Maria) (Maria, P eter) (M aria, Harald)... (P eter, Maria) (P eter, P eter) 1

2 (P eter, Harald) (P eter, M atthias)... Wir geben nun eine konkrete Verwandtsschaftsrelation explizit an: V = {(P eter, P eter), (Matthias, Matthias), (Maria, Maria), (Diego, Diego), } (Kerstin, Kerstin), (Harald, Harald), (Sarah, Sarah), (P eter, M atthias), (M aria, Diego), (M atthias, Kerstin), (Diego, Kerstin), (Kerstin, Harald), (M atthias, P eter), (Diego, M aria), (Kerstin, M atthias), (Kerstin, Diego), (Harald, Kerstin) (Farbkodierung: Reflexive Paare, Normale Paare, Paare, die sich aus der Symmetrie ergeben). Die Menge V ist offensichtlich eine Menge von Paaren, wie beispielsweise (P eter, Matthias). Ein solches Paar drückt aus, dass die erste Person - hier P eter - mit der zweiten Person - Matthias - in Relation steht. In unserem Beispiel ist nun also P eter mit M atthias verwandt (P eter könnte etwa M atthias Vater sein). Formal ergibt sich nun aber in keinster Weise, dass auch Matthias mit P eter verwandt ist! Um das auszudrücken, muss zusätzlich das Paar (M atthias, P eter) in die Relation aufgenommen werden. Genau das wurde oben auch getan. Außerdem ist jede Person mit sich selbt verwandt. Um das auszudrücken, wurden die sogenannten reflexiven Paare in die Relation hinzugefügt, z.b. (P eter, P eter). Die Relation V hat die Eigenschaften der Reflexivität und der Symmetrie. Das bedeutet, dass jeder Mensch auch mit sich selbst verwandt ist (reflexiv) und dass die Verwandtschaft immer in beide Richtungen gilt (symmetrisch). Formal werden diese Eigenschaften so ausgedrückt: 1. Reflexivität: x P : (x, x) V 2. Symmetrie: x, y P : (x, y) V (y, x) V Dabei ist (x, y) V zu lesen als x und y stehen in der Relation V. Es gibt eine alternative, kürzere Schreibweise, die genau das gleiche bedeutet (d.h. auch die Reihenfolge von x und y ist wichtig): xv y. So könnte man den obigen Punkt 2 - die Symmetrie - auch so ausdrücken: x, y P : xv y yv x ( Für alle Personen x und y gilt: Ist x mit y verwandt, dann auch y mit x ). Sehen wir uns einmal graphisch an, wie diese Relation aussieht: 2

3 Peter Matthias Kerstin Harald Maria Diego Sarah Man beachte, dass nur diejenigen Personen verwandt sind, zwischen denen explizit eine Kante in obiger Grafik gezogen wurde. Das heißt, P eter und Kerstin sind nicht direkt verwandt. Mit Sarah ist außerdem niemand verwandt (außer sie mit sich selbst). Wir wollen die direkte Verwandtschaftsrelation als Grundlage für eine allgemeine Verwandtschaftsrelation verwenden. Diese Relation soll auch indirekte Verwandtschaftsbeziehungen beinhalten, so dass beispielsweise P eter und Kerstin als verwandt anerkannt würden. Das Ziehen von Verbindungen über Zwischenetappen nennt man Transitivität. Formal: x, y, z P : xv y yv z xv z ( Für alle Personen x, y und z gilt: Ist x mit y verwandt und y mit z, dann ist auch x mit z verwandt ). Um die allgemeine Verwandtschaftsrelation auf Grundlage der direkten Verwandtschaftsrelation zu erhalten, bilden wir die die transitive Hülle. Das bedeutet, dass nach obiger Vorschrift neue Paare gebildet werden, die man erhält, wenn man über eine Zwischenperson geht. Beispiel: P eter ist mit M atthias verwandt, der wiederrum mit Kerstin verwandt ist (siehe obige Grafik). Nun wird auf Grund der Transitivität das Paar (P eter, Kerstin) gebildet. Genau so wird mit allen anderen Personen verfahren. Zuletzt fügen wir alle neuen Paare der Relation V hinzu: V = {(P eter, P eter), (Matthias, Matthias), (Maria, Maria), (Diego, Diego), } (Kerstin, Kerstin), (Harald, Harald), (Sarah, Sarah), (P eter, M atthias), (M aria, Diego), (M atthias, Kerstin), (Diego, Kerstin), (Kerstin, Harald), (M atthias, P eter), (Diego, M aria), (Kerstin, M atthias), (Kerstin, Diego), (Harald, Kerstin) (P eter, Kerstin), (M aria, Kerstin), (M atthias, Harald), (Diego, Harald) (Kerstin, P eter), (Kerstin, M aria), (Harald, M atthias), (Harald, Diego) (Neue transitive Paare, durch Symmetrie hinzugefügte Paare). Dabei wurde die Symmetrie nicht verletzt, weil obiges Prinzip natürlich auch anders herum funktioniert - Kerstin ist ja auch mit M atthias verwandt, der seinerseits mit P eter verwandt ist. Die transitive Hülle zu bilden bedeutet nun, diesen Schritt so oft zu wiederholen, bis keine neuen Paar hinzu kommen. Durch die neuen Paare ergeben sich nun aber auch noch neue transitive Verbindungen. P eter ist nun mit Kerstin 3

4 verwandt, die wiederrum mit Harald verwand ist. Es folgt durch die Transitivität, dass auch P eter und Harald verwandt sind. Mit Maria und Harald verhält es sich analog (genauso). Auch diese Paare werden anschließend der Relation V hinzugefügt. Die transitive Hülle sieht also so aus: V = {(P eter, P eter), (Matthias, Matthias), (Maria, Maria), (Diego, Diego), (Kerstin, Kerstin), (Harald, Harald), (Sarah, Sarah), (P eter, M atthias), (M aria, Diego), (M atthias, Kerstin), (Diego, Kerstin), (Kerstin, Harald), (M atthias, P eter), (Diego, M aria), (Kerstin, M atthias), (Kerstin, Diego), (Harald, Kerstin) (P eter, Kerstin), (M aria, Kerstin), (M atthias, Harald), (Diego, Harald) (Kerstin, P eter), (Kerstin, M aria), (Harald, M atthias), (Harald, Diego) (P eter, Harald), (M aria, Harald) (Harald, P eter), (Harald, Maria)} Konsequenterweise müssen im Relationsgraphen nun alle transitiven Kanten hinzugefügt werden. In der Praxis wird das oft ausgelassen, weil es unübersichtlich ist und für Menschen zumeist überflüssig (ähnlich übrigens wie die Kanten von jeder Person auf sich selbst, die gar nicht erst eingezeichnet wurden - da aber jede Person mit sich selbst verwandt ist, müsste das eigtl. geschehen). Das sähe so aus: Peter Matthias Kerstin Harald Maria Diego Sarah 2 Übergänge in endlichen Automaten In endlichen Automaten gibt es auch eine Art Verwandtschaftsrelation. Nämlich die Verwandtschaft zweier Konfigurationen. Eine Konfiguration ist ein Paar aus einem Zustand des Automaten und dem (Rest-)Wort, das noch abzuarbeiten ist. Es sei folgender Beispielautomat gegeben: 4

5 a 2 a-z 3 1 r a-z a-z a-z Dieser Automat akzeptiert alle Wörter, die mit a beginnen und zwei Buchstaben lang sind und außerdem alle Wörter, die mit r beginnen und vier Buchstaben lang sind. Als Beispielwort diene raus. Dann ist die Anfangskonfiguration (1, raus). Der einzige mögliche Folgezustand ist 4, weil das Wort mit r anfängt. Das heißt, die nächste Konfiguration ist (4, aus). Der erste Buchstabe wurde durch Traversieren ( abgehen ) Kante zwischen den Zuständen 1 und 4 vom Band gelesen. Wir gehen nun in Zustand 5 und landen in der Konfiguration (5, us). Dann (6, s) und schließlich (7, ɛ). Da Zustand 7 ein akzeptierender Zustand ist, ist diese letzte Konfiguration eine akzeptierende Endkonfiguration. Folgende Konfigurationen sind bei der Abarbeitung des Wortes raus aufgetaucht: (1, raus) (4, aus) (5, us) (6, s) (7, ɛ) Je zwei aufeinanderfolgende dieser Konfigurationen stehen zueinander in der Relation F SA. Man stellt sich dabei vor, dass ein Lesekopf des Automaten Zeichen für Zeichen einliest und sich dabei der Automatenzustand ändert. Deshalb wird die Relation F SA Bewegungsrelation oder kurz Bewegung genannt. Für oben gilt also (1, raus) F SA (4, aus), (4, aus) F SA (5, us) etc. Die Notation ist genau die von oben, nur statt Peter V Matthias haben wir Konfigurationen und die Bewegungsrelation. Man könnte so wie oben einen Grafen aufzeichnen, indem je zwei Konfigurationen durch eine Kante verbunden werden, wenn sie miteinander in Relation stehen: (1, raus) (4, aus) (5, us) (6, s) (7, ) Die Zustände (1, raus) und (4, aus) stehen in der Relation F SA, weil bei Lesen des Buchstaben r in den Zustand 4 gegangen werden kann. In der Vorlesung sind diese Definitionen und Verfahrensweisen formaler ausgedrückt, siehe Folien 21 und 22. 5

6 3 Hüllen bezüglich der Übergangsrelation Was nun noch fehlt ist ausdrücken zu können, wie Wörter von einem FSA akzeptiert werden. Ein Wort α Σ, wobei Σ das Alphabet des Automaten bezeichne, wird akzeptiert, wenn es eine Reihe von Konfigurationen c 1, c 2... c n gibt, so dass alle Zustände c i, c i+1 miteinander in Relation stehen: c i F SA c i+1. Außerdem muss die letzte Konfiguration, also c n eine akzeptierende Endkonfiguration sein (akzeptierender Zustand und leeres Band). Also muss es eine Reihe von Konfigurationen wie oben im raus-beispiel geben, bei der man im Automaten von Konfiguration zu Konfiguration gehen kann und anschließend mit leerem Band an einem akzeptierenden Zustand angelangt. Es ist natürlich viel zu umständlich, all diese Dinge (und die hier gelieferte Beschreibung ist noch verhältnismäßig ungenau) jedes Mal wieder aufzuschreiben, wenn man von der Akzeptanz eines Wortes sprechen möchte. Deshalb bildet man die transitive Hülle der F SA Relation. Diese wird mit einem zusätzlichen Stern notiert: F SA Wie bei der Verwandtschaft sind dann nicht mehr nur direkte Verwandte in der Relation enthalten, sondern auch direkt entferntere Verwandte bzw. Konfigurationen, die nur über Zwischenschritte erreicht werden können. Der resultierende Graph sieht dann so aus: (1, raus) (4, aus) (5, us) (6, s) (7, ) Die ganz große, oberste Kante ist dabei die, die wir erreichen wollen: Wir können nun direkt, in einem einzelnen Schritt erkennen, dass wir bei Eingabe des Wortes raus irgendwann in der akzeptierenden Endkonfiguration (7, ɛ) landen werden. Haben wir diese transitive Hülle also erst einmal berechnet, müssen wir den Automaten gar nicht mehr Schritt für Schritt ablaufen, sondern können sofort erkennen, ob ein Wort akzeptiert wird oder nicht. Ab nun können wir uns einfach fragen, ob für ein bestimmtes Wort - z.b. rein - die Anfangskonfiguration (1, rein) mit einer akzeptierenden Endkonfiguration - z.b. (7, ɛ) - in der Relation F SA (transitive Hülle von F SA) steht. Falls ja, wird das Wort rein akzeptiert - sonst nicht. 6

Kapitel 0: Grundbegriffe Gliederung

Kapitel 0: Grundbegriffe Gliederung Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechenbarkeitstheorie 4. Komplexitätstheorie 5. Kryptographie 0/2, Folie 1 2009 Prof. Steffen Lange - HDa/FbI - Theoretische Informatik

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

5.2 Endliche Automaten

5.2 Endliche Automaten 114 5.2 Endliche Automaten Endliche Automaten sind Turingmaschinen, die nur endlichen Speicher besitzen. Wie wir bereits im Zusammenhang mit Turingmaschinen gesehen haben, kann endlicher Speicher durch

Mehr

PDA, Übergangsfunktion

PDA, Übergangsfunktion Die Übergangsfunktion Was bedeutet das? PDA, Übergangsfunktion haben wir so definiert: : Z ( [{"})!P e (Z ) (z, a, A) ist eine Menge von Paaren der Form (z 0, B 1...B k ). Jedes dieser Paare beschreibt

Mehr

Formale Sprachen und endliche Automaten

Formale Sprachen und endliche Automaten Formale Sprachen und endliche Automaten Formale Sprachen Definition: 1 (Alphabet) Ein Alphabet Σ ist eine endliche, nichtleere Menge von Zeichen oder Symbolen. Ein Wort über dem Alphabet Σ ist eine endliche

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 1: Wiederholung 1 Mengen 2 Abbildungen 3 Exkurs Beweistechniken 4 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen

Mehr

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 8. Vorlesung: Minimale Automaten. TU Dresden, 6. November Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 8. Vorlesung: Minimale Automaten Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 6. November 2017 Rückblick Markus Krötzsch, 6. November 2017 Formale Systeme Folie 2 von 26

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Endliche Automaten. Endliche Automaten 1 / 102

Endliche Automaten. Endliche Automaten 1 / 102 Endliche Automaten Endliche Automaten 1 / 102 Endliche Automaten Endliche Automaten erlauben eine Beschreibung von Handlungsabläufen: Wie ändert sich ein Systemzustand in Abhängigkeit von veränderten Umgebungsbedingungen?

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Endliche Automaten. Endliche Automaten 1 / 115

Endliche Automaten. Endliche Automaten 1 / 115 Endliche Automaten Endliche Automaten 1 / 115 Endliche Automaten Endliche Automaten erlauben eine Beschreibung von Handlungsabläufen: Wie ändert sich ein Systemzustand in Abhängigkeit von veränderten Umgebungsbedingungen?

Mehr

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten:

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten: 35 4 Paarungen 4. Produktmengen Die Mengen {x, y} und {y, x} sind gleich, weil sie die gleichen Elemente enthalten. Manchmal legt man aber zusätzlich Wert auf die Reihenfolge der Elemente. Die Objekte

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Kontextsensitive und Typ 0 Sprachen Slide 2. Die Turingmaschine

Kontextsensitive und Typ 0 Sprachen Slide 2. Die Turingmaschine Kontextsensitive und Typ 0 Sprachen Slide 2 Die Turingmaschine DTM = Deterministische Turingmaschine NTM = Nichtdeterministische Turingmaschine TM = DTM oder NTM Intuitiv gilt: DTM = (DFA + dynamischer

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2 Lösungsblatt 2 3. Mai 2 Einführung in die Theoretische Informatik Hinweis:

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2 Lösungsblatt 2. Mai 2 Einführung in die Theoretische Informatik

Mehr

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen) DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

2.6 Verdeutlichung verwendeter Begriffe

2.6 Verdeutlichung verwendeter Begriffe 2.6 Verdeutlichung verwendeter Begriffe endlich/finit: die Mengen der Zustände und der Ein- bzw. Ausgabezeichen sind endlich synchron: die Ausgabezeichen erscheinen synchron mit dem Einlauf der Eingabezeichen

Mehr

Berechenbarkeit. Script, Kapitel 2

Berechenbarkeit. Script, Kapitel 2 Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Rolf Socher ISBN 3-446-22987-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-22987-6 sowie im Buchhandel Einführung.. 13 2 Endliche

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 1-14. Sitzung Dennis Felsing dennis.felsing@student.kit.edu http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-02-07 Äquivalenzrelationen 1 Äquivalenzrelationen

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,

1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln, Theorie der Informatik 9. März 24 7. Reguläre Sprachen I Theorie der Informatik 7. Reguläre Sprachen I Malte Helmert Gabriele Röger Universität Basel 9. März 24 7. Reguläre Grammatiken 7.2 DFAs 7.3 NFAs

Mehr

Anhang B. Relationenalgebraische Definitionen. B.1 Relationen

Anhang B. Relationenalgebraische Definitionen. B.1 Relationen Anhang B Relationenalgebraische Definitionen Die relationenalgebraischen Definitionen bilden die Grundlage der formalen Aspekte der Projekte WebReference und InterMediate [Her00]. Sie sind [SS89] entnommen.

Mehr

Vorlesung 4. Tilman Bauer. 13. September 2007

Vorlesung 4. Tilman Bauer. 13. September 2007 Vorlesung 4 Universität Münster 13. September 2007 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Definition Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische)

Mehr

Grundlagen der theoretischen Informatik

Grundlagen der theoretischen Informatik Grundlagen der theoretischen Informatik Kurt Sieber Fakultät IV, Department ETI Universität Siegen SS 2013 Vorlesung vom 09.04.2013 Inhalt der Vorlesung Teil I: Automaten und formale Sprachen (Kurt Sieber)

Mehr

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}}

c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}} 2 Endliche Automaten Fragen 1. Was ergibt sich bei {a, bc} {de, fg}? a) {abc, defg} b) {abcde, abcfg} c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} 2. Was ergibt sich bei {abc, a} {bc, λ}?

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3 Die Lösungshinweise dienen

Mehr

Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p.

Turing Maschine. Thorsten Timmer. SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke. Turing Maschine SS 2005 p. Thorsten Timmer SS 2005 Proseminar Beschreibungskomplexität bei Prof. D. Wotschke Turing Maschine SS 2005 p. 1/35 Inhalt Einführung Formale Definition Berechenbare Sprachen und Funktionen Berechnung ganzzahliger

Mehr

modulo s auf Z, s. Def

modulo s auf Z, s. Def 16. Januar 2007 Arbeitsblatt 5 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 21.11.06 Präsenzaufgaben: 1) Seien

Mehr

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3}

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3} Äquivalenzrelationen Aufgabe 1. Lesen Sie im Skript nach was eine Äquivalenzrelation und eine Äquivalenzklasse ist. Gegeben ist die Menge A = {1, 2, 3. Finden Sie 3 Äquivalenzrelationen auf A und geben

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 heoretische Informatik 1 uringmaschinen David Kappel Institut für Grundlagen der Informationsverarbeitung echnische Universität Graz 11.03.2016 Übersicht uring Maschinen Algorithmusbegriff konkretisiert

Mehr

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen:

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen: 4. Mathematische und notationelle Grundlagen 4.1 Mengen Beispiel 3 A 1 = {2, 4, 6, 8}; A 2 = {0, 2, 4, 6,...} = {n N 0 ; n gerade} Bezeichnungen: x A A x x A B A B A { } x Element A x nicht Element A B

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für

Mehr

Fragen 1. Muss eine DTM ein Wort zu Ende gelesen haben, um es zu akzeptieren? a) Ja! b) Nein!

Fragen 1. Muss eine DTM ein Wort zu Ende gelesen haben, um es zu akzeptieren? a) Ja! b) Nein! 4 Turingmaschinen Eingabeband nicht nur lesen, sondern auch schreiben kann und die zudem mit ihrem Lese-Schreib-Kopf (LSK) nach links und rechts gehen kann. Das Eingabeband ist zudem in beide Richtungen

Mehr

Endliche Automaten. Endliche Automaten J. Blömer 1/23

Endliche Automaten. Endliche Automaten J. Blömer 1/23 Endliche Automaten Endliche Automaten sind ein Kalkül zur Spezifikation von realen oder abstrakten Maschinen regieren auf äußere Ereignisse (=Eingaben) ändern ihren inneren Zustand produzieren gegebenenfalls

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

Grundlagen der Mengenlehre

Grundlagen der Mengenlehre mathe plus Grundlagen der Mengenlehre Seite 1 1 Grundbegriffe Grundlagen der Mengenlehre Def 1 Mengenbegriff nach Georg Cantor (1845-1918) Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 02. November INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 02. November INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik Vorlesung am 2. November 27 2..27 Dorothea Wagner - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Vorlesung am 2. November 27 Helmholtz-Gemeinschaft

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen Susanna Pohl Vorkurs Mathematik TU Dortmund 10.03.2015 Mengen und Relationen Mengen Motivation Beschreibung von Mengen Mengenoperationen

Mehr

Die mathematische Seite

Die mathematische Seite Kellerautomaten In der ersten Vorlesung haben wir den endlichen Automaten kennengelernt. Mit diesem werden wir uns in der zweiten Vorlesung noch etwas eingängiger beschäftigen und bspw. Ansätze zur Konstruktion

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M.

Mengenlehre. Ist M eine Menge und x ein Element von M, so schreiben wir x M. Ist x kein Element von M, so schreiben wir x M. Mengenlehre Eine Menge ist eine Zusammenfassung bestimmter und unterschiedlicher Objekte. Für jedes Objekt lässt sich eindeutig sagen, ob es zu der Menge gehört. Die Objekte heißen Elemente der Menge.

Mehr

THIA - Übungsblatt 2.

THIA - Übungsblatt 2. THIA - Übungsblatt 2. Aufgabe 12 (Eine einfache Sprache). Endliche Ziffernfolgen, die mit einer 0 beginnen, auf die mindestens eine weitere Ziffer folgt, wobei nur die Ziffern 0,..., 7 vorkommen, sollen

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 7 15. Juni 2010 Einführung in die Theoretische

Mehr

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP

Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07 Vortrag am 17.11.2006 Nichtdeterministische Turingmaschinen und NP Yves Radunz Inhaltsverzeichnis 1 Wiederholung 3 1.1 Allgemeines........................................

Mehr

1. Welche der folgenden Aussagen zur Entscheidbarkeit beziehungsweise Unentscheidbarkeit

1. Welche der folgenden Aussagen zur Entscheidbarkeit beziehungsweise Unentscheidbarkeit 1. Klausur Diskrete Mathematik Seite 1 von 22 1. Welche der folgenden Aussagen zur Entscheidbarkeit beziehungsweise Unentscheidbarkeit ist richtig? A. Keine der Aussagen. B. Eine Menge oder ihr Komplement

Mehr

Übungsblatt 1 - Lösung

Übungsblatt 1 - Lösung Formale Sprachen und Automaten Übungsblatt 1 - Lösung 24. April 2013 1 Wiederholung: Relationen 1. Was ist eine Relation? Definiere (auf grundlegende Begriffe der Mengenlehre kannst du dabei zurückgreifen).

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei

Mehr

1 Mathematische Grundbegriffe

1 Mathematische Grundbegriffe 1 1 Mathematische Grundbegriffe 1.1 Relationen und Funktionen Seien A 1,..., A n Mengen. Ein n-tupel über A 1,..., A n ist eine Folge (a 1,..., a n ) von Objekten a i A i, für i = 1,..., n. Zwei n-tupel

Mehr

Kapitel 3: Ehrenfeucht-Fraïssé Spiele

Kapitel 3: Ehrenfeucht-Fraïssé Spiele Kapitel 3: Ehrenfeucht-Fraïssé Spiele Kapitel 3: Ehrenfeucht-Fraïssé Spiele Abschnitt 3.0: In diesem Kapitel werden Ehrenfeucht-Fraïssé-Spiele (kurz: EF-Spiele) eingeführt. Diese liefern ein Werkzeug,

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Rekursive Aufzählbarkeit Die Reduktion

Rekursive Aufzählbarkeit Die Reduktion Rekursive Aufzählbarkeit Die Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 3 Aufgabe 1 Zu überpüfen sind jeweils folgende Eigenschaften: 1. Reflexivität: x R x x S 2. Symmetrie:

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier Automaten und Formale Sprachen SoSe 2007 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

H MPKP. Beispiel für eine Rechnung. Reduktion H MPKP. Überführungsregeln

H MPKP. Beispiel für eine Rechnung. Reduktion H MPKP. Überführungsregeln H MPKP Konfiguration einer TM als String schreiben: Bandinschrift zwischen den Blank-Zeichen Links von der Kopfposition Zustand einfügen. Beispiel für eine Rechnung ##q ab##xq b##xyq 2 ##xyzq 3 ##xyq 4

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Ergänzende Übungen Lineare Algebra I. Wintersemester 2010/11. Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik

Ergänzende Übungen Lineare Algebra I. Wintersemester 2010/11. Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik Ergänzende Übungen Lineare Algebra I Wintersemester 2010/11 Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik 1 Äquivalenz Was bedeutet Äquivalenz? Wie wird der Begriff

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Kapitel 3: Reguläre Grammatiken und Endliche. Automaten

Kapitel 3: Reguläre Grammatiken und Endliche. Automaten Kapitel 3: Reguläre Grammatiken und Endliche Automaten Prof.-Dr. Peter Brezany Institut für Softwarewissenschaft Universität Wien, Liechtensteinstraße 22 090 Wien Tel. : 0/4277 38825 E-mail : brezany@par.univie.ac.at

Mehr

Zur Zykelschreibweise von Permutationen

Zur Zykelschreibweise von Permutationen Zur Zykelschreibweise von Permutationen Olivier Sète 16. Juni 2010 1 Grundlagen Definition 1.1. Eine Permutation von {1, 2,..., n} ist eine bijektive Abbildung σ : {1, 2,..., n} {1, 2,..., n}, i σ(i).

Mehr

Relationen und Funktionen

Relationen und Funktionen Relationen und Funktionen Relationen und Funktionen Quick Start Informatik Theoretischer Teil WS2011/12 11. Oktober 2011 Relationen und Funktionen > Relationen Relationen Relationen und Funktionen > Relationen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 4: Wörter (und vollständige Induktion) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/29 Überblick Wörter Wörter Das leere Wort Mehr zu

Mehr

THEORETISCHE INFORMATIK

THEORETISCHE INFORMATIK THEORETISCHE INFORMATIK Vorlesungsskript Jiří Adámek @ Institut für Theoretische Informatik Technische Universität Braunschweig Dezember 28 Inhaltsverzeichnis Endliche Automaten. Mathematische Grundbegriffe......................

Mehr

Vorkurs Mathematik für Informatiker

Vorkurs Mathematik für Informatiker Vorkurs Mathematik für Informatiker 5. Relationen Thomas Huckle, Kilian Röhner Technische Universität München 9.10.2017 Relationen Mit Relationen können wir Beziehungen zwischen je zwei Dingen ausdrücken.

Mehr

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 15 + 16 vom 17.12.2012 und 20.12.2012 Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 26. November 2007 Semi-Entscheidbarkeit

Mehr

Elementare Beweistechniken

Elementare Beweistechniken Elementare Beweistechniken Beispiel: Satzform (Pythagoras) Voraussetzung: Gegeben sei ein beliebiges rechtwinkeliges Dreieck, die Länge der Hypothenuse sei c und die Längen der anderen Seiten seien a und

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Relationen. Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B.

Relationen. Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Mathematik I für Informatiker Relationen auf einer Menge p. 1 Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Ein wichtiger Spezialfall ist der,

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 1. Automaten und Sprachen 1.1 Endlicher Automat Einen endlichen Automaten stellen wir uns als Black Box vor, die sich aufgrund einer Folge von

Mehr

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S

Formale Sprachen. Formale Grundlagen (WIN) 2008S, F. Binder. Vorlesung im 2008S Formale Grundlagen (WIN) Franz Binder Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Das Alphabet Σ sei eine endliche

Mehr

Formale Methoden 1. Gerhard Jäger 14. November Uni Bielefeld, WS 2007/2008 1/17

Formale Methoden 1. Gerhard Jäger 14. November Uni Bielefeld, WS 2007/2008 1/17 1/17 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 14. November 2007 2/17 Komposition von Relationen und Funktionen seien R A B und S B C Relationen neue

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3.

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3. 3. Relationen 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen 3. Relationen GM 3-1 Wozu Relationen? Mathematik Theoretische Informatik Kryptographie

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Mengen Eine Menge ist eine Gruppe von Elementen, die eine Einheit bilden (siehe z.b. Halmos 1976). Formale Sprachen und Automaten Mathematisches Rüstzeug Mengen können verschiedene Typen von Elementen

Mehr

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5.

Formale Sprachen. Spezialgebiet für Komplexe Systeme. Yimin Ge. 5ahdvn. 1 Grundlagen 1. 2 Formale Grammatiken 4. 3 Endliche Automaten 5. Formale Sprachen Spezialgebiet für Komplexe Systeme Yimin Ge 5ahdvn Inhaltsverzeichnis 1 Grundlagen 1 2 Formale Grammatien 4 Endliche Automaten 5 4 Reguläre Sprachen 9 5 Anwendungen bei Abzählproblemen

Mehr

Kapitel 2 Das Modell der endlichen Automaten

Kapitel 2 Das Modell der endlichen Automaten Kapitel 2 Das Modell der endlichen Automaten Wenn man ein Berechnungsmodell beschreiben will, muss man folgende Fragen beantworten (siehe auch das Modul Geschichte der Informatik und Begriffsbildung in

Mehr

7 Endliche Automaten. 7.1 Deterministische endliche Automaten

7 Endliche Automaten. 7.1 Deterministische endliche Automaten 7 Endliche Automaten 7.1 Deterministische endliche Automaten 7.2 Nichtdeterministische endliche Automaten 7.3 Endliche Automaten mit g-übergängen Endliche Automaten 1 7.1 Deterministische endliche Automaten

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014 Klausurnummer Nachname: Vorname: Matr.-Nr.: Aufgabe 1 2 3 4 5 6 7 max. Punkte 6 8 4 7 5 6 8 tats. Punkte Gesamtpunktzahl: Note: Punkte Aufgabe

Mehr

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat

Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (II) 2.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Grenzen der Regularität

Grenzen der Regularität Grenzen der Regularität Um die Mächtigkeit von endlichen Automaten zu verstehen, muss man auch ihre Grenzen kennen. Sei z.b. B = {0 n 1 n n 0} Gibt es einen DEA für B? Es sieht so aus, als müsste sich

Mehr

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Technische Universität Ilmenau WS 2008/2009 Institut für Mathematik Informatik, 1.FS Dr. Thomas Böhme Aufgabe 1 : Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Gegeben sind die

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

Klausur zur Vorlesung Informatik III Wintersemester 2007/2008

Klausur zur Vorlesung Informatik III Wintersemester 2007/2008 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Klausur zur Vorlesung Informatik III Wintersemester 2007/2008 Hier Aufkleber mit Name und Matrikelnr. anbringen Vorname: Nachname: Matrikelnummer:

Mehr