Scheinseminar Optische Lithographie Anwendungen, Grenzen und Perspektiven. Vortrag vom

Größe: px
Ab Seite anzeigen:

Download "Scheinseminar Optische Lithographie Anwendungen, Grenzen und Perspektiven. Vortrag vom"

Transkript

1 Scheinseminar Optische Lithographie Anwendungen, Grenzen und Perspektiven Vortrag vom Abbildung durch Elektronenstrahlen (Wie funktioniert ein Rasterelektronenmikroskop?) Benjamin Hussendörfer

2 Gliederung Motivation für die Nutzung von Elektronenoptik bzw. REM Elektronenstrahlerzeugung Elektronenoptik, Linsenfehler und Auflösungsvermögen Wechselwirkungsprozesse Kontrast und Detektion Mögliche weitere Verfahren Zusammenfassung

3 Abbildungsmöglichkeiten (Auswahl) feste Beleuchtung rasternd Linse Rasterkraftmikroskop Lichtmikroskop Rastertunnelmikroskop Transmissionselektronenmikroskop Rasterelektronenmikroskop Quelle: Goldprobe mit monoatomaren Stufen

4 Lichtmikroskop Wichtige Parameter: Auflösung, Vergrößerung Auflösungsvermögen von der Wellenlänge abhängig => A= sin n Minimale Wellenlänge beim Lichtmikroskop ca. 0.4 µm => bestes Auflösungsvermögen: 0.2 µm Vergrößerung bis zu 1:1000 => v= s t f ob f ok

5 Elektronenoptik de Broglie Wellenlänge: => = h eue eu 2 0 Beschleunigungsspannung bis ca. 100 KeV => minimale Wellenlänge : 4 pm Auflösungsvermögen: 1,2 nm Vergrößerung: etwa 1:

6 Väter der Elektronenoptik und des Rasterelektronenmikroskops 1886 Entdeckung der Kanalstrahlen durch Eugen Goldstein 1927 theoretische Grundlagen der Elektronenoptik durch Hans Busch 1932 erstes Elektronenmikroskop durch E. Ruska u. Max Knoll Ernst Ruska 1937 Manfred von Ardenne setzt die Grundlagen für das Rasterelektronenmikroskop 1938 Ruska und Bodo von Borries entwickeln erstes REM Manfred von Ardenne

7 Glühkathode Thermische Emission von Elektronen Richardson Formel: 2 KT J = AT e Erste Fokussierung des Elektronenstrahls durch den Wehnelt- Zylinder => Reeller Crossover Point Kathodenmaterial z.b. LaB6 oder Wolfram Lebensdauer des Kathodenmaterials stark abhängig von Heizstrom Quelle:L.Reiner G. Pfefferkorn Raster-Elektronenmikroskopie

8 Feldemission Sehr dünne und saubere Spitze (z.b. Wolfram) Hohe elektrische Feldstärke : E= Äußeres Feld => Tunneleffekt Strom gegeben durch die Fowler- Nordheim- Gleichung: 3 2 => j= AE e B 2 E Kalte Emission U r

9 Charakteristische Größen Parameter Austrittsarbeit Arbeitstemperatur Stromdichte Crossovergröße Lebensdauer Emissionsstromstabilität Einheit ev K A/m2 μm hr %/h Potentialverlauf eines Feldemitters Wolfram LaB6 Feldemission 4, >1 2, >1 4, <0,01 >1000 >5

10 Magnetische Elektronenlinsen Der kleinste Strahlquerschnitt (Crossover) muss minimiert werden =>Elektronenlinsen Lorentzkraft: F = e vx B Schraubenförmige Bahn der Elektronen Magnetfeld gegeben durch: B= N 0 I 2R 1 Rz 2 2 /3 Brennweite: 1 e 2 = B z dz f 8mU Quelle:L.Reiner G. Pfefferkorn Raster-Elektronenmikroskopie Wegen schraubenförmigen Verlauf kommt es zu e Bilddrehung: = B Z dz 8mU

11 Linsensystem Im REM verkleinert das Linsensystem den Crossover d`0 => d 0= f1f2 f3 d 0 L1 L 2 L3 Linsensystem: 2 Kondensorlinsen => Reduzieren den Querschnitt 1 Objektivlinse bildet den Crossover auf die Probe ab

12 Linsenfehler (Öffnungsfehler) Abb. 3.3a, L.Reimer G. Pfefferkorn: Rasterelektronenmikroskopie, Springerverlag 1977 Öffnungsfehler: -Elektronen, die einen großen Abstand von der Achse haben, werden stärker abgelenkt => Kürzere Brennweite -Bildung eines Brennkreises statt eines Brennpunktes 3 => d s=0.5c s

13 Linsenfehler / Farbfehler Abb. 3.3b, L.Reimer G. Pfefferkorn: Rasterelektronenmikroskopie, Springerverlag 1977 Farbfehler: -Brennweitendifferenz bei verschiedenen Wellenlängen - Wellenlängenschwankungen durch Schwankung der Elektronenenergie verursacht => d C =C C E E0

14 Linsenfehler / Axialer Astigmatismus Abb. 3.3b, L.Reimer G. Pfefferkorn: Rasterelektronenmikroskopie, Springerverlag Brennweite zweier aufeinander senkrecht stehender Elektronenbündel kann aufgrund von magnetischen Inhomogenitäten, Aufladungserscheinungen, etc. zueinander verschoben sein. => d A= f - Dieser Fehler kann durch elektrische oder magnetische Korrekturfelder behoben werden

15 Linsenfehler / Axialer Astigmatismus Gute Einstellung der Astigmatoren Schlechte Einstellung der Astigmatoren in x- und y- Richtung

16 Beugungsfehler Abb. 3.3b, L.Reimer G. Pfefferkorn: Rasterelektronenmikroskopie, Springerverlag Die Aperaturbegrenzung führt dazu, dass der Fokus der Linse nicht scharf sein kann => Beugungsscheibchen: d B=0.6 (z.b. bei α= und λ=4 pm => db= 2 nm)

17 Auflösungsvermögen Das Auflösungsvermögen wird im Wesentlichen vom Durchmesser der Elektronensonde auf der Probe bestimmt Idealer Durchmesser des abgebildeten Crossovers: 1 2 I d 0= Theoretisches Auflösungsvermögen: d eff = d 0 d s d e d B Weitere begrenzende Faktoren: Elektronenstreuung in der Diffusionswolke Statistische Schwankung Abb 3.4,L.Reimer G. Pfefferkorn: Rasterelektronenmikroskopie, Springerverlag 1977

18 Rasterprozess Vergrößerung: - Veränderung des Spulenstroms und des Arbeitsabstandes => Änderung der abgerasterten Fläche => Änderung der Vergrößerung - Vergrößerung ohne Variation der Brennweite V= Kantenlänge des Bildes auf der Bildröhre Kantenlänge des abgebildeten Bereichs auf dem Objekt Darstellung: - Jeder Punkt wird abgerastert - Die gewonnene Information bestimmt die Helligkeit des in Echtzeit dargestellten Punktes - So läuft z.b. der Strahl eines CRT Schirms synchron zum Elektronenstrahl des REMs Lehrstuhl für Verbundwerkstoffe Praktikum REM und EDXS Bearbeiter: Dr. H. Podlesak Rasterelektronenmikroskopie (REM) und Energiedispersive Röntgenmikrobereichsanalyse (EDXS)

19 Stoßprozesse Elastische Streuung: - Streuung an den Nukleonen der Probe durch Coloumbkraft - Differentieller Wirkungsquerschnitt: d = d 4R Z a 0 sin großer Streuwinkel Inelastische Streuung: -Streuung an Plasmonen - Anregung von Elektronen - Ionisierung - Comptoneffekt - Kleiner Streuwinkel Quelle:Rasterelektronenmikroskopie, 2.Aufl. 1977, Fig. 1.5

20 Diffusionswolke Pb bei U=70 KV, ɳ=0.52 Cu bei U=70 KV, ɳ=0.25 In der Realität kommt es zu Mehrfachstreuung (>25) Hohes Z führt zu einer Zunahme der Rückstreuelektronen

21 Diffusionswolke Au mit d=200nm auf GaAs, Beschleunigungspannung: 5 kv 40 kv

22 Streubirne Quelle:L.Reimer Scanning Elektron Microskop 2nd ed. 1998, Fig. 1.4, Rückstreuelektronen Röntgenstrahlen >50eV Materialkontrast Materialabhängig Bestimmung der enthaltenen Elemente und deren Konzentration Absorptionsstrom Topographiekontrast und Ordnungszahl Transmittierte Elektronen kev Innere Struktur Kathodoluminieszenz µm Defekte, Verunreinigungen Augerelektronen 50 ev 3 KeV Oberflächenelemente+Verunreinigungen

23 Detektion der Sekundärelektronen (Everhart-Thornley Detektor) Abb. 3.11, L.Reimer G. Pfefferkorn: Rasterelektronenmikroskopie, Springerverlag 1977 Detektion der Sekundärelektronen (Everhart-Thornley Detektor) -Szintilationszähler mit angeschlossenem Photomultiplier -Es müssen langsame Elektronen detektiert werden => Elektronen werden zunächst von einem schwachen elektr. Feld abgesaugt (ca. 0.2 kev) und anschließend zum Szintilator hin beschleunigt - Im Metall entstehen Elektron-Loch Paare (ca pro einfallendem Elektron) - Entstehung von Licht durch Rekombination (1-3% der SE) 1SE~10PE - Verstärkung durch Photomultiplier

24 Detektion der Rückstreuelektronen (Halbleiterdetektor) Detektion der Rückstreuelektronen (Halbleiterdetektor) -Halbleiterdetektor mit Oberflächensperrschicht (z.b. Metallschicht) => Langsame SE und Lichtquanten, emittiert von der Probe, werden absorbiert -RE mit 10 KeV erzeugen ca Elektron Loch-Paare -Durch Trennung am pn-übergang und Diffusion entstehen so pro einfallendem RE Elektron 1000 Elektronen im Detektor - Anbringung oberhalb der Probe deckt ein größeres Raumwinkelement der RE ab

25 Detektion der Rückstreuelektronen (Halbleiterdetektor) Summe der beiden Detektorsignale => Materialkontrast Differenz der beiden Signale => Topographiekontrast Quelle: Invitation to the SEM World, p.30

26 Kontrast Teststruktur bei V=12000 Kontrast durch Kanten: - An Kanten oder hervorstehenden Strukturen kommt es zu einer erhöhten RE- und SE- Ausbeute - Auflösung der genauen Form der Kante geht verloren - Struktur der Kante erscheint aber besser aufgelöst - Besonders der Kontrast kleiner Teilchen wird verändert Flächenneigungskontrast: -SE-Ausbeute δ undrückstreukoeffizient η sind abhängig vom Einfallswinkel des Elektronenstrahls => Flächen die in Richtung des Detektors geneigt sind erscheinen heller => I ~sin

27 Kontrast durch Abschattung Quelle: Inventention to the SEM s World JEOL -Bei der vom Detektor abgewandten Fläche spielt die Struktur der Fläche eine wichtige Rolle -RE erscheinen dunkel -SE erscheinen hell - Abschattungseffekte sind insbesondere bei tiefen Löchern nachteilig

28 Materialkontrast Au ɳ=0.48; GaAs ɳ= Variation des Rückstreukoeffizenten => Bildhelligkeit wird durch den Rückstreukoeffizenten des Materials bestimmt (Atome höherer Ordnungszahl streuen stärker) -Probenstrom => hoher Probenstrom nötig => von der Detektorgeometrie unabhängig

29 Schärfentiefe Numerische Apertur tan : Kleinste Größe der auf dem Monitor noch auflösbaren Objektdetails Schärfentiefe: T = Geometrie der Schärfentiefe

30 Schärfentiefe Blende 170 µm, Arbeitsabstand 15mm Blende 170 µm Arbeitsabstand 48 mm

31 Schärfentiefe Blende 50 µm Arbeitsabstand 15 mm Blende 50 µm Arbeitsabstand 48 mm

32 Bildfehler durch Aufladungseffekte Ursache: -Die einfallenden PE ionisieren die Atome auf der Oberfläche der Probe. -Kleine Beschleunigungsspannungen führen zu negativer, große Spannungen zu positiver Aufladung (Ionisation) -Bei Isolatoren können die Ladungen nicht abfließen Mögliche Gegenmaßnahmen: -Kleinere Beschleunigungsspannungen => negative Aufladung => Verlust von Eindringtiefe und Sekundärelektronen - Herabsetzen des Vakuums => Streuung an Gasatomen und Molekühlen -Aufdampfen einer dünnen Metallschicht => Verlust von wichtigen Strukturen auf der Oberfläche

33 Aufladungseffekte Photonische Glasfaser bei einer Beschleunigungsspannung von 20 KV Die gleiche Faser bei annähernd gleicher Bestrahldauer, aber einer Beschleunigungsspannung von 40 KV

34 Erweiterungen und zusätzliche Detektoren Mögliche weitere Messverfahren: Messung unter mechanischer Spannung Oberflächenuntersuchungen bei erhitzten Proben Veränderung des Betrachtungswinkels weitere Detektoren: Leuchtschirm bzw. CCD-Sensor Spektroskop Wellenlängendispersive Röntgenfluoreszenzanalyse Energiedispersive Röntgenspektroskopie

35 EDX Materialanalyse mit Hilfe von Röntgenstrahlung Detektion mit Hilfe von von SI(Li)- Detektoren Möglichkeit zur Bestimmung der chemischen Zusammensetzung in Abhängigkeit vom Ort Energiespektrum einer 20 Cent Münze Abschirmung der Hintergrundstrahlung durch Windowmaterial Schnelle Analyse Verteilung von Ga anhand der Kα-Linien

36 Si(Li)- Detektor Schwach dotierter p n Übergang mit breiter intrinsischer Schicht im Raumladungsgebiet Entstehung von ElektronLoch- Paaren Betrieb in Sperrichtung Eindiffundieren von Li zur Kompensation von Löchern und freien Ladungsträgern Stickstoffgekühlt Quelle: Rasterelektronenmikroskop. Dr. Bertsche

37 Elektronenstrahllithographie Beamblanker Ansteuerung der Ablenkspulen über spezifisches Tool Konstanter Strahlenstrom Präzissionsprobentisch Auswahl des maximalen Schreibfeldes (Stitching) Beschreibung sowohl vektoriell als auch rasterförmig Einfühurngsvortrag Rasterelektronenmikroskop Universität Erlangen

38 Zusammenfassung REM hat ein wesentlich höheres Auflösungsvermögen als herkömmliche optische Systeme Hohe Vergrößerung und gute Schärfentiefe Möglichkeit der Untersuchung der Topographie und der Zusammensetzung Untersuchung von leitenden Proben, mit entsprechender Präperation auch die Untersuchung von nichtleitenden Proben möglich Zusätzliche Möglichkeiten wie Elektronenstrahllithographie und EDX Oberfläche und Tiefe untersuchbar

39 Vielen Dank für Ihre Aufmerksamkeit!!!! Quelle:

Versuch 43 Rasterelektronenmikroskopie

Versuch 43 Rasterelektronenmikroskopie Versuch 43 Rasterelektronenmikroskopie "With a microscope you see the surface of things. It magnifies them but does not show you reality. It makes things seem higher and wider. Butdo notsupposeyouareseeing

Mehr

Einführung in die Rasterelktronenmikroskopie

Einführung in die Rasterelktronenmikroskopie Einführung in die Rasterelktronenmikroskopie A. Danilewsky Prinzip des Rasterelktronenmikroskops Orientierungsbestimmung mittels "Electron Back Scatter Diffraction, EBSD" Texturuntersuchungen Literatur

Mehr

Mit Elektronenmikroskopie die Nanowelt erkunden

Mit Elektronenmikroskopie die Nanowelt erkunden Mit Elektronenmikroskopie die Nanowelt erkunden Dagmar Gerthsen Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT) D. Gerthsen (LEM, KIT) www.lem.kit.edu Auflösung in der

Mehr

Studieneinheit V Rasterelektronenmikroskopie, REM

Studieneinheit V Rasterelektronenmikroskopie, REM .04.008 Studieneinheit V.. Rasterelektronenmikroskopie, REM... Funktionsweise eines Rasterelektronenmikroskops... Wechselwirkung von Elektronen mit Festkörpern... Detektoren..4. Kontrastarten..5. Probenpräparation...

Mehr

Praktikumsanleitung Elektronenmikroskopie Rasterelektronenmikroskop. Dr. Christian Bocker Otto-Schott-Institut, Universität Jena

Praktikumsanleitung Elektronenmikroskopie Rasterelektronenmikroskop. Dr. Christian Bocker Otto-Schott-Institut, Universität Jena Praktikumsanleitung Elektronenmikroskopie Rasterelektronenmikroskop Dr. Christian Bocker Otto-Schott-Institut, Universität Jena Wird ein Festkörper mit Elektronen mit Energien im Bereich von 0,1 kev bis

Mehr

Raster- Elektronenmikroskopie

Raster- Elektronenmikroskopie L.Reimer G.Pfefferkorn t Raster- Elektronenmikroskopie Zweite, neubearbeitete und erweiterte Auflage Mit 146 Abbildungen Springer-Verlag Berlin Heidelberg New York 1977 Inhalt 1. Einleitung 1.1. Prinzipielle

Mehr

5. Vergleichende Charakterisierung der meta- und para-porphyrin- Türme auf modifizierten Siliziumwafern mit dem Rasterelektronenmikroskop

5. Vergleichende Charakterisierung der meta- und para-porphyrin- Türme auf modifizierten Siliziumwafern mit dem Rasterelektronenmikroskop 5. Vergleichende Charakterisierung der meta- und para-porphyrin- Türme auf modifizierten Siliziumwafern mit dem Rasterelektronenmikroskop (REM) Da sich bei der Bestimmung der Breiten der Porphyrin-Türme

Mehr

Versuch 17: Rasterelektronenmikroskop

Versuch 17: Rasterelektronenmikroskop Martin-Luther-Universität Halle-Wittenberg FB Physik Fortgeschrittenen- Praktikum Versuch 17: Rasterelektronenmikroskop 1) Bei einem Strahlstrom von etwa 1 na und einem Einstrahlwinkel von α = 30 o (T-

Mehr

Physikalische Messverfahren

Physikalische Messverfahren Physikalische Messverfahren 134.047 Inhalt Vorwort Die Bedeutung der Meßtechnik in Naturwissenschaft und Technik Definitionen, Konventionen und Fehlerabschätzung Einfache Meßgrößen Messung von Längen Messung

Mehr

Rasterelektronenmikroskopie - REM Dipl. Ing. H. Uphoff

Rasterelektronenmikroskopie - REM Dipl. Ing. H. Uphoff WT-Praktikum-Verbundstudium-Versuch05-REM 1 Einleitung Die Rasterelektronenmikroskopie ist ein unentbehrliches Hilfsmittel für die mikromorphologische Untersuchung von Oberflächen. Außer einer Oberflächenabbildung

Mehr

Raster-Elektronenmikroskopie: eine vielseitige Methode zur Untersuchung von Oberflächen

Raster-Elektronenmikroskopie: eine vielseitige Methode zur Untersuchung von Oberflächen Raster-Elektronenmikroskopie: eine vielseitige Methode zur Untersuchung von Oberflächen Abt. Strukturdiagnostik (FWIS) Raster-Elektronenmikroskopie: eine vielseitige Methode zur Untersuchung von Oberflächen

Mehr

ELEKTRONENMIKROSKOPIE

ELEKTRONENMIKROSKOPIE ELEKTRONENMIKROSKOPIE 1. Theoretische Grundlagen 2. Arten der Elektronenmikroskope Transmissionselektronenmikroskop Rasterelektronenmikroskop 3. Probenpräparation TEM/REM 4. Elektronenstrahl und Probe

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker. Vorlesung 27.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

XV. ERFTGESPRÄCHEN. Freitag, 21. August 2015

XV. ERFTGESPRÄCHEN. Freitag, 21. August 2015 XV. ERFTGESPRÄCHEN Freitag, 21. August 2015 Elektronenmikroskopie eine Schlüsseltechnologie, Einführung in die Elektronenmikroskopie, Einblicke in eine faszinierende Welt Dr. Dieter Wagner Motivation Mikroskopie

Mehr

Praktikum Materialwissenschaft I: Werkstoffe

Praktikum Materialwissenschaft I: Werkstoffe Physikalische Metallkunde TECHNISCHE UNIVERSITÄT DARMSTADT Physikalische Metallkunde Fachbereich 11 Material- und Geowissenschaften Petersenstraße 23 D - 64287 Darmstadt Tel. +49 6151 16-2946 Fax +49 6151

Mehr

Rasterelektronenmikroskopie Im Rahmen des Praktikums für Fortgeschrittene SS2010 LV 511.121

Rasterelektronenmikroskopie Im Rahmen des Praktikums für Fortgeschrittene SS2010 LV 511.121 Vorbereitungsunterlagen zur Praktikumsübung Rasterelektronenmikroskopie Im Rahmen des Praktikums für Fortgeschrittene SS2010 LV 511.121 Verwendetes Raster-Elektronenmikroskop: FEI ESEM Quanta 200 DI Herbert

Mehr

Materialanalytik. Praktikum

Materialanalytik. Praktikum Materialanalytik Praktikum Rasterelektronenmikroskopie B504 Stand: 02.11.2011 Ziel: Durch praktisches Arbeiten am Rasterelektronenmikroskop sollen Grundlagen, Vorteile und Grenzen des Verfahrens vermittelt

Mehr

Auflösungsvermögen von Mikroskopen

Auflösungsvermögen von Mikroskopen Auflösungsvermögen von Mikroskopen Menschliches Auge Lichtmikroskopie 0.2 µm Optisches Nahfeld Rasterelektronen mikroskopie Transmissions Elektronenmikroskopie Rastersonden mikroskopie 10 mm 1 mm 100 µm

Mehr

Das Rasterelektronenmikroskop ( REM )

Das Rasterelektronenmikroskop ( REM ) Das Rasterelektronenmikroskop ( REM ) Mit dem Rasterelektronenmikroskop ist es möglich eine Oberfläche mittels eines Elektronenstrahls, der sehr fein gebündelt wird, abzutasten. Im Gegensatz zur Vergrößerung

Mehr

Versuch 43: Rasterelektronenmikroskop

Versuch 43: Rasterelektronenmikroskop Versuch 43: Rasterelektronenmikroskop (08-12) 1 Versuch 43: Rasterelektronenmikroskop Ort: Zi 01.578 (Staudtstr. 7, Gebäude B2, 2.Stock) Vorbereitung 1. Beschreiben Sie den Aufbau eines Raster-Elektronen-Mikroskops.

Mehr

Welleneigenschaften von Elektronen

Welleneigenschaften von Elektronen Seite 1 von 7 Welleneigenschaften von Elektronen Nachdem Robert Millikan 1911 die Ladung des Elektrons bestimmte, konnte bald auch seine Ruhemasse gemessen werden. Zahlreiche Experimente mit Elektronenstrahlen

Mehr

Das Rasterelektronenmikroskop (REM)

Das Rasterelektronenmikroskop (REM) Das Rasterelektronenmikroskop (REM) Dr. Günter Bertsche C10A29 Tel: 29 76351 Die nachfolgend aufgeführten Punkte dienen als Leitfaden zur Vorbereitung auf den Versuch: Aufbau des Rasterelektronenmikroskops

Mehr

Alle Atome haben Massen ungefähr einem vielfachen der Masse des Wasserstoff Atoms.

Alle Atome haben Massen ungefähr einem vielfachen der Masse des Wasserstoff Atoms. 02. Atom Page 1 2. Das Atom Atom: kleinster unveränderbarer Bestandteil eines chemischen Elements Charakteristische Eigenschaften von Atomen: Masse, Volumen, Ladung 2.1 Bestimmung der Atommasse expt. Befund:

Mehr

Transmissionselektronen mikroskopie (TEM)

Transmissionselektronen mikroskopie (TEM) Transmissionselektronen mikroskopie (TEM) im speziellen STEM Inhalt 1. Einleitung 2. Das Messprinzip 3. Der Aufbau 3.1 Unterschiede beim STEM 3.2 Bildgebung 3.3 Detektoren 3.4 Kontrast 3.5 Materialkontrast

Mehr

Rasterelektronenmikroskopie und energiedispersive Röntgenanalyse

Rasterelektronenmikroskopie und energiedispersive Röntgenanalyse Rasterelektronenmikroskopie und energiedispersive Röntgenanalyse Ulrich Burkhardt Motivation Motivation Motivation Elektronenmikroskopie Lichtmikroskopie Elektronen Reflektivität Licht Motivation Elektronenmikroskopie

Mehr

Versuch 43: Rasterelektronenmikroskop

Versuch 43: Rasterelektronenmikroskop Versuch 43: Rasterelektronenmikroskop (02-14) 1 Versuch 43: Rasterelektronenmikroskop Ort: Zi 01.578 (Staudtstr. 7, Gebäude B2, 2.Stock) Kontakt via email (Vorbereitung, Auswertung, etc.): BetreuerV43@physik.uni-erlangen.de

Mehr

Entsteht durch Abbremsung von Elektronen bei Wechselwirkung mit Materie: Bremsstrahlung, Erzeugung in einer Röntgenröhre (Vakuum)

Entsteht durch Abbremsung von Elektronen bei Wechselwirkung mit Materie: Bremsstrahlung, Erzeugung in einer Röntgenröhre (Vakuum) lektronen werden von positiver Anode angezogen, durch Wehnelt ylinder auf einen Punkt konzentriert. Auf Anode (Antikathode) stark gebremst. Röntgenstrahlung (Bremsstrahlung) entsteht. RÖNTGENSTRAHLUNG

Mehr

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G. Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)

Mehr

Studieneinheit VIII LMW Uni BT; R. Völkl 1

Studieneinheit VIII LMW Uni BT; R. Völkl 1 .07.008 Studieneinheit VIII.4. Energiedispersive Röntgenstrahlanalyse, EDX.4.. Einführung.4.. Komponenten eines EDX-Systems.4.. Qualitative EDX-Analyse.4.4. Quantitative EDX-Analyse Einführung - Wechselwirkung

Mehr

Lk Physik in 13/1 1. Klausur Nachholklausur Blatt 1 (von 2)

Lk Physik in 13/1 1. Klausur Nachholklausur Blatt 1 (von 2) Blatt 1 (von 2) 1. Elektronenausbeute beim Photoeekt Eine als punktförmig aufzufassende Spektrallampe L strahlt eine Gesamt-Lichtleistung von P ges = 40 W der Wellenlänge λ = 490 nm aus. Im Abstand r =

Mehr

Präsentation der Ergebnisse zur Defektstudie an Cu(In,Ga)Se 2 -Schichten

Präsentation der Ergebnisse zur Defektstudie an Cu(In,Ga)Se 2 -Schichten Präsentation der Ergebnisse zur Defektstudie an Cu(In,Ga)Se 2 -Schichten Martin-Luther-Universität Halle-Wittenberg Institut für Physik Wechselwirkung von Positronen mit Materie Emission der Positronen

Mehr

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

Festkörperelektronik 2008 Übungsblatt 6

Festkörperelektronik 2008 Übungsblatt 6 Lichttechnisches Institut Universität Karlsruhe (TH) Prof. Dr. rer. nat. Uli Lemmer Dipl.-Phys. Alexander Colsmann Engesserstraße 13 76131 Karlsruhe Festkörperelektronik 6. Übungsblatt 10. Juli 2008 Die

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Zellbiologie. Lichtmikroskopie Elektronenmikroskopie Biologische Membranen Membranverbindungen

Zellbiologie. Lichtmikroskopie Elektronenmikroskopie Biologische Membranen Membranverbindungen Zellbiologie Lichtmikroskopie Elektronenmikroskopie Biologische Membranen Membranverbindungen Elektronenmikroskopie 1924 erkannte der Belgier L. de Broglie den Wellencharakter von Elektronenstrahlen M.

Mehr

ELEKTRONENMIKROSKOPIE

ELEKTRONENMIKROSKOPIE FRAUNHOFER-INSTITUT FÜR PRODUKTIONSTECHNIK UND AUTOMATISIERUNG IPA ELEKTRONENMIKROSKOPIE MODERNSTE OBERFLÄCHEN-, SCHICHT- UND SCHADENSANALYSE MIT REM, FIB, EDX, STEM 1 METHODE Die Elektronenmikroskopie

Mehr

Mikroskopieren. Schon vor 2000 Jahren wusste man das Glas Licht bündelt. Trotzdem war die erste Linse erst vor 1300 Jahren.

Mikroskopieren. Schon vor 2000 Jahren wusste man das Glas Licht bündelt. Trotzdem war die erste Linse erst vor 1300 Jahren. Mikroskopieren 1.)Historischer Überblick über die Mikroskopie: Schon vor 2000 Jahren wusste man das Glas Licht bündelt. Trotzdem war die erste Linse erst vor 1300 Jahren. 16. Jh - Holländer Hans und Zacharias

Mehr

Frequenz Wellenlänge ν / s -1 λ / m. Kosmische Strahlung. γ -Strahlung

Frequenz Wellenlänge ν / s -1 λ / m. Kosmische Strahlung. γ -Strahlung Kapitel 8: ELEKTRONENMIKROSKOPIE Inhalt: GRUNDLAGEN... 111 TRANSMISSIONSELEKTRONENMIKROSKOP (TEM)... 113 RASTERELEKTRONENMIKROSKOPIE (REM)... 119 LITERATUR... 120 Grundlagen Sichtbares Licht ist nur ein

Mehr

Rasterelektronenmikroskopie & Röntgenmikroanalyse

Rasterelektronenmikroskopie & Röntgenmikroanalyse Fachbereich 1 Laborpraktikum Physikalische Messtechnik/ Werkstofftechnik Rasterelektronenmikroskopie & Röntgenmikroanalyse Bearbeitet von Herrn M. Sc. Christof Schultz christof.schultz@htw-berlin.de Inhalt

Mehr

23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 23. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

6. Elektronen- und Röntgenspektroskopie

6. Elektronen- und Röntgenspektroskopie 1 h Röntgen e e e e Röntgen h h Röntgen Röntgen h Elektronenspektroskopie Elektronenmikroskop Röntgenspektroskopie Röntgenfluoreszenz (XPS, AES) (AES, BSE) (EDX, WDX) (XRF) Inhalt Die Atomhülle Photoelektronenspektroskopie

Mehr

Kleinster Abstand d zweier Strukturen die noch als getrennt abgebildet werden können.

Kleinster Abstand d zweier Strukturen die noch als getrennt abgebildet werden können. phys4.02 Page 1 1.5 Methoden zur Abbildung einzelner Atome Optische Abbildung: Kann man einzelne Atome 'sehen'? Auflösungsvermögen: Kleinster Abstand d zweier Strukturen die noch als getrennt abgebildet

Mehr

FORTGESCHRITTENEN PRAKTIKUM DER PHYSIK RASTERELEKTRONENMIKROSKOP UND RÖNTGENMIKROANALYSE

FORTGESCHRITTENEN PRAKTIKUM DER PHYSIK RASTERELEKTRONENMIKROSKOP UND RÖNTGENMIKROANALYSE Physikalisches Institut der Universität Bayreuth FORTGESCHRITTENEN PRAKTIKUM DER PHYSIK RASTERELEKTRONENMIKROSKOP UND RÖNTGENMIKROANALYSE Inhalt 1. Einführung und Zielsetzung... 2 2. Apparatur und Messmethode...

Mehr

Mikroskopie I. (Thema 33.) SZILVIA BARKÓ 2016

Mikroskopie I. (Thema 33.) SZILVIA BARKÓ 2016 Mikroskopie I. (Thema 33.) SZILVIA BARKÓ 2016 Titel 33. I. Klassifizierung der mikroskopischen Methoden. II. Lichtmikroskop. Bildentstehung des Mikroskops. Haupterfordernisse der Bildentstehung. III. Auflösungsvermögen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen

Mehr

Warum Elektronenmikroskopie? - Auflösung

Warum Elektronenmikroskopie? - Auflösung Warum Elektronenmikroskopie? - Auflösung 1895 Wilhelm Conrad Röntgen - Entdeckung der Röntgenstrahlung 1897 Joseph John Thomson Messung der Elektronenmasse (Partikel im Kathodenstrahl, war erst möglich

Mehr

Aufgabe 1: Kristallstrukturuntersuchungen

Aufgabe 1: Kristallstrukturuntersuchungen Aufgabe 1: Kristallstrukturuntersuchungen Röntgenstrahlung entsteht in unserem Gerät durch das Auftreffen hochenergetischer Elektronen auf eine Molybdän-Anode (Abbildung 1). Im Spektrum der Strahlung (Abbildung

Mehr

Leistungskurs Physik (Bayern): Abiturprüfung 2004 Aufgabe III Atomphysik

Leistungskurs Physik (Bayern): Abiturprüfung 2004 Aufgabe III Atomphysik Leistungskurs Physik (Bayern): Abiturprüfung 004 Aufgabe III Atomphysik 1. Fotoeffekt 1888 bestrahlte W. HALLWACHS eine geladene, auf einem Elektroskop sitzende Metallplatte mit UV-Licht. a) Aus welchen

Mehr

Elektronenoptik. Hauptseminar im Winter-Semester 2015 / 16

Elektronenoptik. Hauptseminar im Winter-Semester 2015 / 16 Elektronenoptik Hauptseminar im Winter-Semester 2015 / 16 Montags 14:00-16:15 Uhr, Gebäude 30.22, Raum 229.3 M. Haider, R. Janzen Im Hauptseminar Elektronenoptik wird interessierten Studenten die Möglichkeit

Mehr

Technische Raytracer

Technische Raytracer Technische Raytracer 2 s 2 (1 (n u) 2 ) 3 u 0 = n 1 n 2 u n 4 n 1 n 2 n u 1 n1 n 2 5 Abbildung 19.23 MM Double Gauss - U.S. Patent 2,532,751 Scale: 1.30 ORA 03-Jun-13 Abbildung Ein zweidimensionales Bild

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #26 04/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Spektrum des H-Atoms Energieniveaus der erlaubten Quantenbahnen E n = " m # e4 8 # h 2 # $ 0 2

Mehr

Praktikumsanleitung Elektronenmikroskopie Rasterelektronenmikroskop und Mikroanalyse. Dr. Christian Bocker Otto-Schott-Institut, Universität Jena

Praktikumsanleitung Elektronenmikroskopie Rasterelektronenmikroskop und Mikroanalyse. Dr. Christian Bocker Otto-Schott-Institut, Universität Jena Praktikumsanleitung Elektronenmikroskopie Rasterelektronenmikroskop und Mikroanalyse Dr. Christian Bocker Otto-Schott-Institut, Universität Jena Wird ein Festkörper mit Elektronen mit Energien im Bereich

Mehr

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite

Mehr

Interferenz makroskopischer Objekte. Vortragender: Johannes Haupt

Interferenz makroskopischer Objekte. Vortragender: Johannes Haupt Interferenz makroskopischer Objekte Vortragender: Johannes Haupt 508385 1 Inhalt 1. Motivation 2. Geschichtliche Einführung 3. Experiment 3.1. Aufbau 3.2. Resultate 4. Thermische Strahlung 4.1. Grundidee

Mehr

Physik-eA-2011 Klausur Nr

Physik-eA-2011 Klausur Nr Physik-eA-2011 Klausur Nr. 2 12.11.2009 1. Aufgabe Mit einem Simulationsprogramm wird ein Massenspektrogramm von 1-fach ionisierten Neon-Atomen erstellt. Abbildung 1 (siehe Materialseite) dokumentiert

Mehr

Tiefinelastische Streuung am Nukleon

Tiefinelastische Streuung am Nukleon Tiefinelastische Streuung am Nukleon Martin Häffner Seminar Kern-und Teilchenphysik WS 14/15 Lehrstuhl: Experimentalphysik I Gliederung Einleitung: Auflösung von Streuversuchen Rutherford Formfaktoren

Mehr

Klausur 2 Kurs 13Ph3g Physik

Klausur 2 Kurs 13Ph3g Physik 2010-12-02 Klausur 2 Kurs 13Ph3g Physik Lösung 1 Verbrennt in einer an sich farblosen Gasflamme Salz (NaClNatriumchlorid), so wird die Flamme gelb gefärbt. Lässt man Natriumlicht auf diese Flamme fallen,

Mehr

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen

III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen 21. Vorlesung EP III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen IV Optik 22. Fortsetzung: Licht = sichtbare elektromagnetische Wellen 23.

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

Rasterelektronenmikroskopie und energiedispersive Röntgenanalyse REM/EDX

Rasterelektronenmikroskopie und energiedispersive Röntgenanalyse REM/EDX Universität Rostock Oktober 2004 Mathematisch-Naturwissenschaftliche Fakultät Institut für Physik AG Elektronenstreuung Isolatorphysik Laborpraktikum Rasterelektronenmikroskopie und energiedispersive Röntgenanalyse

Mehr

1.) Wie groß ist der Energiezuwachs eines Elektrons nach Durchlaufen einer Potentialdifferenz von 100 V?

1.) Wie groß ist der Energiezuwachs eines Elektrons nach Durchlaufen einer Potentialdifferenz von 100 V? A10 Name: Bestimmung von e/m Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)

Mehr

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser 31. Lektion Röntgenstrahlen 40. Röntgenstrahlen und Laser Lerhnziel: Röntgenstrahlen entstehen durch Beschleunigung von Elektronen oder durch die Ionisation von inneren Elektronenschalen Begriffe Begriffe:

Mehr

Konfokale Mikroskopie

Konfokale Mikroskopie Konfokale Mikroskopie Seminar Laserphysik SoSe 2007 Christine Derks Universität Osnabrück Gliederung 1 Einleitung 2 Konfokales Laser-Scanning-Mikroskop 3 Auflösungsvermögen 4 andere Konfokale Mikroskope

Mehr

Dieser Zusammenhang reicht noch nicht aus, deswegen wird noch. n 1 = 1, n 2. n 1 = 1, 5 n 2 = 1, 485

Dieser Zusammenhang reicht noch nicht aus, deswegen wird noch. n 1 = 1, n 2. n 1 = 1, 5 n 2 = 1, 485 Musterlösung OIT 2006-1 1 Aufgabe 1 (a) Gesucht: n 1 und n 2 n = n 1 n 2 n 1 = 0, 015 + n 2 Dieser Zusammenhang reicht noch nicht aus, deswegen wird noch B L = L = n 2 c t AB n 1 n n 1 = 1, 01010101 n

Mehr

Elektronenmikroskopie. Institut für Veterinär-Anatomie Freie Universität Berlin Prof Dr. Johanna Plendl und Sophie Hansen

Elektronenmikroskopie. Institut für Veterinär-Anatomie Freie Universität Berlin Prof Dr. Johanna Plendl und Sophie Hansen Elektronenmikroskopie Institut für Veterinär-Anatomie Freie Universität Berlin Prof Dr. Johanna Plendl und Sophie Hansen Transmissionselektronenmikroskopie Leuchtschirm Strahlenquelle Kondensor Objektiv

Mehr

Das Elektronenmikroskop TEM+REM

Das Elektronenmikroskop TEM+REM Rainer H. Lange Jochen Blödorn Das Elektronenmikroskop TEM+REM Leitfaden für Biologen und Mediziner 157 Abbildungen in 298 Einzeldarstellungen der Techrmch»^.«,- _ 8 i i~' " i D -6100 Dor..-Jdl / B. R.

Mehr

Das Goldhaber Experiment

Das Goldhaber Experiment ν e Das Goldhaber Experiment durchgeführt von : Maurice Goldhaber, Lee Grodzins und Andrew William Sunyar 19.12.2014 Goldhaber Experiment, Laura-Jo Klee 1 Gliederung Motivation Physikalische Grundlagen

Mehr

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.

Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl. Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen Seite 1 von 8 Abiturprüfung 2010 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Das Fadenstrahlrohr ausgewählte Experimente und Überlegungen 1. Im Fadenstrahlrohr (siehe Abbildung 1) wird mit Hilfe einer

Mehr

5. Oberflächen-und Dünnschichtanalytik. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15

5. Oberflächen-und Dünnschichtanalytik. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15 5. Oberflächen-und Dünnschichtanalytik 1 5.1 Übersicht Schichtanalytik - Schichtmorphologie: - Oberflächeneigenschaften - Lichtmikroskop - Rasterelektronenmikroskop - Transmissionselektronenmikroskop -(STM,

Mehr

Das perfekte Objektiv!?

Das perfekte Objektiv!? 1 Das perfekte Objektiv!? Bad Kreuznach, Nov. 2015 2 Ein perfektes Objektiv Was ist das? Eine mögliche Definition: Ein Objektiv ist dann perfekt, wenn es die Realität exakt auf den Sensor abbildet....

Mehr

Rasterelektronenmikroskopie (REM) und Energiedispersive Röntgenmikrobereichsanalyse (EDXS)

Rasterelektronenmikroskopie (REM) und Energiedispersive Röntgenmikrobereichsanalyse (EDXS) Rasterelektronenmikroskopie (REM) und Energiedispersive Röntgenmikrobereichsanalyse (EDXS) 1 Wechselwirkung Elektronenstrahl / Festkörper Im Elektronenmikroskop wird ein Elektronenstrahl geringen Querschnittes

Mehr

Auger Elektronenspektroskopie (AES) Photoemissionspektroskopie (XPS, UPS)

Auger Elektronenspektroskopie (AES) Photoemissionspektroskopie (XPS, UPS) Auger Elektronenspektroskopie (AES) Photoemissionspektroskopie (XPS, UPS) 1 Auger-Elektronen-Spektroskopie ist eine Standardanalysetechnik der Oberflächen und Interface-Physik zur Überprüfung a) Reinheit

Mehr

Spezifische Ladung des Elektrons

Spezifische Ladung des Elektrons Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch

Mehr

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für den 13.02.2003 unter www.physik.uni-giessen.de/ dueren/

Mehr

Atomphysik für Studierende des Lehramtes

Atomphysik für Studierende des Lehramtes Atomphysik für Studierende des Lehramtes Teil 5 Elektronenladung und Elektronenmasse elektrische Ladungen in magnetischen Feldern aus der Lorentz-Kraft (v x B) folgt eine Kreisbewegung der elektrischen

Mehr

Bildgebung mit Röntgenstrahlen. Erzeugung von Röntgenstrahlung

Bildgebung mit Röntgenstrahlen. Erzeugung von Röntgenstrahlung Erzeugung von Röntgenstrahlung Scanogramm Röntgen- Quelle Detektor Entwicklung Verarbeitung Tomogramm Erzeugung von Röntgenstrahlung: Grundprinzip: Photoelektrischer Effekt - Erzeugung freier Elektronen

Mehr

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

C. Nanotechnologie 9. Chem. Analyse 9.1 Übersicht. Prinzip. Prof. Dr. H. Baumgärtner C9-1

C. Nanotechnologie 9. Chem. Analyse 9.1 Übersicht. Prinzip. Prof. Dr. H. Baumgärtner C9-1 Prinzip 9.1 Übersicht Prof. Dr. H. Baumgärtner C9-1 Um eine Probe analysieren zu können muss sie mit Licht oder Teilchen bestrahlt werden. Die Reaktion der Probe auf diese Anregung führt zur Abstrahlung

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

TE Thermische Emission

TE Thermische Emission TE Thermische Emission Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Kennlinie einer Glühdiode............................. 2 2 Versuch und Auswertung 4

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Elektronenmikroskopie

Elektronenmikroskopie MIW Master 2. Semester University of Lübeck Elektronenmikroskopie - Grundlagen - Alfred Vogel Mathias Klinger, Institut für Anatomie, Martin Bech, TU München SS 2012 Predigtstuhl am Lysefjord, Norwegen

Mehr

Kapitel 3: Kernstruktur des Atoms. Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie

Kapitel 3: Kernstruktur des Atoms. Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie 03. Kernstruktur Page 1 Kapitel 3: Kernstruktur des Atoms Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie Elektronen erzeugt im Kathodenstrahlrohr wechselwirken mit Gasatomen im Rohr. Elektronen

Mehr

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Matthias Brasse, Max v. Vopelius 24.02.2009 Aufgabe 1: Zeigen Sie mit Hilfe des Fermatschen Prinzips, dass aus der Minimierung des optischen

Mehr

Physik 4, Übung 4, Prof. Förster

Physik 4, Übung 4, Prof. Förster Physik 4, Übung 4, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Optik in Smartphones. Proseminar Technische Informatik Fabio Becker 9. Juli 2014

Optik in Smartphones. Proseminar Technische Informatik Fabio Becker 9. Juli 2014 Optik in Smartphones Proseminar Technische Informatik Fabio Becker 9. Juli 2014 1 Gliederung Die Kamera Grundidee für das Smartphone Grundlagen zur Optik Skalierung Aufbau Ziele/Trend in Zukunft Zusammenfassung

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 200/20 8. Übungsblatt - 3.Dezember 200 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe ( ) (7 Punkte) Gegeben sei

Mehr

Verfahren Grundlagen 1.2 Röntgen. 1.2 Grundlagen. Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801

Verfahren Grundlagen 1.2 Röntgen. 1.2 Grundlagen. Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801 Verfahren 1.2 Röntgen 1.2 Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801 Verfahren 1.2 Röntgen Inhaltsvrzeichnis 1.2 Prof. Dr. Christian Blendl 1.2.1 Erzeugung ionisierender

Mehr

Bedienungs- und Experimentieranleitung

Bedienungs- und Experimentieranleitung Bedienungs- und Experimentieranleitung 1. Aufbau Mit der Röhre kann die spezifische Elektronenladung e/m quantitativ bestimmt werden. In einem kugelförmigen Glaskolben befindet sich ein Elektronenstrahlsystem,

Mehr

Wolfgang Bayer. Darmstadt, 04. Juli Promotionsvortrag. 04. Juli 2005 W. Bayer Promotionsvortrag Untersuchungen zur Feldemission

Wolfgang Bayer. Darmstadt, 04. Juli Promotionsvortrag. 04. Juli 2005 W. Bayer Promotionsvortrag Untersuchungen zur Feldemission Untersuchungen zur Feldemission in supraleitenden Beschleunigungsstrukturen des S-DALINAC mit Hilfe der Röntgenspektroskopie und Vergleich mit herkömmlichen Methoden Wolfgang Bayer Promotionsvortrag Darmstadt,

Mehr

FK Ex 4 - Musterlösung Dienstag

FK Ex 4 - Musterlösung Dienstag FK Ex 4 - Musterlösung Dienstag Snellius Tarzan wird in einem ruhigen See am Punkt J von einem Krokodil angegriffen. Jane, die sich an Land mit gezücktem Buschmesser am Punkt T befindet, möchte ihm zu

Mehr

Lehrplan. Prozessanalytik. Fachschule für Technik. Fachrichtung Mikrosystemtechnik. Fachrichtungsbezogener Lernbereich

Lehrplan. Prozessanalytik. Fachschule für Technik. Fachrichtung Mikrosystemtechnik. Fachrichtungsbezogener Lernbereich Lehrplan Prozessanalytik Fachschule für Technik Fachrichtung Mikrosystemtechnik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken

Mehr

Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses.

Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses. Schriftliche Abiturprüfung 2005 Seite 1 Hinweise: Zugelassene Hilfsmittel: Taschenrechner Die Aufgaben umfassen 5 Seiten. Die Zahlenwerte benötigter Konstanten sind nach der Aufgabe III zusammengefasst.

Mehr

Übungsaufgaben zur Experimentalphysik IV. X. Angeregte Zustände

Übungsaufgaben zur Experimentalphysik IV. X. Angeregte Zustände WALTHER-MEISSNER-INSTITUT Bayerische Akademie der Wissenschaften LEHRSTUHL FÜR TECHNISCHE PHYSIK E3 Technische Universität München PD DR. LAMBERT ALFF DATUM 18. Juni 00 Übungsaufgaben zur Experimentalphysik

Mehr

Schriftliche Abiturprüfung nach neuem KLP Beispiel für eine abiturnahe Klausur Physik, Grundkurs

Schriftliche Abiturprüfung nach neuem KLP Beispiel für eine abiturnahe Klausur Physik, Grundkurs Seite 1 von 5 Schriftliche Abiturprüfung nach neuem KLP eispiel für eine abiturnahe Klausur Physik, Grundkurs Aufgabenstellung Teilchen- und Welleneigenschaft des Elektrons Teil A: Eine Elektronenablenkröhre

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

Elektronenmikroskopielabor

Elektronenmikroskopielabor MATERIALS CENTER LEOBEN FORSCHUNG GMBH KOMPETENZ & ZUVERLÄSSIGKEIT I ISO 9001 ZERTIFIZIERT S O 0 9 1 0 MATERIALS CENTER LEOBEN KOMPETENZ UND MODERNSTE EINRICHTUNGEN FÜR IHREN ERFOLG Hochauflösende REM-Untersuchungen

Mehr

Quanteneffekte in Nanostrukturen

Quanteneffekte in Nanostrukturen Quanteneffekte in Nanostrukturen Physik Oscar 2001 Thomas Berer 04.04.2002 Nanostrukturen nano Physik Oscar 2001 griech.: Zwerg Prefix: 10-9 1nm = 1 Milliardstel Meter Nanostrukturen Strukturen zwischen

Mehr