Sudoku und Mathematik

Größe: px
Ab Seite anzeigen:

Download "Sudoku und Mathematik"

Transkript

1 Sudoku und Mathematik Ulrich Görtz September 2010

2 1 Einführung 2 Lösungsstrategien 3 Färben von Graphen

3 Sudoku

4 Sudoku erfunden 1979 als number place von Howard Garns ( ),

5 Sudoku erfunden 1979 als number place von Howard Garns ( ), ab 1986 erst in Japan, später weltweit populär.

6 Sudoku erfunden 1979 als number place von Howard Garns ( ), ab 1986 erst in Japan, später weltweit populär. Ähnlich: Eulers ( ) lateinische Quadrate.

7 Sudoku erfunden 1979 als number place von Howard Garns ( ), ab 1986 erst in Japan, später weltweit populär. Ähnlich: Eulers ( ) lateinische Quadrate.

8 Aufgabe: Zahlen einfüllen, so dass in jeder Zeile, jeder Spalte und jeder 3x3-Box jede Zahl von 1 bis 9 genau einmal auftritt.

9 Einfu hrung Lo sungsstrategien Fa rben von Graphen Anwendung: Landwirtschaft : Foto aus [Bailey, Cameron, Connelly: Sudoku, gerechte designs, resolutions,.... Amer. Math. Monthly].

10 Sudoku und Mathematik?

11 Sudoku und Mathematik? Independent: no mathematics involved

12 Sudoku und Mathematik? Independent: no mathematics involved Mathematische Fragen über Sudoku: Abzählfragen, Komplexität, Strategie.

13 Sudoku und Mathematik? Independent: no mathematics involved Mathematische Fragen über Sudoku: Abzählfragen, Komplexität, Strategie. Mathematisches Argumentieren beim Lösen eines Sudoku-Rätsels:

14 Sudoku und Mathematik? Independent: no mathematics involved Mathematische Fragen über Sudoku: Abzählfragen, Komplexität, Strategie. Mathematisches Argumentieren beim Lösen eines Sudoku-Rätsels: Existenzbeweis,

15 Sudoku und Mathematik? Independent: no mathematics involved Mathematische Fragen über Sudoku: Abzählfragen, Komplexität, Strategie. Mathematisches Argumentieren beim Lösen eines Sudoku-Rätsels: Existenzbeweis, Eindeutigkeitsbeweis.

16 Abzählfragen (ca. 6,7 Trilliarden) verschiedene (vollständig ausgefüllte) Standard-Sudokus (9x9 Felder) [Felgenhauer, Jarvis, 2006].

17 Abzählfragen (ca. 6,7 Trilliarden) verschiedene (vollständig ausgefüllte) Standard-Sudokus (9x9 Felder) [Felgenhauer, Jarvis, 2006]. Symmetrie!

18 Abzählfragen (ca. 6,7 Trilliarden) verschiedene (vollständig ausgefüllte) Standard-Sudokus (9x9 Felder) [Felgenhauer, Jarvis, 2006]. Symmetrie! Offen: Wie viele Sudoku-Rätsel gibt es?

19 Abzählfragen (ca. 6,7 Trilliarden) verschiedene (vollständig ausgefüllte) Standard-Sudokus (9x9 Felder) [Felgenhauer, Jarvis, 2006]. Symmetrie! Offen: Wie viele Sudoku-Rätsel gibt es? Was ist die Mindestanzahl von Vorgaben, so dass die Eindeutigkeit der Lösung garantiert werden kann?

20 1 Einführung 2 Lösungsstrategien 3 Färben von Graphen

21

22

23

24 Eindeutiges Feld (hidden single)

25

26

27

28

29

30 8 1 3?

31 Eindeutiger Wert (naked single)

32

33 ? ? 7

34 Eindeutiges Paar (naked pair)

35

36

37

38

39

40

41

42

43

44

45

46

47 1 Einführung 2 Lösungsstrategien 3 Färben von Graphen

48 Sudoku als Färbeproblem

49 Sudoku als Färbeproblem

50 Sudoku als Färbeproblem

51 Sudoku als Färbeproblem

52 Sudoku als Färbeproblem Der 2 2-Sudokugraph.

53 Theorem (Vierfarbensatz) Jede Aufteilung der Ebene in zusammenhängende Gebiete kann mit vier Farben so eingefärbt werden, dass je zwei benachbarte Gebiete eine unterschiedliche Farbe haben.

54 Theorem (Vierfarbensatz) Jede Aufteilung der Ebene in zusammenhängende Gebiete kann mit vier Farben so eingefärbt werden, dass je zwei benachbarte Gebiete eine unterschiedliche Farbe haben. Viele falsche Beweise, zum Beispiel Kempe 1879, Tait 1880.

55 Theorem (Vierfarbensatz) Jede Aufteilung der Ebene in zusammenhängende Gebiete kann mit vier Farben so eingefärbt werden, dass je zwei benachbarte Gebiete eine unterschiedliche Farbe haben. Viele falsche Beweise, zum Beispiel Kempe 1879, Tait Beweis: Appel, Haken 1976 (... ), mit Computerhilfe. Nach wie vor ist kein Beweis bekannt, der praktikabel von Hand nachvollzogen werden kann.

56 Theorem (Vierfarbensatz) Jede Aufteilung der Ebene in zusammenhängende Gebiete kann mit vier Farben so eingefärbt werden, dass je zwei benachbarte Gebiete eine unterschiedliche Farbe haben. Viele falsche Beweise, zum Beispiel Kempe 1879, Tait Beweis: Appel, Haken 1976 (... ), mit Computerhilfe. Nach wie vor ist kein Beweis bekannt, der praktikabel von Hand nachvollzogen werden kann. Erlaubt man fünf Farben, so ist der Satz viel einfacher zu beweisen, [Heawood 1890].

57 Theorem (Vierfarbensatz) Jede Aufteilung der Ebene in zusammenhängende Gebiete kann mit vier Farben so eingefärbt werden, dass je zwei benachbarte Gebiete eine unterschiedliche Farbe haben. Viele falsche Beweise, zum Beispiel Kempe 1879, Tait Beweis: Appel, Haken 1976 (... ), mit Computerhilfe. Nach wie vor ist kein Beweis bekannt, der praktikabel von Hand nachvollzogen werden kann. Erlaubt man fünf Farben, so ist der Satz viel einfacher zu beweisen, [Heawood 1890]. Andererseits: Hadwigers Vermutung (1943), eine weitreichende Verallgemeinerung, ist offen.

58 Deutschlandkarte von Wikimedia, Stefan-Xp/ug, GFDL/CC BY-SA.

59

60

61

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. wer das Problem löste 4

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. wer das Problem löste 4 Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben Übersicht 5. April 009 5. April 009 Martin Oellrich 1 vom Problem zur Theorie die Idee weiter denken 3 MathematikerIn werden? Gibt

Mehr

Minimale Anzahl von Hinweisen bei Sudoku

Minimale Anzahl von Hinweisen bei Sudoku Minimale Anzahl von Hinweisen bei Sudoku Sascha Kurz sascha.kurz@uni-bayreuth.de (basierend auf Arbeiten von Ariane Papke und Gary McGuire et al.) Oberseminar Effizienz dezentraler Strukturen, Bayreuth,

Mehr

Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen?

Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen? Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen Problemstellung Deutsche Bundesländer in vier Farben 4. April 06 Martin Oellrich Warum geht das immer? Gegeben: Karte eines Gebietes

Mehr

Lateinische und magische Quadrate

Lateinische und magische Quadrate Überblick I - Lateinische Quadrate Überblick II - Oktober 2006 Überblick I - Lateinische Quadrate Überblick II - Überblick I Überblick I - Lateinische Quadrate Überblick II - Überblick I Geschichte Überblick

Mehr

SUDOKU - Strategien zur Lösung

SUDOKU - Strategien zur Lösung SUDOKU Strategien v. /00 SUDOKU - Strategien zur Lösung. Naked Single (Eindeutiger Wert)? "Es gibt nur einen einzigen Wert, der hier stehen kann". Sind alle anderen Werte bis auf einen für eine Zelle unmöglich,

Mehr

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. ein Problem vor der Haustür 3

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. ein Problem vor der Haustür 3 Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben Übersicht vom Problem zur Theorie 0. Juni 008 0. Juni 008 Martin Oellrich die Idee weiter denken MathematikerIn werden? Gibt es einen

Mehr

Sudoku-Rätsel und Rainbow-Looms. Burkhard.Wald@Uni-DuE.de. November 2015

Sudoku-Rätsel und Rainbow-Looms. Burkhard.Wald@Uni-DuE.de. November 2015 Sudoku-Rätsel und Rainbow-Looms Burkhard.Wald@Uni-DuE.de November 2015 1 Nachträglich eingefügte Seite Seiten mit dem Titel Nachträglich eingefügte Seite wurden von mir nachträglich eingefügt um den Gebrauchswert

Mehr

Fakultät für Mathematik und Informatik

Fakultät für Mathematik und Informatik Julius-Maximilians-Universität Würzburg Fakultät für Mathematik und Informatik Bachelorarbeit in Mathematischer Physik Über die Anzahl von Sudokus und Lateinischen Quadraten Bearbeiter: Betreuer: Prof.

Mehr

Der Vier-Farben-Satz

Der Vier-Farben-Satz , Samuel Hetterich, Felicia Raßmann Goethe-Universität Frankfurt, Institut für Mathematik 21.Juni 2013 Wieviele Farben braucht man zum Färben einer Landkarte? Spielregeln Länder mit einer gemeinsamen Grenze

Mehr

Vier-Farbenproblem. (c) Ein etwas schwereres Beispiel...

Vier-Farbenproblem. (c) Ein etwas schwereres Beispiel... Vier-Farbenproblem Kann man jede Landkarte mit vier Farben färben, sodass keine aneindander angrenzenden Länder die gleiche Farbe haben? Versuchen Sie die Karte Deutschlands oder eines der anderen Bilder

Mehr

Max Neunhöffer. Computeralgebra-Symposium Konstanz 16.3.2007. Lehrstuhl D für Mathematik RWTH Aachen. Sudokus und Symmetrie.

Max Neunhöffer. Computeralgebra-Symposium Konstanz 16.3.2007. Lehrstuhl D für Mathematik RWTH Aachen. Sudokus und Symmetrie. gefüllte Sudokus und Lehrstuhl D für Mathematik RWTH Aachen Computeralgebra-Symposium Konstanz..00 gefüllte Ein (gefülltes) Sudoku-Feld: gefüllte Ein (gefülltes) Sudoku-Feld: gefüllte In jeder Zeile kommen

Mehr

Informationen zum Material 3 VORSCHAU. Spielplan 6. Rechen-Fußbälle 1 7. Rechen-Fußbälle 2 8. Rechen-Fußbälle 3 9.

Informationen zum Material 3 VORSCHAU. Spielplan 6. Rechen-Fußbälle 1 7. Rechen-Fußbälle 2 8. Rechen-Fußbälle 3 9. Inhalt Informationen zum Material 3 So geht s! 5 Spielplan 6 Rechen-Fußbälle 1 7 Rechen-Fußbälle 2 8 Rechen-Fußbälle 3 9 Formen-Puzzle 10 Fußball-Sudoku 1 12 Fußball-Sudoku 2 13 Fußball Knobelaufgabe 14

Mehr

16. Flächenfärbungen

16. Flächenfärbungen Chr.Nelius: Graphentheorie (WS 2015/16) 57 16. Flächenfärbungen In der Mitte des 19. Jahrhunderts tauchte eine Vermutung auf, die erst 125 Jahre später bewiesen werden sollte und die eine der bekanntesten

Mehr

Grundlagen der Künstlichen Intelligenz. 9.1 Einführung und Beispiele. 9.2 Constraint-Netze. 9.3 Belegungen und Konsistenz. 9.

Grundlagen der Künstlichen Intelligenz. 9.1 Einführung und Beispiele. 9.2 Constraint-Netze. 9.3 Belegungen und Konsistenz. 9. Grundlagen der Künstlichen Intelligenz 8. April 201 9. Constraint-Satisfaction-Probleme: Einführung Grundlagen der Künstlichen Intelligenz 9. Constraint-Satisfaction-Probleme: Einführung Malte Helmert

Mehr

SUDOKU. l l l l l l l l l l l l l l l l. l l l l l l l l l l l l l l l l. l l l l l l l l l l l l l l l l

SUDOKU. l l l l l l l l l l l l l l l l. l l l l l l l l l l l l l l l l. l l l l l l l l l l l l l l l l SUDOKU Ein Sudoku ist ein Gitter mit Kästchen. Die leeren Kästchen werden mit vier verschiedenen Zahlen, Bildern, Buchstaben oder Farben gefüllt. Ein kleines Sudoku hat vier waagrechte Zeilen und gleichzeitig

Mehr

ERFOLK Sudoku - Handbuch

ERFOLK Sudoku - Handbuch ERFOLK Sudoku - Handbuch Version 2.0 Stand 30.10.2013 Wichtiger Hinweis Alle Angaben in diesem Buch wurden vom Autor mit größter Sorgfalt erarbeitet bzw. zusammengestellt und unter Einschaltung wirksamer

Mehr

Marathon- Sudoku. 500 Trainingseinheiten für Amateure und Profis WILHELM HEYNE VERLAG MÜNCHEN

Marathon- Sudoku. 500 Trainingseinheiten für Amateure und Profis WILHELM HEYNE VERLAG MÜNCHEN Marathon- Sudoku 500 Trainingseinheiten für Amateure und Profis WILHELM HEYNE VERLAG MÜNCHEN Umwelthinweis: Dieses Buch wurde auf chlor- und säurefreiem Papier gedruckt. Originalausgabe 08/2007 Copyright

Mehr

Inhaltsverzeichnis. 1 Simple Rekursion Sudokus Sudokus Erzwungene Ergänzung Boolesche Kandidatenliste 25

Inhaltsverzeichnis. 1 Simple Rekursion Sudokus Sudokus Erzwungene Ergänzung Boolesche Kandidatenliste 25 APL Deutschland SUDOKU MIT APL Page of www.ursoswald.ch Urs Oswald osurs@bluewin.ch. November 00 Inhaltsverzeichnis Simple Rekursion -Sudokus -Sudokus 0 Erzwungene Ergänzung Page of Boolesche Kandidatenliste

Mehr

Lektion: SUDOKU 2 (etwas schwerer)

Lektion: SUDOKU 2 (etwas schwerer) OSZ Wirtschaft und Sozialversicherung Fach: Datenverarbeitung /Wn EXCEL-Kurs Lektion: SUDOKU 2 (etwas schwerer) Ziele dieser Lektion: Sie lernen, in EXCEL eine vorgegebene Tabelle zu erstellen, Rahmen

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 20 Einstieg in die Informatik mit Java Rekursion Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 20 1 Überblick 2 Rekursion 3 Rekursive Sortieralgorithmen 4 Backtracking

Mehr

Diskrete Optimierungsverfahren zur Lösung von Sudokus

Diskrete Optimierungsverfahren zur Lösung von Sudokus Diskrete Optimierungsverfahren zur Lösung von Sudokus Seminarvortrag von Daniel Scholz am 6. Dezember 2006 Am Beispiel der Lösung von Sudokurätseln mit Hilfe der linearen Optimierung werden verschiedenen

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Vier-Farben-Vermutung (1)

Vier-Farben-Vermutung (1) Vier-Farben-Vermutung (1) Landkarten möchte man so färben, dass keine benachbarten Länder die gleiche Farbe erhalten. Wie viele Farben braucht man zur Färbung einer Landkarte? Vier-Farben-Vermutung: Jede

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

Beispiellösungen zu Blatt 7

Beispiellösungen zu Blatt 7 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg August Universität Göttingen Aufgabe Beispiellösungen zu Blatt 7 Die handelsüblichen Papierformate DIN A0, DIN A usw. haben folgende praktische

Mehr

Lösungsstrategie Buch-Sudoku 1-01

Lösungsstrategie Buch-Sudoku 1-01 Lösungsstrategie Buch-Sudoku 1-01 Von: Claudia Bach Category: Anregungen zum Buch Datum: 03.Jan.2007 Uhrzeit: 07:48:25 +0100 Remotecomputer: 212.23.126.12 Comments Hallo Georg, vielen Dank für Ihren Beitrag.

Mehr

Vervollständigung Lateinischer Quadrate

Vervollständigung Lateinischer Quadrate Vervollständigung Lateinischer Quadrate Elisabeth Schmidhofer 01.12.2013 Inhaltsverzeichnis 1 Vorwort 3 2 Einleitung 4 2.1 Beispele.............................................. 4 3 Lateinische Quadrate

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? 1 Königsberger Brückenproblem Im Jahre 1736 Leonhard Euler löste das Problem allgemein

Mehr

Das Vierfarbenproblem und verwandte Fragestellungen

Das Vierfarbenproblem und verwandte Fragestellungen Eichstätter Kolloquium zur Februar 010 Didaktik der Mathematik Das Vierfarbenproblem und verwandte Fragestellungen Cornelia Minette Busch 1 Das Vierfarbenproblem Wenn Schüler eine politische Landkarte

Mehr

Kapitel 4 MATHEMATISCHES RÄTSELRATEN

Kapitel 4 MATHEMATISCHES RÄTSELRATEN Kapitel 4 MATHEMATISCHES RÄTSELRATEN Kombinatorik Mathematisches Rätselraten In der Wahrscheinlichkeitsrechnung befassen wir uns oftmals mit Fragen, für die wir gleiche oder verschiedene Gegenstände nach

Mehr

Mathematik für den Volkssport

Mathematik für den Volkssport Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany VOLKER KAIBEL THORSTEN KOCH Mathematik für den Volkssport ZIB-Report 06-28 (May 2006) Mathematik für den Volkssport

Mehr

Sudoku im Mathematikunterricht

Sudoku im Mathematikunterricht Math. Semesterber. (2007) DOI 10.1007/s00591-006-0014-7 FORSCHUNG, LEHRE UND ANWENDUNG Ch. Elsholtz A. Mütze Sudoku im Mathematikunterricht Eingegangen: 25. Juli 2006 / Angenommen: 02. November 2006 Springer-Verlag

Mehr

Mathe Star Lösungen Runde /08

Mathe Star Lösungen Runde /08 Dr. Michael J. Winckler Mathe Star Initiative IWR, Raum 502, INF 368, 69120 Heidelberg Michael.Winckler@iwr.uni-heidelberg.de http://www.iwr.uni-heidelberg.de/teaching/mathe-star/ Mathe Star Lösungen Runde

Mehr

Rechtschreibtraining mit Wort-Sudokus

Rechtschreibtraining mit Wort-Sudokus Rechtschreibtraining mit Wort-Sudokus Waldtiere Wort-Sudokus sind kreative und unterhaltsame Rechtschreibtrainer für den Deutsch- und Fremdsprachenunterricht. Wort-Sudokus werden entsprechend der Sudoku-Regeln

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Lösungen zur Vorrundenprüfung 2004

Lösungen zur Vorrundenprüfung 2004 Lösungen zur Vorrundenprüfung 2004 Zuerst einige Bemerkungen zum Punkteschema. Eine vollständige und korrekte Lösung einer Aufgabe ist jeweils 7 Punkte wert. Für komplette Lösungen mit kleineren Fehlern

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

11a. Der. und erster COMPUTERBEWEIS. Flächenornamente Zwei- und Vierfarbenproblem

11a. Der. und erster COMPUTERBEWEIS. Flächenornamente Zwei- und Vierfarbenproblem IV. BUCH RAUM MIT n-dimensionen 11a. Der und erster COMPUTERBEWEIS Flächenornamente Zwei- und Vierfarbenproblem Der Zweifarbensatz www.udo-rehle.de 2 Eine Gerade teilt die Ebene in zwei Teile, zwei Geraden

Mehr

Wima Praktikum 1. Abschlussprojekt Gruppen 1a und 2a bei Thomas Emberger Aufgabe 3

Wima Praktikum 1. Abschlussprojekt Gruppen 1a und 2a bei Thomas Emberger Aufgabe 3 Prof. Dr. Karsten Urban Iris Häcker Wima Praktikum 1 SoSe 2013 Abschlussprojekt ab 24.06.2013 Abschlussprojekt Gruppen 1a und 2a bei Thomas Emberger Aufgabe 3 Voraussetzungen zum Bestehen des Projektes:

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Informatik II Backtracking

Informatik II Backtracking lausthal Informatik II Backtracking. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Szenario: man hat eine Reihe von Entscheidungen aus einer Menge von Wahlmöglichkeiten zu treffen, wobei

Mehr

Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51)

Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51) Fachbereich Mathematik Tag der Mathematik 9. November 2013 Klassenstufen 9, 10 Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51) Aufgabe 1 (6+4+4+3+3 Punkte). In dieser Aufgabe geht es

Mehr

2.1 Überdeckung des Schachbretts mit Dominosteinen

2.1 Überdeckung des Schachbretts mit Dominosteinen Färbungsmethoden 2 In der Mathematik werden Probleme oft dadurch gelöst, dass man eine zusätzliche Struktur einführt. Diese Struktur hat in der Regel nur eine Hilfsfunktion, sie kommt weder in der Voraussetzung

Mehr

Entwicklung einer Methode zum Lösen und Bewerten von Sudoku-Rätseln und Implementation derselben als Java-Applet. Diplomarbeit

Entwicklung einer Methode zum Lösen und Bewerten von Sudoku-Rätseln und Implementation derselben als Java-Applet. Diplomarbeit Entwicklung einer Methode zum Lösen und Bewerten von Sudoku-Rätseln und Implementation derselben als Java-Applet Diplomarbeit Fachhochschule Merseburg Fachbereich Informatik und Angewandte Naturwissenschaften

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Das Freudenthal-Rätsel

Das Freudenthal-Rätsel Das Freudenthal- Rätsel 1 Das Freudenthal-Rätsel Dieses Rätsel wurde 1969 von Hans Freudenthal vorgestellt. Später entstanden zahlreiche Variationen. Es wurden zwei natürliche Zahlen größer als 1 und kleiner

Mehr

1 Visual Basic for Application mit Excel (VBA)

1 Visual Basic for Application mit Excel (VBA) Informatikfreikurs WS 2008/2009 1 1 Visual Basic for Application mit Excel (VBA) 1.1 Mosaik Puzzle Das untenstehende Zahlenschema ist ein sogenanntes Mosaik Puzzle. Jede Zahl zeigt an, wie viele der (höchstens

Mehr

Didaktik der Elementargeometrie

Didaktik der Elementargeometrie Humboldt-Universität zu Berlin Sommersemester 2014. Institut für Mathematik A. Filler Zusammenfassende Notizen zu der Vorlesung Didaktik der Elementargeometrie 2 Konstruieren im Geometrieunterricht Konstruieren

Mehr

Studienschwerpunkt: Diskrete Strukturen Dieser Vorlesungszyklus wird in jedem 2ten Jahr gestartet. Der neue Zyklus beginnt jetzt. Das Angebot: Sommers

Studienschwerpunkt: Diskrete Strukturen Dieser Vorlesungszyklus wird in jedem 2ten Jahr gestartet. Der neue Zyklus beginnt jetzt. Das Angebot: Sommers Studienschwerpunkt Diskrete Strukturen Stefan Felsner Diskrete Mathematik http://www.math.tu-berlin.de/~felsner Studienschwerpunkt: Diskrete Strukturen Dieser Vorlesungszyklus wird in jedem 2ten Jahr gestartet.

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Sudoku. Warum 6? Warum 6?

Sudoku. Warum 6? Warum 6? . / Sudoku Füllen Sie die leeren Felder so aus, dass in jeder Zeile, in jeder Spalte und in jedem x Kästchen alle Zahlen von bis stehen.. / Warum?. / Warum?. / Geschichte der Logik Syllogismen (I) Beginn

Mehr

Lernrückblick. 1 a) Ich weiß, wie ich ein Schrägbild in der Kabinettprojektion zeichne: 2 a) Ich kann einen Körper aus folgenden Ansichten zeichnen:

Lernrückblick. 1 a) Ich weiß, wie ich ein Schrägbild in der Kabinettprojektion zeichne: 2 a) Ich kann einen Körper aus folgenden Ansichten zeichnen: 1 a) Ich weiß, wie ich ein Schrägbild in der Kabinettprojektion zeichne: b) Beispiel 2 a) Ich kann einen Körper aus folgenden Ansichten zeichnen: b) Beispiel 3 Entscheide dich. Ich fühle mich fit im Bereich

Mehr

Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23

Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23 Brückenkurs Beweise Anja Haußen 30.09.2016 Brückenkurs, 30.09.2016 Seite 1/23 Inhalt 1 Einführung 2 Sätze 3 Beweise 4 direkter Beweis Brückenkurs, 30.09.2016 Seite 2/23 Einführung Die höchste Form des

Mehr

Dieser Teil behandelt die Grundregeln für das Lösen von Sudoku-Rätseln.

Dieser Teil behandelt die Grundregeln für das Lösen von Sudoku-Rätseln. Sudoku für Anfänger 1 Dieser Teil behandelt die Grundregeln für das Lösen von Sudoku-Rätseln. Außerdem erhalten Sie das notwendige Werkzeug, um jedes Rätsel mit der besten Strategie in Angriff zu nehmen.

Mehr

Inhalt. Vorwort 11. Bibliografische Informationen digitalisiert durch

Inhalt. Vorwort 11. Bibliografische Informationen  digitalisiert durch Inhalt Vorwort 11 Grundlasen 1. Was ist Mathematik? 13 2. Seit wann gibt es Mathematik? 15 3. Welches ist das erste Mathematikbuch? 17 4. Was ist ein Punkt? 19 5. Was ist ein Beweis? 20 6. Was sind Axiome?

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Logic Masters 2015 Runde 2: Schiffe versenken und Varianten

Logic Masters 2015 Runde 2: Schiffe versenken und Varianten NAME Logic Masters 05 Runde : Schiffe versenken und Varianten Bearbeitungszeit: 60 Minuten. Schiffe versenken Standard... 0 Punkte. Schiffe versenken Standard... 55 Punkte. Schiffe versenken Salat... 5

Mehr

Runde 2 Aufgabe 1. Welche Figur(en) kann man nicht in einem Zug mit dem Stift zeichnen, wenn man keine Linie doppelt ziehen darf?

Runde 2 Aufgabe 1. Welche Figur(en) kann man nicht in einem Zug mit dem Stift zeichnen, wenn man keine Linie doppelt ziehen darf? Aufgabe 1 Welche Figur(en) kann man nicht in einem Zug mit dem Stift zeichnen, wenn man keine Linie doppelt ziehen darf? Aufgabe 2 Udo gibt seinem Freund ein Rätsel auf: Ich denke mir eine dreistellige

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Vollständige Induktion

Vollständige Induktion Vollständige Induktion Tobias Strauß 6.0.009 Das Prinzip der vollständigen Induktion Die vollständige Induktion ist eines der wichtigsten Beweisprinzipien in der Mathematik. Nicht nur in der diskreten

Mehr

MATHEMATIK. Menschen, Rätsel und Beweise. Begleitbuch

MATHEMATIK. Menschen, Rätsel und Beweise. Begleitbuch MATHEMATIK Menschen, Rätsel und Beweise Begleitbuch Urheberrecht: Dieses Begleitbuch ist zu Ihrem persönlichen und nicht kommerziellen Gebrauch bestimmt und urheberrechtlich geschützt. Jede andere Verwendung

Mehr

In diesem Stockwerk suchen wir Zahlen, die bereits zweimal vorkommen, zum Beispiel die Zahl 6.

In diesem Stockwerk suchen wir Zahlen, die bereits zweimal vorkommen, zum Beispiel die Zahl 6. Sudoku the Basics Das Prinzip Konzentration auf die gelösten Zellen, nicht auf die leeren Felder Der Prozess Beginn: 1. Stockwerke und Türme: Kandidaten, die zweimal vorkommen 2. Nicht nur Lösungen eintragen,

Mehr

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den

Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Vorlesung zur Arithmetik V1 18./19.04. Arithmetik in der Grundschule V2 -./26.04. Die Entwicklung des Zahlbegriffs beim Kind/Konzepte für den Anfangsunterricht V3 02./03.05. Natürliche Zahlen im Anfangsunterricht

Mehr

Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom

Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS Über klassische Probleme der Mathematik Leitung: Prof. Harald Upmeier, Benjamin Schwarz Referentin: Sabrina Klöpfel Wintersemester

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Seminar Formal Methods for Fun and Profit

Seminar Formal Methods for Fun and Profit Seminar Formal Methods for Fun and Profit Verifikation der Fliesskomma-Arithmetik bei Intel Seminarleiter Jun.Prof. Dr. Bernhard Beckert Dennis Willkomm 16.08.005 D. Willkomm - - Gliederung Der Pentium-Bug

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

23.1 Constraint-Netze

23.1 Constraint-Netze Grundlagen der Künstlichen Intelligenz 1. April 2015 2. Constraint-Satisfaction-Probleme: Constraint-Netze Grundlagen der Künstlichen Intelligenz 2. Constraint-Satisfaction-Probleme: Constraint-Netze Malte

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Lies den

Mehr

( ) werden einerseits wie üblich mit einer festen Zahl moduliert,

( ) werden einerseits wie üblich mit einer festen Zahl moduliert, Hans Walser, [20100612a] Binomialkoeffizienten modulo eine Zahl 1 Worum geht es? n Die Binomialkoeffizienten k ( ) werden einerseits wie üblich mit einer festen Zahl moduliert, andererseits aber auch mit

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

Baue mit dem Material so, dass andere dein Bauwerk nach einem Foto nachbauen können.

Baue mit dem Material so, dass andere dein Bauwerk nach einem Foto nachbauen können. Aufgabe 2.3 Idee und Aufgabenentwurf Rainer Meiers, Nicolaus-Voltz-Grundschule, Losheim am See, Klassenstufe 2 (Januar 2013) Baue mit dem Material so, dass andere dein Bauwerk nach einem Foto nachbauen

Mehr

Mathematik ohne Formeln gibt s denn das?

Mathematik ohne Formeln gibt s denn das? Mathematik ohne Formeln gibt s denn das? Ein Stück Mathematik der anderen Art Daniel Grieser Institut für Mathematik Universität Oldenburg Der Läufer Ein Läufer im Schach kann nur schräg ziehen. Kann er......

Mehr

Kapitel 6: Graphalgorithmen Gliederung

Kapitel 6: Graphalgorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Lösen quadratischer Gleichungen

Lösen quadratischer Gleichungen d Mathematik.0.009 Stefan Krissel Lösen quadratischer Gleichungen Was sind quadratische Gleichungen? Gleichungen Gleichungen sind grundsätzlich alle mathematischen Erscheinungen, bei denen ein Gleichheitszeichen

Mehr

Logic Masters 2016 Runde 3: Kellerrunde

Logic Masters 2016 Runde 3: Kellerrunde NAME Logic Masters 016 Runde : Kellerrunde Bearbeitungszeit: 60 Minuten.1 Mosaik Magische Spirale.................. 15 + 15 Punkte. Sternenhimmel Magnetplatten............ 0 + 0 Punkte. BACA U-Bahn............................

Mehr

6 Geraden Seite 1 von 7. 6 Geraden

6 Geraden Seite 1 von 7. 6 Geraden 6 Geraden Seite 1 von 7 6 Geraden Der vorangehende Paragraph 5 hat zwei Mengen von Objekten in das Zentrum der Überlegungen gestellt. Die erste Menge S ist die Menge der Symmetrieachsen. Zur Erinnerung:

Mehr

Wozu ist Mathematik gut? M. Hinze

Wozu ist Mathematik gut? M. Hinze Wozu ist Mathematik gut? M. Hinze Technische Universität Dresden Institut für Numerische Mathematik hinze@math.tu-dresden.de www.math.tu-dresden.de/ hinze Technische Universität Dresden Institut für Numerische

Mehr

Collegium Josephinum Bonn Mathematik, Jg. 5

Collegium Josephinum Bonn Mathematik, Jg. 5 Collegium Josephinum Bonn Mathematik, Jg. 5 In der Jahrgangsstufe 5 wird Mathematik in 4 Wochenstunden unterrichtet. Im ersten Halbjahr wird der reguläre Unterricht durch eine Förderstunde ergänzt, um

Mehr

Was ist Mathematik? Kinderuni Wien 2008 7. Juli 2008. Gabriela Schranz-Kirlinger. Technische Universität Wien

Was ist Mathematik? Kinderuni Wien 2008 7. Juli 2008. Gabriela Schranz-Kirlinger. Technische Universität Wien Was ist Mathematik? Gabriela Schranz-Kirlinger Kinderuni Wien 2008 7. Juli 2008 Technische Universität Wien Kinderuni: Was ist Mathematik? 7/7/2008 p.1/29 MATHEMATIK ist Zählen und Rechnen ist eine Sprache

Mehr

Kleiner Ausflug in Logik und Verkehrssteuerung

Kleiner Ausflug in Logik und Verkehrssteuerung Kleiner usflug in Logik und Verkehrssteuerung Ein logisches Rätsel usgangslage: Drei Frauen stehen hintereinander. Jede trägt einen Hut auf dem Kopf und sieht nur die Hüte der voran stehenden Personen.

Mehr

Spiele. Didaktischer Kommentar. Lernplattform

Spiele. Didaktischer Kommentar. Lernplattform Lernplattform Spiele Didaktischer Kommentar Mit dem Spiele-Modul können Sie interaktive und dynamische Spiele gestalten. Sie geben damit Ihren Teilnehmern die Möglichkeit, auf spielerische Art und Weise

Mehr

Rechtschreibtraining mit Wort-Sudokus

Rechtschreibtraining mit Wort-Sudokus Rechtschreibtraining mit Wort-Sudokus Adjektive Gegensätze Wort-Sudokus sind kreative und unterhaltsame Rechtschreibtrainer für den Deutsch- und Fremdsprachenunterricht. Wort-Sudokus werden entsprechend

Mehr

7down Zusatzaufgaben. Mathias Ziebarth und Joachim Breitner. 13. März 2008

7down Zusatzaufgaben. Mathias Ziebarth und Joachim Breitner. 13. März 2008 7down Zusatzaufgaben Mathias Ziebarth und Joachim Breitner 13. März 2008 1 Problem 1 Unser Programm hat folgende Lösungen berechnet: Testfall 1 153131 141441 973493 330529 869017 876927 Testfall 2 279841

Mehr

Einführung Grundbegriffe

Einführung Grundbegriffe Einführung Grundbegriffe 1.1 Der Modellbegriff Broy: Informatik 1, Springer 1998 (2) Die Modellbildung der Informatik zielt auf die Darstellung der unter dem Gesichtspunkt einer gegebenen Aufgabenstellung

Mehr

Magische Quadrate. Die Abbildung zeigt einen Ausschnitt aus Albrecht Dürers Kupferstich «Melancholie».

Magische Quadrate. Die Abbildung zeigt einen Ausschnitt aus Albrecht Dürers Kupferstich «Melancholie». 4 9 2 3 5 7 8 6 2 Magische Quadrate Magische Quadrate ie bbildung zeigt einen usschnitt aus lbrecht ürers Kupferstich «Melancholie». ei genauem Hinsehen erkennen Sie ein magisches Quadrat vierter Ordnung.

Mehr

Magische Quadrate und Sudokus

Magische Quadrate und Sudokus JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG FAKULTÄT FÜR MATHEMATIK UND INFORMATIK INSTITUT FÜR MATHEMATIK Erste Staatsprüfung für ein Lehramt an Grundschulen, Herbst 2016 Schriftliche Hausarbeit Magische

Mehr

Die Harmonische Reihe

Die Harmonische Reihe Die Harmonische Reihe Wie stellt sich Determinismus in der Mathematik dar? Wie stellt man Daten dar? Wie findet man das Resultat von unendlich vielen Schritten? Mehrere Wege können zu demselben Ziel führen

Mehr

Strukturierung und Referenzen in L A T E X

Strukturierung und Referenzen in L A T E X Strukturierung und Referenzen in L A T E X Markus Severitt Fakultät für Mathematik Universität Bielefeld L A T E X in der Mathematik Markus Severitt (Uni Bielefeld) Strukturierung und Referenzen in LAT

Mehr

1.4 Äquivalenzrelationen

1.4 Äquivalenzrelationen 8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,

Mehr

9. Vorarlberger Mathematik Miniolympiade

9. Vorarlberger Mathematik Miniolympiade 9. Vorarlberger Mathematik Miniolympiade (5.5.011) Hinweise: * Gib auf jedem Blatt deinen Namen und deine Schule an! * Löse jede Aufgabe auf einem eigenen Blatt! (Blattnummer von 1 bis 8) * Führe Begründungen,

Mehr

4: Algebraische Strukturen / Gruppen

4: Algebraische Strukturen / Gruppen Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,

Mehr

Mathematik im 2. Schuljahr. Kompetenzen und Inhalte

Mathematik im 2. Schuljahr. Kompetenzen und Inhalte Mathematik im 2. Schuljahr Kompetenzen und Inhalte Prozessbezogene Kompetenzen Problemlösen / kreativ sein Die S. bearbeiten Problemstellungen. Modellieren Die S. wenden Mathematik auf konkrete Aufgabenstellungen

Mehr

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier 4 Planare Graphen Bisher wurden Graphen abstrakt durch Mengen E und K und eine Abbildung ψ : K P(E) definiert. In diesem Kapitel beschäftigen wir uns mit einem Abschnitt der sogenannten topologischen Graphentheorie.

Mehr

Lösung zur Aufgabe Würfel färben von Heft 20

Lösung zur Aufgabe Würfel färben von Heft 20 Lösung zur Aufgabe Würfel färben von Heft 20 (1) Jedes der 24 Teilquadrate grenzt an genau eine der acht Ecken. Da nach unserer Vorschrift die drei Teilquadrate an jeder Ecke unterschiedlich gefärbt sein

Mehr