11a. Der. und erster COMPUTERBEWEIS. Flächenornamente Zwei- und Vierfarbenproblem

Größe: px
Ab Seite anzeigen:

Download "11a. Der. und erster COMPUTERBEWEIS. Flächenornamente Zwei- und Vierfarbenproblem"

Transkript

1 IV. BUCH RAUM MIT n-dimensionen 11a. Der und erster COMPUTERBEWEIS Flächenornamente Zwei- und Vierfarbenproblem

2 Der Zweifarbensatz 2

3 Eine Gerade teilt die Ebene in zwei Teile, zwei Geraden in vier und drei Geraden in bis zu 7 Teile. Egal wie viele Geraden die Ebene auch teilen, stets lässt sich durch Einfärbung ein Muster aus schwarz und weiß bilden, so dass nie zwei gleiche Farben an einer gemeinsamen Strecke angrenzen. Dieser Zweifarbensatz gilt auch noch, wenn nur geschlossenen Linien sich immer durchkreuzen. Oft kann man mit zwei Farben (schwarz-weiß) auskommen Zwei-Farben Fraktale Dabei können Singularitäten (unendliche Punkte) innern oder außen liegen. VI Kap. 11c. unter Aufgabe 1.b) fraktale Parkettierungen 3

4 4

5 Der Vierfarbensatz Nehmen wir aber statt nur Geraden oder Kreisen beliebige Formen, etwa die Begrenzungen von Ländern, dann kommen wir immer mit einem Vier-Farben-Druck (CMYK) aus um die Landkarte einzufärben, wobei keine Landesgrenzen an gleiche Farben treffen. Die Länder auf einer Landkarte können immer so mit 4 Farben gefärbt werden, dass niemals benachbarte Länder dieselbe Farbe bekommen Schon 1852 beobachtete Francis Guthrie, dass nie mehr als vier Regionen miteinander in Kontakt kommen Der Satz wurde erstmals 1852 von Francis Guthrie als Vermutung aufgestellt, als er die Counties von England färben wollte. Es war offensichtlich, dass drei Farben nicht ausreichten und man fünf in keinem konstruierten Beispiel brauchte. In einem Brief des Londoner Mathematikprofessors Augustus De Morgan vom 23. Oktober 1852 an den irischen Kollegen William Rowan Hamilton wurde die Vermutung diskutiert und veröffentlicht. Der englische Mathematiker Arthur Cayley stellte das Problem 1878 der mathematischen Gesellschaft Londons vor. Innerhalb nur eines Jahres fand Alfred Kempe einen Beweis für den Satz. Elf Jahre später, 1890, zeigte Percy Heawood, dass Kempes Beweis fehlerhaft war. Ein zweiter fehlerhafter Beweis, 1880 von Peter Guthrie Tait veröffentlicht, konnte ebenfalls elf Jahre lang nicht widerlegt werden. Erst 1891 zeigte Julius Petersen, dass auch Taits Beweis nicht korrekt war Vierfarbensatz Der 4-Farben-Satz Vier-Farbenproblem Vom Vierfarbenproblem zum Vierfarben- satz eine Analyse mit

6 Das Einfärben geographischer Karten ist im Wesentlichen ein topologisches Problem, weil man nur die Grenzen zwischen den Ländern betrachtet. Das Land kann man dann auch als einen Punkt repräsentieren und die Angrenzungen als verbindende Linien betrachten, die sich aber nicht überkreuzen dürfen, was einen ebenen Graphen ergibt (Graphentheorie). Dieser bereits 1852 bekannte Vier-Farben-Satz ist der erste, der mit Computerhilfe 2 bewiesen wurde. Und zwar 1976 von Appel and Haken, die sich auf Vorarbeiten von Kempe, Heawood, Birkhoff und anderen stützen konnten!. Zwei Farben zur Bemalung des Oktaeders Links sein Schlegel-Diagramm (der Hintergrund blau entspricht der verdeckten Begrenzungsfläche) Zur Verwendung von Computerprogrammen Maschinengestütztes Beweisen Wikipedia 6

7 Die sechs Flächen eines in die Ebene projezierten Würfels 3 Bemalen wir nun die Oberfläche eines Polyeders mit möglichst wenig Farben, und zwar so, dass keine Kante an gleiche Farben stößt, dann kommen wir z.b. beim Oktaeder mit zwei Farben aus, während wir beim Ikosaeder (oder Würfel) bereits drei Farben benötigen und beim Dodekaeder (oder Tetraeder) bereits vier. Aber auch hier kommen wir immer mit höchstens vier Farben 4 aus, was durch die Kompaktifizierung der Ebene beweisbar ist 5. Dies gilt aber nicht mehr für Bemalungen auf Körpern anderen Geschlechts: Beim Torus (Donuts, Rettungsring 3 This film is part of IMAGINARY through the eyes of mathematics Nine chapters, two hours of maths, that take you gradually up to the fourth dimension. Mathematical vertigo guaranteed!cfor more information and to see and download all chapters of the film please look at: or 4 Die Frage, ob man jede beliebige Karte mit 4 oder 5 Farben einfärben könnte, stammt von Cayley. Er war es auch, der als erster den Gruppenbegriff präzise einführte. Zu jener Zeit zogen aus ihm überhaupt nur noch Schläfli, Möbius und Grassmann die Möglichkeit in Betracht, Geometrie auch in mehr als nur drei Dimensionen betreiben zu können. 5 Alle unendlich-fernen Punkte werden zu einem ergänzenden Pol zusammengefasst stereographische Projektion der Kugel auf die Ebene 7

8 oder Schwimmreifen, Teetasse) kann man mit sieben Farben auskommen, das Brezel benötigt noch mehr Farben 6. Drei bzw. vier Farben beim Ikosa- bzw. Dodekaeder 7 Links die Schlegel-Diagramme: Der einer verdeckten Begrenzungsfläche entsprechende Hintergrund muss gelb sein, beim Ikosaeder kann er auch weiß sein! Die 12 bzw. 20 Flächen des Dodeka- bzw. Ikosaeders 6 Mathematik und Muster; >>Ordnungsgesetzte des Geistes und der Natur<<; Keith Devlin; Spektrum Akademischer Verlag Kann man einen Dodekaeder als Spielwürfel verwenden, d.h. ihn so mit zweimal sechs Ziffern beschriften, dass die Gegenseitensumme wie beim Würfel sieben ist, wobei alle Ziffern gleichwertig sein müssen, also etwa gleiche Ziffern immer oder niemals nebeneinander liegen sollen? 8

9 Der Satz von Ringel-Youngs (oder Heawood-Vermutung) fragt nach der maximal benötigten Farbanzahl für ganz allgemeine Oberflächen, wie dem einseitigen Möbiusband oder der Projektiven Ebene, wozu man ebenso höchstens sechs Farben benötigt (wie auch für die nicht-orientierbare Kleinsche Flasche. 8 ) ( [] ist die Gaußklammer, größtes Ganzes) (7+1):2 = 4 Farben für die Euler-Charakteristik E-K+F = 2 (IV.5b EULERSCHE POLYEDERFORMEL) Der Torus hat χ = 0 und kann daher mit höchstens sieben Farben eingefärbt werden 7 Farben reichen beim Torus (Schwimmreifen) 9 Und wie viele Farben brauchen wir zur entsprechenden Einfärbung der Begrenzungen vierdimensionaler Körper? Ebenso viele wie wir brauchen, um den Raum derartig mit abwechselnd anders gefärbten Körpern so aufzuteilen, dass keine Grenzflächen mit derselben Farbe aneinander stoßen. 8 statt der 7 vorhergesagten Farben von einer falschen Formel, was Philip Franklin 1930 bewies. 9 Siehe auch Titelbild. Das 7-Farbenproblem der Reifenbemalung war viel einfacher zu lösen (wurde auch zuerst gelöst) 9

10 Wollen wir nun die ganze Ebene aus mit nur einer Art von regelmäßigen Vielecken erzeugen, dann geht dies nur mit den regelmäßigen Drei-, Vier- und Sechsecken. Denn ganzen Raum können wir analog aber nur mit Würfeln bilden; dies gilt natürlich auch für alle höheren Dimensionen. Aber z.b. bilden Ikosaeder wie die Kugeln Lücken, wenn wir sie aneinander legen. Und mit Dodekaedern geht sowieso nichts, denn mit Pentagonen kann man nicht einmal die Ebene parkettieren. Obwohl die tetraederförmige Kugelpackung die dichteste ist, kann man aber mit Tetraedern nicht den Raum vollständig füllen 10. Wenn auch die Raumwinkelsumme bei Dreieckspyramiden gerade π wäre, könnte man theoretisch vielleicht die vier Winkel zu einem halben Halbraumwinkel ergänzen ( III.5 Die Raumwinkelsumme einer Dreieckspyramide) und daher möglicherweise 16 regelmäßige Tetraeder um ein Spitze gruppieren, so dass ein regelmäßiger Körper entstünde, der von 16 regelmäßigen Dreiecken begrenzt wird. Ein solcher existiert aber nicht (der Ikosaeder hat 20)! 11. Im Vierdimensionalen ist der volle vierdimensionale Raumwinkel 2π² anstatt der 4π des Dreidimensionalen! Und in noch höheren Dimensionen kommen noch höhere Potenzen von Pi vor, so dass es vermutlich unmöglich ist, diese Räume aus regelmäßigen Simplices zu erzeugen. 10 Föppl entdeckte einen raumfüllenden Verbund von Tetraedern and Tetraederstümpfen (Wells 1991). 11 Eine analoge Frage der Ramfüllung mit nicht-regelmäßigen Tetraedern finden Sie im An Amazing, Space Filling, Non-regular Tetrahedron As Simple as 1, 2, 3 (Joyce Frost and Peg Cagle)

11 Aneinandergereihte Tetraeder winden sich Eine Raumfüllung mit Tetraedern alleine ist unmöglich! Aneinander gereihte Tetraeder als Dreifach-Spirale Immerhin kann man diese regelmäßigen Tetraeder dichter packen als die maximal etwa 74%, die man mit gleichgroßen Kugeln erreicht. Ob die dichteste mögliche Packung aber periodisch oder unperiodisch angeordnet ist, weiß noch niemand, wobei ersteres wahrscheinlicher ist. Den derzeitigen Rekord liefert Elisabeth R. Chen (Uni Michigan) mit einer periodischen di-pyramidalen Packung der Dichte von etwa 85,635% (4000/4671) FAZ 10 Feb und Spektrum der Wissenschaft 2/2012: >>Kollektive Verklemmung und der gehörnte Oktaeder<< von Christoph Pöppe (vgl. VI.10b) 11

12 Nur mit Oktaedern zusammen gelingt die Raumfüllung In die Lücken der Oktaeder passen gerade die Tetraeder Das Vakuum könnte statt auf Würfeln auch mit andern Gebilden aufgebaut sein (folgende Abbildungen) 12

13 Ein auf einen Oktaeder aufgesetzter Tetraeder 13

14 Wenn wir nun zwei verschiedene platonische Körperarten verwenden, dann kann man nur mit Tetraedern und Oktaedern 13 zusammen den Raum vollständig überdecken. Oder wir schneiden die Ecken einiger Tetraeder zu einem Drittel der Kantenlängen ab, und verwenden die abgeschnittenen als Tetraeder (wobei aber die Hälfte übrig bleibt), dann können wir den Raum auch ganz dicht damit füllen. An den Ecken eines Oktaeder-Dreiecks und an denen des verdrehten parallelen Dreiecks werden jeweils die Dreieckspyramiden aufgesetzt, die dann so ineinander greifen und zu Säulen stapelbar sind. Diese kann man aneinander schieben (folgendes Bild). 13 Es existieren 257 konvexe Achtflächner. Für diese ist also die Anzahl der Kanten = Ecken+6 Und mit keinem von ihnen kann man den Raum vollständig ausfüllen. Es gibt nur 5 konvexe Polyeder mit regulären Oberflächen: Dreiecksprisma, Sechsecksprisma, Würfel, Oktaederstumpf (Steinhaus 1999, pp ; Wells 1991, pp ), und das Doppeldreicksprisma Gyrobifastigium (Johnson 2000) siehe auch

15 Gehörnter doppelter Tetraederstumpf (Oktaeder und mit Drittelkantenlänge-Tetraeder) füllen den Raum vollständig auch aus -> Weiterlesen: Die Raumfüller 15

16 A U F G A B E N Sei kreativ und konstruiere Muster wie z.b. die Blume des Lebens Entscheide, ob man mit zwei Farben auskommen kann! 16

17 17

11b. Die

11b. Die IV. BUCH RAUM MIT n-dimensionen 11b. Die www.udo-rehle.de 1 29.10.12 Auf einen Oktaeder kann man ein bis acht Tetraeder aufsetzen Eine Raumfüllung ist mit Tetra- und Oktaedern möglich www.udo-rehle.de

Mehr

16. Flächenfärbungen

16. Flächenfärbungen Chr.Nelius: Graphentheorie (WS 2015/16) 57 16. Flächenfärbungen In der Mitte des 19. Jahrhunderts tauchte eine Vermutung auf, die erst 125 Jahre später bewiesen werden sollte und die eine der bekanntesten

Mehr

Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen?

Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen? Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen Problemstellung Deutsche Bundesländer in vier Farben 4. April 06 Martin Oellrich Warum geht das immer? Gegeben: Karte eines Gebietes

Mehr

11: Die Euler sche Polyederformel für planare Graphen

11: Die Euler sche Polyederformel für planare Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 38 11: Die Euler sche Polyederformel für planare Graphen (11.1) BEM: a) Ein Polyeder (auch Vielflach oder Vielflächner) ist ein geometrischer Körper, der nur von

Mehr

IV. BUCH: RAUM MIT. 3. DerHYPERWÜRFEL FEHRINGER

IV. BUCH: RAUM MIT. 3. DerHYPERWÜRFEL FEHRINGER IV. BUCH: RAUM MIT n-dimensionen 3. DerHYPERWÜRFEL FEHRINGER Hyperwürfel und Fehringer-Dreieck Analog dem an den vier Seiten eines Quadrats aufgesetzten vier weiteren Quadraten plus einem zusätzlichen

Mehr

Polyeder, Konvexität, Platonische und archimedische Körper

Polyeder, Konvexität, Platonische und archimedische Körper Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten

Mehr

IV. BUCH: RAUM MIT. 8b. Die ARCHIMEDISCHEN ARCHIMEDISCHE.

IV. BUCH: RAUM MIT. 8b. Die ARCHIMEDISCHEN ARCHIMEDISCHE. IV. BUCH: RAUM MIT n-dimensionen 8b. Die ARCHIMEDISCHEN ARCHIMEDISCHE http://www.polytope.de/ Übersicht mit Eckcharakterisierung 1 {4, 6, 10} beim Riesen bedeutet beispielsweise an jeder Ecke trifft ein

Mehr

Alexandra Kuhls Proseminar Das Buch der Beweise

Alexandra Kuhls Proseminar Das Buch der Beweise Der Fünf Farben Satz Alexandra Kuhls Proseminar Das Buch der Beweise 30.11.2017 Der Fünf Farben Satz Ist es möglich, die Gebiete einer ebenen Karte so Ist es möglich, die Gebiete einer ebenen Karte so

Mehr

Vier-Farbenproblem. (c) Ein etwas schwereres Beispiel...

Vier-Farbenproblem. (c) Ein etwas schwereres Beispiel... Vier-Farbenproblem Kann man jede Landkarte mit vier Farben färben, sodass keine aneindander angrenzenden Länder die gleiche Farbe haben? Versuchen Sie die Karte Deutschlands oder eines der anderen Bilder

Mehr

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. wer das Problem löste 4

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. wer das Problem löste 4 Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben Übersicht 5. April 009 5. April 009 Martin Oellrich 1 vom Problem zur Theorie die Idee weiter denken 3 MathematikerIn werden? Gibt

Mehr

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier 4 Planare Graphen Bisher wurden Graphen abstrakt durch Mengen E und K und eine Abbildung ψ : K P(E) definiert. In diesem Kapitel beschäftigen wir uns mit einem Abschnitt der sogenannten topologischen Graphentheorie.

Mehr

Polyeder und Platonische Körper

Polyeder und Platonische Körper Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Eigenschaften als reguläre Parkettierungen der Sphäre Seien E die der Ecken, F die der Flächen und K die der Kanten eines konvexen Polyeders, dann gilt: K E = F 2 als reguläre Parkettierungen der Sphäre

Mehr

Die Abbildung 2 zeigt die Anordnung in einer Pyramide. Die Seitenflächen der Pyramide haben gegenüber der Grundfläche einen Neigungswinkel 45.

Die Abbildung 2 zeigt die Anordnung in einer Pyramide. Die Seitenflächen der Pyramide haben gegenüber der Grundfläche einen Neigungswinkel 45. Hans Walser, [20180201] Mehrfarbige Packungen 1 Worum geht es? Die gängigen räumlichen Packungen werden bezüglich der Minimalzahl der benötigten Farben untersucht. Wenn zwei Füller-Elemente eine Fläche

Mehr

Das Vierfarbenproblem und verwandte Fragestellungen

Das Vierfarbenproblem und verwandte Fragestellungen Eichstätter Kolloquium zur Februar 010 Didaktik der Mathematik Das Vierfarbenproblem und verwandte Fragestellungen Cornelia Minette Busch 1 Das Vierfarbenproblem Wenn Schüler eine politische Landkarte

Mehr

Über die regelmäßigen Platonischen Körper

Über die regelmäßigen Platonischen Körper Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben

Mehr

Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom

Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS Über klassische Probleme der Mathematik Leitung: Prof. Harald Upmeier, Benjamin Schwarz Referentin: Sabrina Klöpfel Wintersemester

Mehr

IV. BUCH RAUM MIT. 9b. STERNDELTAEDER. Titelbild:

IV. BUCH RAUM MIT. 9b. STERNDELTAEDER. Titelbild: IV. BUCH RAUM MIT n-dimensionen 9b. STERNDELTAEDER Titelbild: http://imaginary.org/gallery/polyhedron-models Sterndeltaeder Wie viele Deltaeder mit 18 Dreiecken gibt es? Viele, zu viele! Von den endlich

Mehr

2.4A. Reguläre Polyeder (Platonische Körper)

2.4A. Reguläre Polyeder (Platonische Körper) .A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:

Mehr

Körper zum Selberbauen Polydron

Körper zum Selberbauen Polydron Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist

Mehr

Teilgebiete der Abbildungsgeometrie

Teilgebiete der Abbildungsgeometrie Teilgebiete der Abbildungsgeometrie In der Abbildungsgeometrie wird zur Klassifizierung von Eigenschaften des Raumes (bzw. der Ebene) und der in ihm enthaltenen Objekte (Geraden, Kreise, Polytope, usw.)

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

Wiederholung aus Diskreter Mathematik I: I: Graphentheorie

Wiederholung aus Diskreter Mathematik I: I: Graphentheorie Wiederholung aus Diskreter Mathematik I: I: Graphentheorie Inhalt: W.1 Grundlagen W.2 Das Königsberger Brückenproblem W.3 Bäume W.4 Planare Graphen W.5 Färbungen W.1 Grundlagen Ein Ein Graph besteht aus

Mehr

Der Eulersche Polyedersatz

Der Eulersche Polyedersatz Der Eulersche Polyedersatz Def Die Anzahl der k Seiten eines konvexen Polytops P bezeichnen wir mit f k (P) oder kurz mit f k. Das n Tupel (f 0,f 1,...,f n 1 ) Z n heißt dann der f Vektor des (n dimensionalen)

Mehr

Der Vier-Farben-Satz

Der Vier-Farben-Satz , Samuel Hetterich, Felicia Raßmann Goethe-Universität Frankfurt, Institut für Mathematik 21.Juni 2013 Wieviele Farben braucht man zum Färben einer Landkarte? Spielregeln Länder mit einer gemeinsamen Grenze

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

Invarianten in der Mathematik

Invarianten in der Mathematik Prof. Dr. A. Beliakova, 23. Schweizerischer Tag über Mathematik und Unterricht Was ist eine Invariante? Invarianten in der Mathematik Aufgabe 1 Können die 11 gezeichnenten Zahnräder sich gleichzeitig drehen?

Mehr

Kapitel 3. Kapitel 3 Graphentheorie

Kapitel 3. Kapitel 3 Graphentheorie Graphentheorie Inhalt 3.1 3.1 Grundlagen 3.2 3.2 Das Das Königsberger Brückenproblem 3.3 3.3 Bäume 3.4. 3.4. Planare Graphen 3.5 3.5 Färbungen Seite 2 3.1 Grundlagen Definition. Ein Ein Graph besteht aus

Mehr

IV. BUCH: RAUM MIT. 8a. Die ARCHIMEDISCHEN. 1

IV. BUCH: RAUM MIT. 8a. Die ARCHIMEDISCHEN.  1 IV. BUCH: RAUM MIT n-dimensionen 8a. Die ARCHIMEDISCHEN www.udo-rehle.de 1 Archimedische Körper Zu den archimedischen Körpern gelangt man durch diverses Abschneiden der Ecken bei den platonischen Körpern.

Mehr

BUCH IV: RAUM MIT. 10a. Die JOHNSON

BUCH IV: RAUM MIT. 10a. Die JOHNSON BUCH IV: RAUM MIT n-dimensionen 10a. Die JOHNSON Johnsonkörper Neben den 5 Platonischen Körpern und den 13 Archimedischen Körpern sind es die 92 aus nur regelmäßigen Vielecken aufgebaute konvexe sog. Johnson-Körper,

Mehr

4.22 Buch XI der Elemente

4.22 Buch XI der Elemente 4.22 Buch XI der Elemente In Buch XI werden die Grundbegriffe der räumlichen Geometrie eingeführt und für viele Propositionen aus den Büchern I und VI die entsprechende dreidimensionale Aussagen bewiesen.

Mehr

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $

Mathematische Probleme, SS 2013 Montag $Id: convex.tex,v /10/22 15:58:28 hk Exp $ $Id: convex.tex,v 1.12 2013/10/22 15:58:28 hk Exp $ 3 Konvexgeometrie 3.1 Konvexe Polyeder Wir hatten einen konvexen Polyeder P im R n als die konvexe Hülle von endlich vielen Punkten definiert, wobei

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde

Mehr

4 Färbungen Begriffe Komplexität Greedy-Algorithmus Knotenreihenfolgen Das 4-Farben-Problem...

4 Färbungen Begriffe Komplexität Greedy-Algorithmus Knotenreihenfolgen Das 4-Farben-Problem... Inhaltsverzeichnis 4 Färbungen 41 4.1 Begriffe....................... 41 4.2 Komplexität..................... 42 4.3 Greedy-Algorithmus................ 42 4.4 Knotenreihenfolgen................. 43 4.5

Mehr

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. ein Problem vor der Haustür 3

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. ein Problem vor der Haustür 3 Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben Übersicht vom Problem zur Theorie 0. Juni 008 0. Juni 008 Martin Oellrich die Idee weiter denken MathematikerIn werden? Gibt es einen

Mehr

durch Einfügen von Knoten konstruiert werden kann.

durch Einfügen von Knoten konstruiert werden kann. Satz von Kuratowski Definition Unterteilung eines Graphen Sei G = (V, E) und e = {u, v} E. 1 Das Einfügen eines neuen Knoten w in die Kante e führt zum Graphen G = (V {w}, E \ e {{u, w}, {w, v}}). 2 Der

Mehr

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14 KARL-FRANZENS-UNIVERSITÄT GRAZ Seminar aus Reiner Mathematik Die Museumswächter Krupic Mustafa Wintersemester 2013/14 Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 Einleitung 3 2 Museumswächter-Satz 6 2.1

Mehr

Was ist ein Kaleidozyklus?

Was ist ein Kaleidozyklus? Polyeder und ihre Euler-Charakteristik Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten

Mehr

Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen

Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen Bernd Döring Wege, Plätten, Färben Vom Problem zur Theorie der Graphen Bernd Döring, 2002-2005 Bernd Döring Johannes-Althusius-Gymnasium Früchteburger Weg 28 26721 Emden - 2 - Inhaltsverzeichnis 0. Einleitung

Mehr

5 Graphen und Polyeder

5 Graphen und Polyeder 5 Graphen und Polyeder 5.1 Graphen und Eulersche Polyederformel Ein Graph besteht aus einer Knotenmenge V (engl. vertex) und einer Kantenmenge E (engl. edge). Anschaulich verbindet eine Kante zwei Knoten,

Mehr

Eulerscher Polyedersatz

Eulerscher Polyedersatz Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Eulerscher Polyedersatz Beweis durch planare Graphen und Anwendung auf platonische Körper Die oben abgebildete Briefmarke wurde

Mehr

Reguläre Polyeder. im Wissenschaftssommer Leipzig, 1. Juli

Reguläre Polyeder. im Wissenschaftssommer Leipzig, 1. Juli Reguläre Polyeder Vortrag von Dr. Hans-Gert Gräbe, apl. Professor für Informatik, Univ. Leipzig, und Leipziger Schülergesellschaft für Mathematik (LSGM) e.v. im Wissenschaftssommer Leipzig, 1. Juli 2008

Mehr

Gegenstände der Geometrie

Gegenstände der Geometrie Gegenstände der Geometrie Inhalt Quadrat Kreis Würfel Das Das Pentagramm Parkette --- --- Seite 2 1. 1. Das Quadrat Gerade Linien in in der der Natur? Lichtstrahlen, fallende Körper, Wasseroberfläche,

Mehr

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn 1. Geschichte - Frage kommt Mitte des 19 Jahrhunderts auf Wie viele Farben benötigt man um eine Karte

Mehr

Definition : Diechromatische Zahl eines Graphen G ist die kleinste Anzahl chromatische Zahl von Farben für eine zulässige Färbung.

Definition : Diechromatische Zahl eines Graphen G ist die kleinste Anzahl chromatische Zahl von Farben für eine zulässige Färbung. 4 Definition : Eine zulässige Färbung ist eine Färbung der Knoten des ( un- zulässige Färbung gerichteten ) Graphen, so daß je zwei adjazente Knoten verschiedene Farben haben. Trivial ist, daß n verschiedene

Mehr

Beweise und Widerlegungen

Beweise und Widerlegungen Beweise und Widerlegungen Alberto Abbondandolo Ruhr-Universität Bochum Tag der offenen Tür 2015 Einige Polyeder Einige Polyeder V = 4, S = 6, F = 4 V = 8, S = 12, F = 6 Einige Polyeder V = 4, S = 6, F

Mehr

Reguläre Polyeder. Vortrag von Prof. Hans-Gert Gräbe, Uni Leipzig. im Mathespezialistencamp der LSGM 22. Juli 2006, Ilmenau

Reguläre Polyeder. Vortrag von Prof. Hans-Gert Gräbe, Uni Leipzig. im Mathespezialistencamp der LSGM 22. Juli 2006, Ilmenau Reguläre Polyeder Vortrag von Prof. Hans-Gert Gräbe, Uni Leipzig im Mathespezialistencamp der LSGM 22. Juli 2006, Ilmenau export(plot): Die fünf Platonischen Körper plot(canvas(layout=horizontal,width=16*unit::cm,

Mehr

Fußbälle, platonische und archimedische Körper

Fußbälle, platonische und archimedische Körper Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?

Mehr

Bastelbogen platonische Körper

Bastelbogen platonische Körper E s gibt in der Geometrie einige wenige Körper, die die größtmögliche Symmetrie besitzen. Sie wurden nach dem griechischen Philosophen Platon (428-348 v. Chr.) benannt und heißen deswegen platonische Körper.

Mehr

Körper kennen lernen Station 1

Körper kennen lernen Station 1 Körper kennen lernen Station 1 Aufgabe 1.1) Der kleine Lars hat mit Bauklötzen eine Stadt nachgebaut. Welche Teile (geometrische Körper) hat er dabei verwendet? Fertigt eine Liste an. Aufgabe 1.2) Viele

Mehr

Was und wie zählt man im Alltag und in der modernen Mathematik?

Was und wie zählt man im Alltag und in der modernen Mathematik? Was und wie zählt man im Alltag und in der modernen Mathematik? Wolfgang Lück (Bonn) Greifswald Januar 2014 Hinweis Dies ist keine Vorlesung. Dies ist ein interaktiver Vortrag. Mitmachen und Mitdenken

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

Färbungen auf Graphen

Färbungen auf Graphen Färbungen auf Graphen Robert Siegfried Seminar Algorithmische Graphentheorie FH Wedel, 26.06.2003 Agenda Einleitung Definitionen Färben von Landkarten Anwendungsbeispiele Algorithmen Folie 2 Einleitung

Mehr

Von den Kanten von Gewicht 4 wird nur noch eine ausgewählt, die zu dem letzten nicht ausgewählten Knoten führt: 1. Juni

Von den Kanten von Gewicht 4 wird nur noch eine ausgewählt, die zu dem letzten nicht ausgewählten Knoten führt: 1. Juni CHAPTER. GRAPHEN.. B Ä UME.. Bäume Ein schlichter Graph ohne Kreise heisst Wald, ist er noch zusätzlich zusammenhängend so wird er Baum genannt. Bevor wir Bäume genauer beschreiben ein kleines LEMMA...

Mehr

Die Platonischen Körper

Die Platonischen Körper Wie viele Platonische Körper gibt es? Der griechische Philosoph Platon (427-348/347 v. Chr.) beschrieb die regelmässigen, geometrischen Körper im Dialog Timaios. Es ist leicht nachzuweisen, dass es nur

Mehr

Einbettung kombinatorischer Mannigfaltigkeiten

Einbettung kombinatorischer Mannigfaltigkeiten MN Seminar Einbettung kombinatorischer Mannigfaltigkeiten Hochschule Darmstadt Fachbereich MN Torsten-Karl Strempel 24.11.2009 Geometrie Kombinatorik Topologie Punkt Strecke Fläche Volumen 24.11.2009 Strempel

Mehr

Seite Universität Zürich Mathematisch-Naturwissenschaftliche Fakultät

Seite Universität Zürich Mathematisch-Naturwissenschaftliche Fakultät Präsentationen von Flächen Seite 1 Das Möbius-Band A. F. Möbius 1790 1868 Astronom in Leipzig Seite 2 Wir stellen ein Möbius-Band aus einem Papierstreifen her... 1 Seite 3 2 3 Seite 4 4 Seite 5 Wir zerschneiden

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

3. Vorlesung. Die Existenz des Pentagons. (*)

3. Vorlesung. Die Existenz des Pentagons. (*) 3. Vorlesung. ie Existenz des Pentagons. (*) In dieser Vorlesung werden wir sehen wie die Griechen bewiesen haben, dass es das Pentagon wirklich gibt. ieser eweis ist schon recht anspruchsvoll. So anspruchsvoll,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Boris Springborn, Martin von Gagern Projektive Geometrie, SS Lösungen zu Aufgabenblatt 3. Mai ) Präsenzaufgaben Aufgabe. Drei Kreise In dieser

Mehr

Drei Anwendungen der Eulerschen Polyederformel

Drei Anwendungen der Eulerschen Polyederformel Drei Anwendungen der Eulerschen Polyederformel Seminar aus Reiner Mathematik Viktoria Weißensteiner 04. Dezember 2013 Inhaltsverzeichnis 1 Einleitung 2 2 Vorbereitende Theorie 3 2.1 ebene Graphen..........................

Mehr

Stereometrie. Rainer Hauser. Dezember 2010

Stereometrie. Rainer Hauser. Dezember 2010 Stereometrie Rainer Hauser Dezember 2010 1 Einleitung 1.1 Beziehungen im Raum Im dreidimensionalen Euklid schen Raum sind Punkte nulldimensionale, Geraden eindimensionale und Ebenen zweidimensionale Unterräume.

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Wenn wir die vorstehenden Kugelteile abschruppen, erhalten wir einen Würfel.

Wenn wir die vorstehenden Kugelteile abschruppen, erhalten wir einen Würfel. Hans Walser, [20110903a] Kugeln als Baumaterial 1 Worum geht es? Es werden einige bekannte Figuren als Kugelpackungen dargestellt. Dabei wird die dichteste Kugelpackung verwendet. Statt Kugeln können auch

Mehr

3 Planare Graphen die Eulersche Polyederformel

3 Planare Graphen die Eulersche Polyederformel 3 Planare Graphen die Eulersche Polyederformel Planare Graphen sind solche Graphen, die sich ohne Überkreuzungen von Kanten in eine Ebene zeichnen lassen. Wir nehmen hierbei an, dass die Knoten als Punkte

Mehr

Achilles und die Schildkröte Sommersemester 2008

Achilles und die Schildkröte Sommersemester 2008 Achilles und die Schildkröte Sommersemester 2008 Färbbarkeit planarer Graphen Alexander Damarowsky 20.05.2008 V6, 15.05.2008 Problemstellung /Ziel des Vortrags: Wie viele Farben werden benötigt, um jeden

Mehr

Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten.

Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten. 11 Aussagen, Beweise, vollständige Induktion 13 Aus dem binomischen Lehrsatz ergeben sich sofort interessante Beziehungen zwischen den Binomialkoeffizienten 114 Folgerung n ( ) n = (1+1) n = 2 n und k

Mehr

Platonische Körper. 1 Die fünf platonischen Körper

Platonische Körper. 1 Die fünf platonischen Körper Platonische Körper Vortrag von Annamaria Jahn Im Proseminar Lehramt am 11.1.006 Kontakt: annamaria.jahn@online.de 1 Die fünf platonischen Körper Ein platonischer Körper ist ein Polyeder mit zueinander

Mehr

REGULÄRE UND SEMIREGULÄRE POLYTOPE

REGULÄRE UND SEMIREGULÄRE POLYTOPE REGULÄRE UND SEMIREGULÄRE POLYTOPE regulare und semireguläre polytope ANDREAS PAFFENHOLZ FU Berlin Germany Eulersche Polyederformel Theorem Für ein Polytop mit Ecken Eulersche Polyederformel Kanten und

Mehr

Naiver Algorithmus für Hamiltonkreis

Naiver Algorithmus für Hamiltonkreis Naiver Algorithmus für Hamiltonkreis Algorithmus HAMILTON EINGABE: G = ([n], E) in Adjazenzmatrixdarstellung 1 Für alle Permutationen π : [n] [n]. 1 Falls (π(1), π(2),..., π(n)) ein Kreis in G ist, AUSGABE

Mehr

1.1. Aussagen, Beweise, vollständige Induktion 15

1.1. Aussagen, Beweise, vollständige Induktion 15 11 Aussagen, Beweise, vollständige Induktion 15 Man kann die Methode der vollständigen Induktion auch auf vielfältige Weise einsetzen, um geometrische Aussagen zu beweisen Hier ein prominentes Beispiel

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /06/18 11:41:08 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: convex.tex,v /06/18 11:41:08 hk Exp $ $Id: convex.tex,v 1.25 2015/06/18 11:41:08 hk Exp $ 3 Konvexgeometrie 3.3 Automorphismengruppen platonischer Körper Wir behandeln gerade die Symmetrien platonischer Körper, ist P ein platonischer Körper

Mehr

Diskrete Strukturen. wissen leben WWU Münster

Diskrete Strukturen. wissen leben WWU Münster MÜNSTER Diskrete Strukturen Dietmar Lammers Vorlesung SoSe 2010 MÜNSTER Diskrete Strukturen 269/260 MÜNSTER Diskrete Strukturen 270/260 Im WLAN gibt es 6 Frequenzen und die AccessPoints müssen so verteilt

Mehr

Symmetrie im Raum An Hand der platonischen Körper

Symmetrie im Raum An Hand der platonischen Körper Symmetrie im Raum An Hand der platonischen Körper Simon Steurer 25.6.2013 Historisches Platonische Körper Vorüberlegungen Oktaeder Hexaeder Tetraeder Dodekaeder & Ikosaeder Historisches benannt nach Platon

Mehr

Beispiellösungen zu Blatt 55

Beispiellösungen zu Blatt 55 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 55 Karsten hat zehn Zahnräder, je eines mit 7, 1,, 10, 179, 2, 299, 0,

Mehr

Hans Walser Kantenmodelle Kantenmodelle der platonischen Körper.

Hans Walser Kantenmodelle Kantenmodelle der platonischen Körper. Hans Walser Kantenmodelle Kantenmodelle der platonischen Körper. Würfelmodell 1 Würfelmodell 1.1 Bauteil Wir bauen ein Kantenmodell mit einem Bauteil pro Kante, insgesamt also 12 Bauteilen. In der folgenden

Mehr

Keine Wurstkatastrophe

Keine Wurstkatastrophe 1 Keine Wurstkatastrophe In der Jännerausgabe von Spektrum der Wissenschaft (Heft 1.19) auf S.77 ist ein Artikel von Florian Freistetter mit dem Titel die Wurstkatastrophe erschienen. Im Artikel wird die

Mehr

Lösungsskizzen zur Präsenzübung 08

Lösungsskizzen zur Präsenzübung 08 Lösungsskizzen zur Präsenzübung 08 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 015/016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 07. Februar 016 von:

Mehr

Flächeninhalt, Volumen und Integral

Flächeninhalt, Volumen und Integral Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1

Mehr

Tag der Mathematik 2017

Tag der Mathematik 2017 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen.

Mehr

MaLa A.Pruchnewski...Klasse 9/10...1

MaLa A.Pruchnewski...Klasse 9/10...1 MaLa - 008...............A.Pruchnewski...............Klasse 9/10...............1 Graphentheorie Sei G = (V, E) ein Graph mit der Knotenmenge V und der Kantenmenge E. Der Knotengrad d(v) eines Knoten v

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? 1 Königsberger Brückenproblem Im Jahre 1736 Leonhard Euler löste das Problem allgemein

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

BUCH IV: RAUM MIT. 1. Einführung VIERTE DIMENSION

BUCH IV: RAUM MIT. 1. Einführung VIERTE DIMENSION BUCH IV: RAUM MIT n-dimensionen 1. Einführung VIERTE DIMENSION Wir verlassen nun die uns vertrauten Sphären und begeben und in die Welt der vier Dimensionen! 1 1 Sind Sie bereit für die viere Dimension?

Mehr

Beispiellösungen zu Blatt 50

Beispiellösungen zu Blatt 50 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Beispiellösungen zu Blatt 50 Aufgabe 1 Finde alle natürlichen Zahlen mit der Eigenschaft, dass die Differenz

Mehr

Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik Platonische Körper

Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik Platonische Körper Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS: Klassische Probleme der Mathematik Leitung: Prof. Harald Upmeier, Benjamin Schwarz Referentin: Irina Kaiser WS 2009/2010 Platonische

Mehr

Kantengraphen und Planare Graphen. Seminararbeit

Kantengraphen und Planare Graphen. Seminararbeit Kantengraphen und Planare Graphen Seminararbeit in Mathematisches Seminar für LAK 621.378 SS 2018 vorgelegt von Anna Maria Gärtner bei: Baur, Karin, Univ.-Prof. Dr.phil. Graz, 2018 Inhaltsverzeichnis 1

Mehr

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296 Kapitel 7 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 256 / 296 Inhalt Inhalt 7 Färbungen Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 257 / 296 Jordankurve Zentrale Frage

Mehr

Eine geometrische Reise in höhere Dimensionen. Thilo Rörig. DFG Research Center MATHEON Mathematics for key

Eine geometrische Reise in höhere Dimensionen. Thilo Rörig. DFG Research Center MATHEON Mathematics for key Eine geometrische Reise in höhere Dimensionen Thilo Rörig DFG Research Center MATHEON Mathematics for key Die Reiseplanung Anwendungen Optimierung Dimension Visualisierung Geometrie 2 Anwendungen Linearen

Mehr

Sudoku und Mathematik

Sudoku und Mathematik Sudoku und Mathematik Ulrich Görtz http://www.esaga.uni-due.de/ulrich.goertz 24. September 2010 1 Einführung 2 Lösungsstrategien 3 Färben von Graphen Sudoku Sudoku erfunden 1979 als number place von Howard

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

1 Blasencluster und Polyeder

1 Blasencluster und Polyeder 1 Blasencluster und Polyeder John M. Sullivan Technische Universität Berlin Abbildung 1.1. Eine Seifenblase ist deswegen eine Sphäre (eine runde Kugel), weil diese Form den geringsten Flächeninhalt hat.

Mehr

Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? Graphentheorie Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert? Königsberger Brückenproblem Gibt es in Königsberg einen Spaziergang, bei dem man

Mehr

Musterlösung Serie 3. ITET Diskrete Mathematik WS 02/03 R. Suter. d) Für beliebige a, b G gilt

Musterlösung Serie 3. ITET Diskrete Mathematik WS 02/03 R. Suter. d) Für beliebige a, b G gilt ITET Diskrete Mathematik WS 2/3 R. Suter. a) r s = r + )s + ). Assoziativität: Ist erfüllt, denn Musterlösung Serie 3 r s) t = r + )s + ) + ) t + ) = r + )s + )t + ) = r + ) s + )t + ) + ) = r s t) Neutrales

Mehr

Das Hyperdodekaeder. Einleitung

Das Hyperdodekaeder. Einleitung geometricdesign Einleitung Die fünf Platonischen Körper können nach ihren Proportionen in zwei Gruppen eingeteilt werden: 1. Die Vertreter der mineralischen Natur sind Würfel, Oktaeder und Tetraeder. An

Mehr

Die Platonischen Körper und ihre Sternformen im

Die Platonischen Körper und ihre Sternformen im Die Platonischen Körper und ihre Sternformen im Kemperschen Würfel Der Kempersche Würfel Umklappen, Umstülpen Für die Abwicklung der sechs Flächen eines Würfels gibt es 11 verschiedene Möglichkeiten. Wir

Mehr

Tag der Mathematik 2017

Tag der Mathematik 2017 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Punkteverteilung Aufgabe G1 mit Aufgabe G1 Eine Urne enthält blaue und rote Kugeln. Vor der Ziehung ist die Wahrscheinlichkeit

Mehr