Beweise und Widerlegungen

Größe: px
Ab Seite anzeigen:

Download "Beweise und Widerlegungen"

Transkript

1 Beweise und Widerlegungen Alberto Abbondandolo Ruhr-Universität Bochum Tag der offenen Tür 2015

2 Einige Polyeder

3 Einige Polyeder V = 4, S = 6, F = 4 V = 8, S = 12, F = 6

4 Einige Polyeder V = 4, S = 6, F = 4 V = 8, S = 12, F = 6 = 6 V = 9, S = 16, F = 9 V = 16, S = 24, F = 10

5 Einige Polyeder E = 4, K = 6, F = 4 V = 4, S = 6, F = 4 V = 8, S = 12, F = 6 = 6 V = 9, S = 16, F = 9 V = 16, S = 24, F = 10

6 Einige Polyeder E = 4, K = 6, F = 4 E = 8, K = 12, F = 6 V = 4, S = 6, F = 4 V = 8, S = 12, F = 6 = 6 V = 9, S = 16, F = 9 V = 16, S = 24, F = 10

7 Einige Polyeder E = 4, K = 6, F = 4 E = 8, K = 12, F = 6 V = 4, S = 6, F = 4 V = 8, S = 12, F = 6 E = 9, K = 16, F = 9 = 6 V = 9, S = 16, F = 9 V = 16, S = 24, F = 10

8 Einige Polyeder E = 4, K = 6, F = 4 E = 8, K = 12, F = 6 V = 4, S = 6, F = 4 V = 8, S = 12, F = 6 E = 9, K = 16, F = 9 E = 16, K = 24, F = 10 = 6 V = 9, S = 16, F = 9 V = 16, S = 24, F = 10

9 Eulersche Polyederformel

10 Eulersche Polyederformel E K + F = 2

11 Eulersche Polyederformel E K + F = 2

12 Eulersche Polyederformel E K + F = 2

13 Eulersche Polyederformel E K + F = 2

14 Eulersche Polyederformel E K + F = 2

15 Eulersche Polyederformel E K + F = 2

16 Eulersche Polyederformel E K + F = 2

17 Widerlegung I

18 Widerlegung I Die Eulersche Polyederformel ist falsch!

19 Widerlegung I Die Eulersche Polyederformel ist falsch! E = 16, K = 24, F = 12 und damit E K + F = 4. V = 16, S = 24, F = 12

20 Widerlegung I Die Eulersche Polyederformel ist falsch! V = 16, S = 24, F = 12 E = 16, K = 24, F = 12 und damit E K + F = 4. Definition 1. Ein Polyeder ist eine Teilmenge des dreidimensionalen Raumes, welche ausschließlich von geraden Flächen (Ebenen) begrenzt wird. [Wikipedia, 2015]

21 Widerlegung I Die Eulersche Polyederformel ist falsch! E = 16, K = 24, F = 12 und damit E K + F = 4. V = 16, S = 24, F = 12 Definition 1. Ein Polyeder ist eine Teilmenge des dreidimensionalen Raumes, welche ausschließlich von geraden Flächen (Ebenen) begrenzt wird. [Wikipedia, 2015] Definition 2. Ein Polyeder ist eine Fläche, die aus Vielecken besteht.

22 Widerlegung II

23 Widerlegung II Die Eulersche Polyederformel ist immer noch falsch!

24 Widerlegung II Die Eulersche Polyederformel ist immer noch falsch! E = 6, K = 11, F = 8 und damit E K + F = 3. V = 6, S = 11, F = 8

25 Widerlegung II Die Eulersche Polyederformel ist immer noch falsch! V = 6, S = 11, F = 8 E = 6, K = 11, F = 8 und damit E K + F = 3. Definition 3. Ein Polyeder ist eine Fläche, die aus Vielecken besteht, so dass jede Kante zu genau zwei Vielecken gehört.

26 Widerlegung III

27 Widerlegung III Die Eulersche Polyederformel ist immer noch falsch!

28 Widerlegung III Die Eulersche Polyederformel ist immer noch falsch! E = 9, K = 16, F = 10 und E K + F = 3. V = 9, S = 16, F = 10

29 Widerlegung III Die Eulersche Polyederformel ist immer noch falsch! E = 9, K = 16, F = 10 und E K + F = 3. V = 9, S = 16, F = 10 Definition 4. Ein Polyeder ist eine Fläche, die aus Vielecken besteht, so dass jede Kante zu genau zwei Vielecken gehört. Ferner muss die folgende Bedingung gelten: es ist möglich zwei beliebige Punkte, die zu zwei Vielecken gehören, durch einen Weg zu verbinden, der durch keine Ecke läuft. [Hilbert, Cohn-Vossen, Anschauliche Geometrie, 1932].

30 Widerlegung IV

31 Widerlegung IV Die anschauliche Geometrie kann trügerisch sein:

32 Widerlegung IV Die anschauliche Geometrie kann trügerisch sein: E = 25, K = 48, F = 24 und E K + F = 1. V = 25, S = 48, F = 24

33 Zwei weitere Gegenbeispiele

34 Zwei weitere Gegenbeispiele E = 16, K = 32, F = 16 E = 16, K = 24, F = 11 V = 16, S = 32, F = 16 V = 16, S = 24, F = 11

35 Beweiserzeugte Definitionen

36 Beweiserzeugte Definitionen Definition 5. Ein Polyeder heißt schön, falls es nach der Entfernung eines Vielecks auf der Ebene ausgebreitet werden kann.

37 Beweiserzeugte Definitionen Definition 5. Ein Polyeder heißt schön, falls es nach der Entfernung eines Vielecks auf der Ebene ausgebreitet werden kann.

38 Beweiserzeugte Definitionen Definition 5. Ein Polyeder heißt schön, falls es nach der Entfernung eines Vielecks auf der Ebene ausgebreitet werden kann. Definition 6. Ein Vieleck heißt einfach, falls jede Diagonale es in zwei Teile unterteilt.

39 Beweiserzeugte Definitionen Definition 5. Ein Polyeder heißt schön, falls es nach der Entfernung eines Vielecks auf der Ebene ausgebreitet werden kann. Definition 6. Ein Vieleck heißt einfach, falls jede Diagonale es in zwei Teile unterteilt. Theorem. Besteht ein schönes Polyeder aus einfachen Vielecken, so gilt: E K + F = 2.

40 Lesetipps

41 Lesetipps I. Lakatosh, Beweise und Widerlegungen - Die Logik mathematischer Entdeckungen, 1976 (letzte Aulage: Friedr. Vieweg & Sohn 1990).

42 Lesetipps I. Lakatosh, Beweise und Widerlegungen - Die Logik mathematischer Entdeckungen, 1976 (letzte Aulage: Friedr. Vieweg & Sohn 1990). R. Courant, H. Robbins, Was ist Mathematik?, 1941 (letzte Auflage: Springer-Verlag 2000)

43 Lesetipps I. Lakatosh, Beweise und Widerlegungen - Die Logik mathematischer Entdeckungen, 1976 (letzte Aulage: Friedr. Vieweg & Sohn 1990). R. Courant, H. Robbins, Was ist Mathematik?, 1941 (letzte Auflage: Springer-Verlag 2000) D. Hilbert, S. Cohn-Vossen, Anschauliche Geometrie, 1932 (letzte Auflage: Springer-Verlag 1996).

Körper zum Selberbauen Polydron

Körper zum Selberbauen Polydron Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist

Mehr

Ein Turnierplan mit fünf Runden

Ein Turnierplan mit fünf Runden Mathematik I für Informatiker Graphen p. 1 Ein Turnierplan mit fünf Runden c b a c b a c b a c b a c b a d e d e d e d e d e Mathematik I für Informatiker Graphen p. 2 Definition: Graph Ein (schlichter)

Mehr

Polyeder, Konvexität, Platonische und archimedische Körper

Polyeder, Konvexität, Platonische und archimedische Körper Unter einem Polyeder verstehen wir einen zusammenhängenden Teil des dreidimensionalen Raumes der durch Polygone begrenzt wird. Seine Oberfläche besteht also aus Punkten (Ecken genannt), Strecken (Kanten

Mehr

2 Eulersche Polyederformel und reguläre Polyeder

2 Eulersche Polyederformel und reguläre Polyeder 6 2 Eulersche Polyederformel und reguläre Polyeder 2.1 Eulersche Polyederformel Formal besteht ein Graph aus einer Knotenmenge X und einer Kantenmenge U. Jede Kante u U ist eine zweielementige Teilmenge

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

Drei Anwendungen der Eulerschen Polyederformel

Drei Anwendungen der Eulerschen Polyederformel Drei Anwendungen der Eulerschen Polyederformel Seminar aus Reiner Mathematik Viktoria Weißensteiner 04. Dezember 2013 Inhaltsverzeichnis 1 Einleitung 2 2 Vorbereitende Theorie 3 2.1 ebene Graphen..........................

Mehr

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn 1. Geschichte - Frage kommt Mitte des 19 Jahrhunderts auf Wie viele Farben benötigt man um eine Karte

Mehr

Darstellende Geometrie mit CAD Dreidimensionales Konstruieren

Darstellende Geometrie mit CAD Dreidimensionales Konstruieren Darstellende Geometrie mit CAD Dreidimensionales Konstruieren Klaus Holländer FH Giessen-Friedberg Zu den klassischen Werkzeugen der Darstellenden Geometrie, dem Zirkel und Lineal, ist vor etwa zwanzig

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

Der Vier-Farben-Satz

Der Vier-Farben-Satz , Samuel Hetterich, Felicia Raßmann Goethe-Universität Frankfurt, Institut für Mathematik 21.Juni 2013 Wieviele Farben braucht man zum Färben einer Landkarte? Spielregeln Länder mit einer gemeinsamen Grenze

Mehr

Mathematische Theorien im kulturellen Kontext. Fläche eines Parabelsegments nach Archimedes

Mathematische Theorien im kulturellen Kontext. Fläche eines Parabelsegments nach Archimedes Seminar: Mathematische Theorien im kulturellen Kontext Thema: Fläche eines Parabelsegments nach Archimedes von: Zehra Betül Koyutürk Studiengang Angewandte Mathematik 27.01.2016 ARCHIMEDES Über das Leben

Mehr

Das Ikosaeder. 1 Grundlagen: Das gleichseitige Dreieck

Das Ikosaeder. 1 Grundlagen: Das gleichseitige Dreieck Das Ikosaeder Walter Fendt 27. Februar 2005 1 Grundlagen: Das gleichseitige Dreieck Satz 1 Für ein gleichseitiges Dreieck mit Seitenlänge a gelten folgende Formeln: Höhe h = a 3 2 Umkreisradius r = a 3

Mehr

11. Geometrische Extremalprobleme I

11. Geometrische Extremalprobleme I 11. Geometrische Extremalprobleme I Die hier behandelten geometrischen Extremalprobleme beruhen auf der Dreiecksungleichung Satz 1. Sind A, B, C drei Punkte der euklidischen Ebene mit A B, dann ist (1)

Mehr

Das Dodekaeder. 1 Grundlagen: Das regelmäßige Fünfeck

Das Dodekaeder. 1 Grundlagen: Das regelmäßige Fünfeck Das Dodekaeder Walter Fendt. Februar 005 1 Grundlagen: Das regelmäßige Fünfeck Satz 1 Für ein regelmäßiges Fünfeck mit Seitenlänge a gelten folgende Formeln: Höhe h = a 5 + 5 Umkreisradius r = a 10(5 +

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

Triangulierungen von Punktmengen und Polyedern

Triangulierungen von Punktmengen und Polyedern Triangulierungen von Punktmengen und Polyedern Vorlesung im Sommersemester 2000 Technische Universität Berlin Jörg Rambau 21.06.2000 Flipdefizit 10 In diesem Kapitel starten wir die Untersuchung von Triangulierungen,

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Logik in der Schule. Bildungsplan 2004 (Zitat:) Begründen. Elementare Regeln und Gesetze der Logik kennen und anwenden

Logik in der Schule. Bildungsplan 2004 (Zitat:) Begründen. Elementare Regeln und Gesetze der Logik kennen und anwenden 1 Nr.2-21.04.2016 Logik in der Schule Bildungsplan 2004 (Zitat:) Begründen Elementare Regeln und Gesetze der Logik kennen und anwenden Begründungstypen und Beweismethoden der Mathematik kennen, gezielt

Mehr

Grundlagen der Mathematik WS12/13 Vortragsthemen

Grundlagen der Mathematik WS12/13 Vortragsthemen Grundlagen der Mathematik WS12/13 Vortragsthemen Themenblock 1: Mathematik im Alltag 1. Der Gregorianische Kalender und die Kalenderformel Entstehung und Aufbau des Gregorianischen Kalenders Wie berechnet

Mehr

Euklid ( v. Chr.) Markus Wurster

Euklid ( v. Chr.) Markus Wurster Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Geometrische Grundbegriffe Euklid (365 300 v. Chr.) Punkte und Linien Zwei Linien Markus Wurster Markus Wurster Geometrische Grundbegriffe Winkel Euklid

Mehr

5 Graphen und Polyeder

5 Graphen und Polyeder 5 Graphen und Polyeder 5.1 Graphen und Eulersche Polyederformel Ein Graph besteht aus einer Knotenmenge V (engl. vertex) und einer Kantenmenge E (engl. edge). Anschaulich verbindet eine Kante zwei Knoten,

Mehr

Meisterklasse Dresden 2014 Olaf Schimmel

Meisterklasse Dresden 2014 Olaf Schimmel Meisterklasse Dresden 2014 Olaf Schimmel 1 Was sind Parkettierungen? 2 Warum Winkel wichtig sind 3 Platonische Parkette 4 Archimedische Parkette 5 Welche Kombination von Vielecken erfüllen die Winkelbedingung?

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

1. Einleitung wichtige Begriffe

1. Einleitung wichtige Begriffe 1. Einleitung wichtige Begriffe Da sich meine besondere Lernleistung mit dem graziösen Färben (bzw. Nummerieren) von Graphen (speziell von Bäumen), einem Teilgebiet der Graphentheorie, beschäftigt, und

Mehr

Am kleinsten, größten, schnellsten - Extreme in der Mathematik

Am kleinsten, größten, schnellsten - Extreme in der Mathematik Am kleinsten, größten, schnellsten - Extreme in der Mathematik Tag der Mathematik Carl von Ossietzky Universität Oldenburg Daniel Grieser 21. November 2012 Überblick Extrema in der Natur Extremalprobleme

Mehr

Königsberger Brückenproblem

Königsberger Brückenproblem Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS: Klassische Probleme der Mathematik Leitung: Prof. Dr. Harald Upmeier, Benjamin Schwarz Referentin: Lene Baur WS 2009/2010 Königsberger

Mehr

Krümmung in der Mathematik und Physik. Relativitätstheorie im Alltag

Krümmung in der Mathematik und Physik. Relativitätstheorie im Alltag Krümmung in der Mathematik und Physik Relativitätstheorie im Alltag Justus-Liebig-Universität Giessen Dr. Frank Morherr Was ist Krümmung? Gerade soll Krümmung Null haben. Prototyp Kreis - großer Radius,

Mehr

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier 4 Planare Graphen Bisher wurden Graphen abstrakt durch Mengen E und K und eine Abbildung ψ : K P(E) definiert. In diesem Kapitel beschäftigen wir uns mit einem Abschnitt der sogenannten topologischen Graphentheorie.

Mehr

Ruprecht-Karls-Universität Heidelberg Mathematisches Institut. Ausarbeitung des Vortrags: Irrationale Zahlen

Ruprecht-Karls-Universität Heidelberg Mathematisches Institut. Ausarbeitung des Vortrags: Irrationale Zahlen Ruprecht-Karls-Universität Heidelberg Mathematisches Institut Ausarbeitung des Vortrags: Irrationale Zahlen Proseminar: Überraschungen und Gegenbeispiele in der reellen Analysis Dr. Gudrun Thäter von Jan

Mehr

Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung

Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Mathematisches Institut II.06.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 3: Elementare Beweismethoden: Direkter Beweis,

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 Ähnlich wie Funktionen besitzen Relationen charakteristische Eigenschaften. Diese Eigenschaften definieren wie

Mehr

Aufgabensammlung zur algorithmischen Geometrie

Aufgabensammlung zur algorithmischen Geometrie 1 Aufgabensammlung zur algorithmischen Geometrie 2012WS Andreas Kriegl 1. Konvexe Hülle als Durchschnitt. Zeige, daß der Durchschnitt konvexer Mengen wieder konvex ist und somit die konvexe Hülle einer

Mehr

17 Grundbegriffe der Logik der Sprache PL

17 Grundbegriffe der Logik der Sprache PL 17 Grundbegriffe der Logik der Sprache PL Erinnerung Definition 11.1 Ein Satz A der Sprache AL ist genau dann logisch wahr, wenn sich allein aus der Bedeutung der in ihm vorkommenden logischen Ausdrücke

Mehr

Das Zebra-Buch zur Geometrie

Das Zebra-Buch zur Geometrie Springer-Lehrbuch Das Zebra-Buch zur Geometrie Bearbeitet von Ferdinand Verhulst, Sebastian Walcher 1st Edition. 2010. Taschenbuch. xii, 296 S. Paperback ISBN 978 3 642 05247 7 Format (B x L): 15,5 x 23,5

Mehr

Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik Platonische Körper

Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik Platonische Körper Philipps-Universität Marburg Fachbereich 12: Mathematik und Informatik PS: Klassische Probleme der Mathematik Leitung: Prof. Harald Upmeier, Benjamin Schwarz Referentin: Irina Kaiser WS 2009/2010 Platonische

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Die Euler-Mascheroni-Konstante

Die Euler-Mascheroni-Konstante Die Euler-Mascheroni-Konstante Niloufar Rahi Ausarbeitung zum Vortrag in Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Wenn von der

Mehr

Triangulierungen und Kartographie

Triangulierungen und Kartographie Triangulierungen und Kartographie Ein Einblick in geometrische und topologische Methoden Stefan Krauss, Clara Löh Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg 23. Juli 2014 Was verraten

Mehr

Beweis der Existenz von genau 5 platonischen Körpern anhand der Eulerschen Polyederformel

Beweis der Existenz von genau 5 platonischen Körpern anhand der Eulerschen Polyederformel Platonische Körper.nb 1 Beweis der xistenz von genau 5 platonischen Körpern anhand der ulerschen Polyederformel Daniel Bauernfeind, 0355507 Dietmar Kerbl, 0355750 Dodekaeder Tetraeder Ikosaeder Würfel

Mehr

Über die regelmäßigen Platonischen Körper

Über die regelmäßigen Platonischen Körper Hermann König, Mathematisches Seminar Studieninformationstage an der Universität Kiel Über die regelmäßigen Platonischen Körper Winkelsumme im n-eck Zerlegung eines ebenen n-ecks in (n-2) Dreiecke, oben

Mehr

Grundlagen der Planimetrie und Stereometrie

Grundlagen der Planimetrie und Stereometrie Überblick über die wichtigsten Formeln Inhaltsverzeichnis 1. Planimetrie Dreieck, Viereck, Vieleck, Kreis. Stereometrie.1. Ebenflächig begrenzte Körper Würfel, Quader, Prisma, Pyramide, Pyramidenstumpf,

Mehr

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Logik für Informatiker 1. Grundlegende Beweisstrategien Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Mathematisches Beweisen Mathematische ussagen - haben oft

Mehr

Vier-Farben-Vermutung (1)

Vier-Farben-Vermutung (1) Vier-Farben-Vermutung (1) Landkarten möchte man so färben, dass keine benachbarten Länder die gleiche Farbe erhalten. Wie viele Farben braucht man zur Färbung einer Landkarte? Vier-Farben-Vermutung: Jede

Mehr

Vorkurs Mathematik für Informatiker 6 Logik, Teil 2

Vorkurs Mathematik für Informatiker 6 Logik, Teil 2 6 Logik, Teil 2 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 6: Logik, Teil 2 1 Aussagenformen Aussage mit Parameter (zum Beispiel x) Aussage wahr oder falsch abhängig vom Parameter

Mehr

Mengen, Funktionen und Logik

Mengen, Funktionen und Logik Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Folie 1 /15 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 2. Die reellen Zahlen A. Filler Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2016

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Beweise und Beweisstrategien andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, September 5, 2015 Hinweis zu den Folien Diese Folien sind

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

Wie bügle ich ein Tischtuch? Prof. Dr. Uwe Jannsen

Wie bügle ich ein Tischtuch? Prof. Dr. Uwe Jannsen Auflösungen von Singularitäten, oder: Wie bügle ich ein Tischtuch? Prof. Dr. Uwe Jannsen (Universität Regensburg) Vortrag 10.12.2010 Bayerische Akademie der Wissenschaften Prof. Dr. Uwe Jannsen (Regensburg)

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 5 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 5 Reihen- Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen folge Die Schülerinnen und Schüler

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse -

Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - 1) Vorkenntnisse: Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - Im Rahmen der aktuellen Einheit wurden die folgenden Themen im Unterricht behandelt. Grundkonstruktionen mit Zirkel und Lineal;

Mehr

Polyeder und Platonische Körper

Polyeder und Platonische Körper Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17

Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17 Vorlesung Mathematik I für Wirtschaftswissenschaftler Universität Leipzig, WS 16/17 Prof. Dr. Bernd Kirchheim Mathematisches Institut kirchheim@math.uni-leipzig.de 1 / 1 Kapitel 1: Grundlagen 4 / 1 Kap.1

Mehr

Bachelorkurs Mathematik

Bachelorkurs Mathematik Bachelorkurs Mathematik Herausgegeben von Prof. Dr. Martin Aigner, Freie Universität Berlin, Deutschland Prof. Dr. Heike Faßbender, Technische Universität Braunschweig, Deutschland Prof. Dr. Jürg Kramer,

Mehr

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus

Mehr

Klasse 9b. Mathematische Überlegungen zum Fußball

Klasse 9b. Mathematische Überlegungen zum Fußball Klasse 9b Mathematische Überlegungen zum Fußball Was hat Mathe mit einem Fußball zu tun? Diese Frage beschäftigt nicht gerade viele Menschen, ausgenommen Mathelehrer und die Schüler der 9b. So zum Einstieg

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Logik auf Abwegen: Gödels Gottesbeweis

Logik auf Abwegen: Gödels Gottesbeweis Logik auf Abwegen: Gödels Gottesbeweis Fabian Graf 06.August 2004 Überblick Einführung Geschichte der Gottesbeweise Verschiedene Gottesbeweise Gödels Gottesbeweis Zusammenfassung Fabian Graf Logik auf

Mehr

Primzahlen und Pseudoprimzahlen

Primzahlen und Pseudoprimzahlen 1 Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 20. Tag der Mathematik 9. Mai 2015, Beuth Hochschule für Technik Berlin Primzahlen

Mehr

Das Problem der dreizehn Kugeln

Das Problem der dreizehn Kugeln Clemens Hauser Das Problem der dreizehn Kugeln Vortrag im Seminar für Didaktik der Mathematik an der Universität Freiburg 1.12.2009 Kepler (1611): Dichteste Kugelpackung (?) Kepler (1611): Dichteste Kugelpackung

Mehr

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN

KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Informationsblatt. zum Seminar zur Analysis WS Vortagsthemen. 1. π ist irrational. 2. e ist transzendent. 3. Die Keplerschen Gesetze

Informationsblatt. zum Seminar zur Analysis WS Vortagsthemen. 1. π ist irrational. 2. e ist transzendent. 3. Die Keplerschen Gesetze Informationsblatt zum Seminar zur Analysis WS 2008 Vortagsthemen 1. π ist irrational 2. e ist transzendent 3. Die Keplerschen Gesetze 4. Picard-Iteration 5. Der Fixpunktsatz von Brouwer 6. Die Euler-Chakteristik

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik Von Dr. Karl Bosch Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim 10., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis

Mehr

Induktive Definitionen

Induktive Definitionen Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Induktive Definitionen

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen?

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen? Einige Fragen Ziel: Wir suchen Antworten auf die folgenden Fragen: Wie kann man das intuitiv Berechenbare formal fassen? Was ist ein Algorithmus? Welche Indizien hat man dafür, dass ein formaler Algorithmenbegriff

Mehr

Wenn ich pro Sekunde eine natürliche Zahl aufzählen kann, kann ich in 2000 Sekunden alle natürlichen Zahlen aufsagen.

Wenn ich pro Sekunde eine natürliche Zahl aufzählen kann, kann ich in 2000 Sekunden alle natürlichen Zahlen aufsagen. Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Unendliche Mengen Immer eins mehr als du 1 Was ist unendlich? Michi sagt zu Anna: Wenn ich pro Sekunde eine natürliche Zahl aufzählen

Mehr

Körper kennen lernen Station 1

Körper kennen lernen Station 1 Körper kennen lernen Station 1 Aufgabe 1.1) Der kleine Lars hat mit Bauklötzen eine Stadt nachgebaut. Welche Teile (geometrische Körper) hat er dabei verwendet? Fertigt eine Liste an. Aufgabe 1.2) Viele

Mehr

Der Satz des Pythagoras. Kein Darwinscher Zufall

Der Satz des Pythagoras. Kein Darwinscher Zufall Der Satz des Pythagoras. Kein Darwinscher Zufall Detlef Dürr duerr@rz.mathematik.uni-muenchen.de 1. Mai 2012 1 Zahlen-Verhältnisse Die Grunderkenntnis der Gesetzmäßigkeit in der Natur ist Harmonie. Heute

Mehr

Fußbälle, platonische und archimedische Körper

Fußbälle, platonische und archimedische Körper Fußbälle, platonische und archimedische Körper Prof. Dr. Wolfram Koepf http://www.mathematik.uni-kassel.de/~koepf Was ist ein Fußball? Sepp Herberger: Der Ball ist rund. Ist also ein Fußball eine Kugel?

Mehr

Mengenlehre 1-E1. M-1, Lubov Vassilevskaya

Mengenlehre 1-E1. M-1, Lubov Vassilevskaya Mengenlehre 1-E1 M-1, Lubov Vassilevskaya Abb.: Schloss (Fragment), Fulda 1-E2 M-1, Lubov Vassilevskaya Abb.: Glöcken, Darstellung einer Menge Ohne es zu wissen begegnet jedes Kleinkind dem Prinzip der

Mehr

FIT Workshop Mathematik. Johanna Michor Fakultät für Mathematik

FIT Workshop Mathematik. Johanna Michor Fakultät für Mathematik FIT Workshop Mathematik Johanna Michor Fakultät für Mathematik 31. Januar 2012 (Fakultät für Mathematik) FIT 31. Januar 2012 1 / 36 Programm Teil 1: Das Studium der Mathematik an der Uni Wien Bachelor

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Kapitel 1: Aussagen, Mengen

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises 2 Der Beweis Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises Satz und Beweis Ein mathematischer Satz besteht aus einer Voraussetzung und einer Behauptung. Satz und Beweis Ein mathematischer

Mehr

Vorlesung: Mathematische Methoden I. A. A Campo Neuen

Vorlesung: Mathematische Methoden I. A. A Campo Neuen Vorlesung: Mathematische Methoden I A. A Campo Neuen Universität Basel, Herbstsemester 2016 Inhaltsverzeichnis zur Vorlesung Mathematische Methoden I 1 Mathematisches Handwerkszeug 4 1.1 Aussagen, Beweise,

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Das Bastelbogenproblem

Das Bastelbogenproblem Das Bastelbogenproblem JProf. Dr. Petra Schwer Tag der Mathematik, 7. März 2015, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Geraden in der Ebene und Zerlegung von Graphen

Geraden in der Ebene und Zerlegung von Graphen Geraden in der Ebene und Zerlegung von Graphen Proseminar: Beweise aus dem Buch am 17.01.2015 von Ina Seidel 1 Historisches zu Sylvester und Gallai James Joseph Sylvester * 1814, 1897 war britischer Mathematiker.Unter

Mehr

Daniel Platt Einführung in die Graphentheorie

Daniel Platt Einführung in die Graphentheorie Einführung in die Für die Mathematische Schülergesellschaft Leonhard Euler Humboldt Universität zu Berlin, Institut für Mathematik Das vorliegende Skript beschäftigt sich mit dem Thema. Das Skript entsteht

Mehr

Übung zur Abgaben Didaktik der Geometrie. Gruppe 5 Alt, Regine u. Gampfer,Stefanie

Übung zur Abgaben Didaktik der Geometrie. Gruppe 5 Alt, Regine u. Gampfer,Stefanie Übung zur Abgaben Didaktik der Geometrie Gruppe 5 Alt, Regine u. Gampfer,Stefanie Inhalt der Klassenstufe 2 in Geometrie Der Geometrieunterricht im zweiten Schuljahr findet in allen fünf Ebenen der Geometrie

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Näherungsverfahren zur Berechnung von Pi Ein- und Umbeschreibung von regelmässigen n-ecken

Näherungsverfahren zur Berechnung von Pi Ein- und Umbeschreibung von regelmässigen n-ecken Näherungsverfahren zur Berechnung von Pi Ein- und Umbeschreibung von regelmässigen n-ecken Erarbeitet von: Klasse: Freitag, den 13. Februar 009 Dominik Tanner KP-E Patrick Zauta Claudio Wilda Oliver Vanoni

Mehr

Gruppen die auf einer Menge operieren. Die Ikosahedrongruppe.

Gruppen die auf einer Menge operieren. Die Ikosahedrongruppe. Proseminar zu Linearen Algebra SS 2010 Gruppen die auf einer Menge operieren. Die Ikosahedrongruppe. Hümeyra Yilmaz Heinrich - Heine - Universität Betreuer: Prof. Dr. Oleg Bogopolski Unterteilungen I.

Mehr

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen Dr. Thomas Zehrt Folgen und Reihen Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band, 7. Auflage,

Mehr

Vertiefungskurs Mathematik

Vertiefungskurs Mathematik Vertiefungskurs Mathematik Anforderungen für das Universitäts-Zertifikat im Schuljahr 01/13 Grundvoraussetzung: Teilnahme am Vertiefungskurs Mathematik in Klasse 11. Inhaltliche Voraussetzungen: Aussagenlogik

Mehr

Geometrie 1. Christian Bay Christian Bay Geometrie / 46

Geometrie 1. Christian Bay Christian Bay Geometrie / 46 Geometrie 1 Christian Bay 02.07.2013 Christian Bay Geometrie 1 02.07.2013 1 / 46 Inhaltsverzeichnis Grundlagen CCW Polygone Picks Theorem Konvexe Hülle Christian Bay Geometrie 1 02.07.2013 2 / 46 Geometrie

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 29.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie 3. Endliche Automaten und reguläre

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr