Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse -

Größe: px
Ab Seite anzeigen:

Download "Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse -"

Transkript

1 1) Vorkenntnisse: Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - Im Rahmen der aktuellen Einheit wurden die folgenden Themen im Unterricht behandelt. Grundkonstruktionen mit Zirkel und Lineal; Konstruktion und Eigenschaften der Achsenspiegelung (Achsensymmetrie); Konstruktion und Eigenschaften der Drehung und Drehsymmetrie; Punktspiegelung und Punktsymmetrie; Winkel: Bezeichnungen und Messung; Konstruktion und Eigenschaften der Verschiebung und Verschiebungssymmetrie; Dabei wurde besonderer Wert auf die Eigenschaften der Kongruenzabbildungen (Längen und Winkel bleiben erhalten) gelegt. Das Verfahren der Beweisentwicklung wurde erst in den letzten Unterrichtsstunden anhand von einfachen Beispielen (Stufen- / Wechselwinkelsatz; Basiswinkel im gleichschenkligen Dreieck) eingeführt. 2) Einordnung Lehrplan: Geometrie, Erfassen und Messen sowie Anwenden (genaue Beschreibung s. Lehrplan) Für die Jahrgangsstufen 7/8 sieht der Rahmenplan die Behandlung von Winkeln in geometrischen Figuren vor. Zu diesem Bereich gehört insbesondere der wichtige Satz über die Winkelsumme im Dreieck. Der Winkelsummensatz für Dreiecke ist von grundlegender Bedeutung für den Aufbau der Geometrie. Seine Aussage ist gleichwertig mit dem Parallelenaxiom2 der euklidischen Geometrie. Er bildet die Grundlage für den Beweis der Winkelsummensätze für Vielecke. Bei der Behandlung der Kongruenzsätze wird er immer wieder angewandt um die fehlenden Winkelmaße zu bestimmen. Die Anwendungen des Winkelsummensatzes sind vielfältig. Seine Stärken werden immer dann deutlich, wenn es darum geht, fehlende, einer Messung unzugänglichen 1

2 Winkel zu bestimmen. Dies wird vor allem in der Architektur oder bei der Land- / Gebäudevermessung oft benötigt. 3) Kenntnisse und Fähigkeiten, die im Lehrplan angegeben werden: Im Rahmenplan wird gefordert, dass Kenntnisse, Fertigkeiten und Fähigkeiten im Mathematikunterricht durch entdeckendes, anschauungsgebundenes und handlungsorientiertes Lernen erworben werden sollen. Dies lässt sich im besonderen Maße im Geometrieunterricht verwirklichen: Das aktive Umgehen mit Material und Objekten, wie das Zeichnen, Messen, Falten, Zerschneiden oder Zusammensetzen, steht im Vordergrund der handlungsbezogenen Aktivitäten. Hierzu erhalten die Schülerinnen und Schüler gleich zu Beginn der Stunde Gelegenheit, indem sie jeweils ein beliebiges Dreieck zeichnen und die Winkel in ihrem Dreieck messen. Im weiteren Verlauf der Stunde werden sie ihre Dreiecke ausund zerschneiden, um durch geschicktes Zusammenlegen der Ecken (Winkel) eine Idee für den Beweis zu finden. 4) Begründungen? (Vgl. alternative Begründungen aus der Vorlesung.) 2

3 Bei fehlendem Lösungsansatz sollte der Lehrer zunächst nachfragen, was dem Schüler klar ist bzw. welche Ideen er hat. An diese Ideen sollte er mit der entsprechenden Begründung ansetzen. Die Schwierigkeit besteht für die Schüler darin, die Idee in eine logisch aufgebaute Argumentationskette einzubauen. Hierbei können die folgenden Fragen helfen: Wovon bist du ausgegangen? Wie bist du bei deiner Begründung vorgegangen? Welche mathematischen Operationen (Abbildungen) hast du verwendet? 3

4 Wenn keine eigenen Ideen vorhanden sind, sollte der Lehrer dem Schüler einen Tipp geben. Z.B. lege die Winkel einmal aneinander. Was fällt dir auf? Die aus der Winkelmessung entstehende Vermutung ( Die Summe der Winkel in jedem Dreieck beträgt 180 ) wird von den Schülerinnen und Schülern meist sofort für richtig gehalten, ein Beweisbedürfnis besteht nicht. Um die Schülerinnen und Schüler zu motivieren, diese Vermutung kritisch zu überprüfen, versucht der Lehrer sie mit Fragen zu provozieren. Es ist oft schwierig bei den Schülerinnen und Schülern ein Beweisbedürfnis zu erzeugen. Dies wird aber dringend benötigt, wenn die Schülerinnen und Schüler wirklich kritisch über eine Beweisidee nachdenken sollen. Aber in der Jahrgangsstufe 7 findet der Übergang von der Propädeutik der Geometrie zum beweisenden Geometrieunterricht statt. Es soll nun stärker Wert gelegt werden auf das Argumentieren und Begründen von Aussagen. An dieser Stelle haben die Schülerinnen und Schüler oft zum ersten Mal Kontakt mit Beweisen in der Mathematik. Da die Beweise in der Geometrie oft sehr anschaulich geführt werden können, bietet sich dieses Thema an, um dieses neue mathematische Verfahren einzuführen. In der geplanten Stunde sollen die Schülerinnen und Schüler die Aussage des Winkelsummensatzes selbsttätig entdecken und eine Beweisidee entwickeln / nachvollziehen. 5) Welche Lernziele sollen durch die Unterrichtsstunde erreicht werden? Die Schülerinnen und Schüler sollen: die Vermutung: Die Winkelsumme in jedem Dreieck beträgt 180 formulieren; eine Beweisidee, die u.a. geeignete Verschiebungen verwendet, unter Zuhilfenahme der abgeschnittenen Ecken entwickeln; einen Beweis für die Aussage des Winkelsummensatzes mündlich führen und formulieren. Durch einen handlungsorientierten Einstieg sollen die Schülerinnen und Schüler motiviert werden die Aussage des Winkelsummensatzes selbsttätig zu entdecken. 4

5 6) Wie kann der Unterricht nach dieser Stunde weitergehen? Weitere Unterrichtsthemen: - Außenwinkel - Kongruenzsätze - Flächenberechnung von Dreiecken 7) Thematik im Schulbuch: In den meisten Schulbüchern7 findet man den Parallenbeweis. Das Problem bei diesem Beweis liegt in der Entdeckung der Hilfslinie (der Parallele zur Grundseite durch den gegenüberliegenden Eckpunkt). Es gibt verschiedene Ansätze, damit diese Hilfslinie nicht vom Himmel fällt. Eine Möglichkeit besteht darin, eine Fläche mit kongruenten Dreiecken zu parkettieren und dann in dem entstehenden Muster jeweils gleiche Winkel (farbig) zu markieren. 8) Vergleiche das Vorgehen der oben aufgeführten Unterrichtsstunde mit dem Vorgehen in dem von dir ausgewählten Buch. Aufgrund der gewählten Abfolge der aktuellen Unterrichtseinheit hat der Lehrer sich für eine andere Beweisidee entschieden. Da bisher die Abbildungen Spiegeln, Drehen, Verschieben und ihre Kongruenzeigenschaften behandelt wurden, bietet die Abreißmethode eine Möglichkeit um die erworbenen Kenntnisse für den Beweis einzusetzen. Hierbei werden die Ecken eines beliebigen Dreiecks abgeschnitten und zu einem gestreckten Winkel zusammengelegt. Dies ist sicher ein beeindruckendes Ergebnis, aber noch kein Beweis. Diesen erhält man, wenn man die abgeschnittenen Winkeln α und β entlang einer Dreieckseite parallel verschiebt. Mit C als gemeinsamen Scheitelpunkt bilden sie zusammen mit dem Scheitelwinkel von γ einen gestreckten Winkel. Die für den mathematischen Beweis erforderliche Hilfslinie ergibt sich dann als Verlängerung der beiden Schenkel der Winkel α und β parallel zur Grundseite. 5

Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung

Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung Lösungsvorschlag 2006/I,2: 1. Erläutern Sie die Beziehung zwischen gewöhnlichen Brüchen und Dezimalbrüchen. 2. Beschreiben

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Symmetrie als fundamentale Idee

Symmetrie als fundamentale Idee Symmetrie als fundamentale Idee "Ideen, die starke Bezüge zur Wirklichkeit haben, verschiedene Aspekte und Zugänge aufweisen, sich durch hohen inneren Beziehungsreichtum auszeichnen und in den folgenden

Mehr

3. Synthetische Geometrie (synthetein = zusammensetzen)

3. Synthetische Geometrie (synthetein = zusammensetzen) 3. Synthetische Geometrie (synthetein = zusammensetzen) Wichtig ist in der synthetischen Geometrie das Zusammensetzen von Grundsätzen, Voraussetzungen, Sätzen und Folgerungen. Die SuS lernen die neue Art

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Lernbereiche (Stunden) Inhalt Seite Inhalt Seite. Im Blickpunkt: Aus Texten und Tabellen Informationen entnehmen. Kapitel 1: Gebrochene Zahlen

Lernbereiche (Stunden) Inhalt Seite Inhalt Seite. Im Blickpunkt: Aus Texten und Tabellen Informationen entnehmen. Kapitel 1: Gebrochene Zahlen Lehrplan Mittelschule Mathematik heute (ISBN 978-3-507-81009-9) Im Blickpunkt: Aus Texten und Tabellen Informationen entnehmen 6 Lernbereich 1: Gebrochene Zahlen (35) Kapitel 1: Gebrochene Zahlen 8 Kapitel

Mehr

Abfolge in 7 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in 7 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 1. Dreisatz Tabelle und Graph einer Zuordnung Zueinander proportionale Größen proportionale Dreisatz bei proportionalen Zueinander antiproportionale Größen antiproportionale Dreisatz bei antiproportionalen

Mehr

Geometrie in der Grundschule. Ein erster Überblick

Geometrie in der Grundschule. Ein erster Überblick Geometrie in der Grundschule Ein erster Überblick Elemente der Schulgeometrie - Organisatorisches Die Veranstaltung findet immer mittwochs 8-9.30 Uhr statt und (ca.) 14-täglich am Do 8-9.30 Uhr statt.

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Inhalt 1 Sachanalyse Beweis Beweis Didaktischen Überlegungen Wiederholung Einführung des Themas

Inhalt 1 Sachanalyse Beweis Beweis Didaktischen Überlegungen Wiederholung Einführung des Themas Inhalt 1 Sachanalyse... 1 1.1 Beweis 1... 2 1.2 Beweis 2... 2 2 Didaktischen Überlegungen... 3 2.1 Wiederholung... 4 2.2 Einführung des Themas Winkelsumme im Viereck... 5 2.2.1 Hinleiten... 6 2.2.2 Erarbeiten...

Mehr

Aufgabe 1 (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt.

Aufgabe 1 (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt. Fachbereich Mathematik Tag der Mathematik 0. Oktober 00 Klassenstufen 7, 8 Aufgabe (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt.

Mehr

Ähnlichkeitsabbildungen und Ähnlichkeitslehre

Ähnlichkeitsabbildungen und Ähnlichkeitslehre Ähnlichkeitsabbildungen und Ähnlichkeitslehre Lisa Laudan, Christopher Wolf 1 Rahmenlehrplan Sek I Berlin Klasse 9/10 Standards für das Ende der Klasse 10: Die SuS berechnen Streckenlängen und Winkelgrößen

Mehr

Mathematik Schuleigener Arbeitsplan Klasse 6 (Stand: Februar 2016)

Mathematik Schuleigener Arbeitsplan Klasse 6 (Stand: Februar 2016) erläutern einfache mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge mit eigenen Worten und geeigneten Fachbegriffen. begründen durch Ausrechnen. vergleichen verschiedene Lösungswege,

Mehr

3 Geometrisches Beweisen

3 Geometrisches Beweisen 22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette

Mehr

Schulinterner Stoffverteilungsplan Mathematik. auf der Basis des Schulbuchs EdM (Schroedel) Klasse 6 (G9)

Schulinterner Stoffverteilungsplan Mathematik. auf der Basis des Schulbuchs EdM (Schroedel) Klasse 6 (G9) Seite 1 Gymnasium Neu Wulmstorf r Stoffverteilungsplan Mathematik auf der Basis des Schulbuchs EdM (Schroedel) Klasse 6 (G9) (Fachkonferenz-Beschluss vom 19.09.2016) Vorbemerkung: Da der Kompetenzerwerb

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Vorläufiger schuleigener Lehrplan für das Fach Mathematik Jahrgang 7 Stand Lehrbuch: Mathematik heute 7

Vorläufiger schuleigener Lehrplan für das Fach Mathematik Jahrgang 7 Stand Lehrbuch: Mathematik heute 7 Zuordnungen - Zuordnungen in Tabellen und Graphen - Proportionale Zuordnungen - Antiproportionale Zuordnungen - Schätzen mit proportionalen und antiproportionalen Zuordnungen - Zuordnungen und Tabellenkalkulation

Mehr

Schullehrplan in der Geometrie der Vorlehre

Schullehrplan in der Geometrie der Vorlehre Schullehrplan in der Geometrie der Vorlehre 3 Lektionen pro Woche; total 117 Lektionen pro Jahr, geteilt auf zwei Semester Literatur: - Stufenlehrplan Mathematik Kanton Zürich (?) - Grundkompetenzen für

Mehr

WF Mathematik: 1. Grundbegriffe der Geometrie

WF Mathematik: 1. Grundbegriffe der Geometrie WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres

Mehr

Inhaltsverzeichnis. Einleitung 1. 1 Geometrie in der Grundschule 5. 2 Entwicklung räumlicher Fähigkeiten 27

Inhaltsverzeichnis. Einleitung 1. 1 Geometrie in der Grundschule 5. 2 Entwicklung räumlicher Fähigkeiten 27 Inhaltsverzeichnis Einleitung 1 1 Geometrie in der Grundschule 5 1.1 Entwicklung des Geometrieunterrichts 6 1.2 Überlegungen für ein neues Geometriecurriculum 11 1.3 Zur Gestaltung des Geometrieunterrichts

Mehr

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE

MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:

Mehr

Mathematik - Jahrgangsstufe 5

Mathematik - Jahrgangsstufe 5 Mathematik - Jahrgangsstufe 5 1. Natürliche Zahlen und Größen (Stochastik, Arithmetik/Algebra) Strichlisten, Tabellen und Diagramme Die Stellenwerttafel im Dezimalsystem & Runden Grundrechenarten: Summe,

Mehr

Schulinterner Lehrplan

Schulinterner Lehrplan Fach Mathematik Jahrgangsstufe 7 Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen ordnen Daten, um Tabellen erstellen zu können. (Ordnen) formulieren Stellungnahmen mit eigenen Worten unter

Mehr

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium Geogebra im Geometrieunterricht Bertrand Russel in LOGICOMIX Geometrie im Lehrplan Klasse 5 Klasse 6 Klasse 7 Klasse 8 Klasse 9 Oberstufe Parallele und senkrechte Geraden Kreise Winkel benennen, messen

Mehr

I. Symmetrie. II. Grundkonstruktionen

I. Symmetrie. II. Grundkonstruktionen I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander

Mehr

Die Mittelsenkrechte im deduktiven Aufbau

Die Mittelsenkrechte im deduktiven Aufbau Nr.7 16.06.2016 Die Mittelsenkrechte im deduktiven Aufbau Bisher war die Mittelsenkrechte eine Ortslinie Jetzt wird deduktiv geordnet: - Definition der Mittelsenkrechte - Sätze zur Mittelsenkrechten 1

Mehr

Raum: Bewegungen und Orientierung im Raum, räumliche Beziehungen, Lagebeziehungen, Wege, Die Ebene mit Richtungen, Entfernungen und Koordinaten

Raum: Bewegungen und Orientierung im Raum, räumliche Beziehungen, Lagebeziehungen, Wege, Die Ebene mit Richtungen, Entfernungen und Koordinaten Hausaufgabe: Didaktik der Geometrie 1. Klassenstufe: 1 Klasse Inhalte dieser Klassenstufe: Raum: Bewegungen und Orientierung im Raum, räumliche Beziehungen, Lagebeziehungen, Wege, Die Ebene mit Richtungen,

Mehr

Mathematik - Klasse 7 -

Mathematik - Klasse 7 - Schuleigener Lehrplan Mathematik - Klasse 7 - 1. Zuordnungen - Dreisatz 1.1 Tabelle und Graph einer Zuordnung 1.2 Zueinander proportionale Größen proportionale Zuordnungen 1.3 Dreisatz bei proportionalen

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen

Mehr

Abfolge in 6 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in 6 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 1. 1.1 Mischungs- und Teilverhältnisse 1.2 Zahlenstrahl Gebrochene Zahlen 1.3 Ordnen von 1.4 Addieren und Subtrahieren von Kommutativ- und Assoziativgesetz der Addition 1.5 Vervielfachen und Teilen von

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 6 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 6 Reihenfolge Buchabschnitt Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.7 Brüche mit gleichem

Mehr

Didaktik der Geometrie

Didaktik der Geometrie Marianne Franke Didaktik der Geometrie Spektrum Akademischer Verlag Heidelberg Berlin Inhaltsverzeichnis Einleitung 1 1 Geometrie in der Grundschule 7 1.1 Entwicklung des Geometrieunterrichts 8 1.2 Überlegungen

Mehr

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie

Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe

Mehr

Arbeitskreis Anwendungsorientierter Mathematikunterricht. Nicht anwendungsorientierter Mathematikunterricht" - Was ist das?

Arbeitskreis Anwendungsorientierter Mathematikunterricht. Nicht anwendungsorientierter Mathematikunterricht - Was ist das? Gymnasium Neureut Dienstag, 16.11.2010 Arbeitskreis Anwendungsorientierter Mathematikunterricht Vortrag zu Nicht anwendungsorientierter Mathematikunterricht" - Was ist das? 1 2 = 1 2 2 = 0,7071...... ist

Mehr

Unterrichtseinheit Natürliche Zahlen I

Unterrichtseinheit Natürliche Zahlen I Fach/Jahrgang: Mathematik/5.1 Unterrichtseinheit Natürliche Zahlen I Darstellen unterschiedliche Darstellungsformen verwenden und Beziehungen zwischen ihnen beschreiben (LE 8) Darstellungen miteinander

Mehr

Kapitel 6 Kapitel 6 Begriffserwerb

Kapitel 6 Kapitel 6 Begriffserwerb Begriffserwerb 6.1. Das Lehren und Lernen geometrischer Begriffe 6.1.1 Überblick 6.1.2. Theorie 6.1.3. Beispiele 6.1.3.1. Aufbau angemessener Vorstellung 6.1.3.2. Erwerb von Kenntnissen 6.1.3.3. Aneignung

Mehr

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra Hinweis: Alle Grafiken dieser Lösung finden Sie auch als GeoGebra-Dateien zum Ausprobieren. 1. Verschiebung: Zeichnen Sie einen beliebigen Vektor zwischen 2 Punkten. a) Verschieben Sie den Graphen von

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

OvTG Gauting, Grundwissen Mathematik 7. Klasse

OvTG Gauting, Grundwissen Mathematik 7. Klasse 1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer

Mehr

Stoffverteilungsplan Elemente der Mathematik 3 Baden-Württemberg ISBN

Stoffverteilungsplan Elemente der Mathematik 3 Baden-Württemberg ISBN Bleib fit im Umgang mit Bruchzahlen Zahl Algorithmus Klasse 6 1. Prozent- und Zinsrechnung 1.1 Absoluter und relativer Vergleich Anteile in Prozent 1.2 Grundaufgaben der Prozentrechnung Im Blickpunkt:

Mehr

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen!

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen! 2. Propädeutische Geometrie Klasse 5/6 2.1 Zur Entwicklung der Schüler Kinder im Alter von 10-12 Jahren sind wissbegierig neugierig leicht zu motivieren anhänglich (Lehrperson ist Autorität) zum Spielen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Geometrische Abbildungen. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundwissen Geometrische Abbildungen. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundwissen Geometrische Abbildungen Das komplette Material finden Sie hier: School-Scout.de Michael Körner Grundwissen Geometrische

Mehr

1. Daten und Diagramme Beispiele / Veranschaulichung

1. Daten und Diagramme Beispiele / Veranschaulichung 1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb

Mehr

Grundlagen der Geometrie

Grundlagen der Geometrie Grundlagen der Geometrie Vorlesungsausarbeitung zum WS 2010/11 von Prof. Dr. K. Fritzsche ii Inhalt 0 Grundlagen der Schulgeometrie 1 I Die Elemente : Inzidenz und Anordnung 9 1. Die deduktive Methode

Mehr

Dynamische Geometrie

Dynamische Geometrie Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage

Mehr

Geometrie - Hausaufgaben Kim Wendel / Linda Adebayo

Geometrie - Hausaufgaben Kim Wendel / Linda Adebayo Geometrie - Hausaufgaben Kim Wendel / Linda Adebayo Inhalte dieser Klassenstufe: (Klassenstufe 1/2) Raum: Bewegungen und Orientierung im Raum, räumliche Beziehungen, Lagebeziehungen ( über unter auf, vor

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht.

Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Vorlesung 2 : Do. 10.04.08 Thema: Ein Ausblick auf die Möglichkeiten durch den Software-Einsatz im Mathematikunterricht. Einführung in GeoGebra: Zunächst eine kleine Einführung in die Benutzeroberfläche

Mehr

Definitionen: spitzer Winkel, stumpfer Winkel

Definitionen: spitzer Winkel, stumpfer Winkel Definitionen: spitzer Winkel, stumpfer Winkel Die in der Schule üblichen Definitionen über den Vergleich mit 90 dürften klar sein. Wir geben hier die Definitionen ohne die Verwendung von Zahlen für die

Mehr

In der Zeichnung unten sind α und β, β und γ, γ und δ, δ und α Nebenwinkel. Scheitelwinkel sind α und γ oder β und δ.

In der Zeichnung unten sind α und β, β und γ, γ und δ, δ und α Nebenwinkel. Scheitelwinkel sind α und γ oder β und δ. Entdeckungen an Geraden- und Doppelkreuzungen Schneiden sich zwei Geraden, so entstehen vier Winkel mit Scheitel im Schnittpunkt. Jeweils zwei gleichgroße Winkel liegen sich dabei gegenüber man nennt diese

Mehr

Inhaltsbezogene Kompetenzbereiche: Kernkompetenzen / Erwartungen (Schwerpunkte) Längen, Flächeninhalt und Volumina unterscheiden

Inhaltsbezogene Kompetenzbereiche: Kernkompetenzen / Erwartungen (Schwerpunkte) Längen, Flächeninhalt und Volumina unterscheiden 1 (ca. 4 n, 16 h) Stellen zu Sachsituationen Fragen, suchen nach nutzen Lösungsstrategien (Schätzen, Probieren) und hinterfragen diese Größen und Messen: Längen, Flächeninhalt und Volumina unterscheiden

Mehr

Das Geobrett. Fachkonferenz Mathematik

Das Geobrett. Fachkonferenz Mathematik Das Geobrett Fachkonferenz Mathematik 01.11.2011 Das Geo-Brett stammt aus dem angelsächsischen Sprachraum. Didaktisch vielseitig einsetzbares Material, welches von Klasse 1 bis zur Klasse 7 benutzt

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kongruenzsätze und Flächeninhalt - Dreiecke konstruieren

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kongruenzsätze und Flächeninhalt - Dreiecke konstruieren Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kongruenzsätze und Flächeninhalt - Dreiecke konstruieren Das komplette Material finden Sie hier: School-Scout.de S 1 Kongruenzsätze

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 5

Schulinterner Lehrplan Mathematik G8 Klasse 5 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 5, Stand: 07.12.2008 Schulinterner Lehrplan Mathematik G8 Klasse 5 Verbindliche Inhalte zu Kapitel I Natürliche Zahlen 1 Zählen und 2 Große Zahlen

Mehr

1.4 Steigung und Steigungsdreieck einer linearen Funktion

1.4 Steigung und Steigungsdreieck einer linearen Funktion Werner Zeyen 1. Auflage, 2013 ISBN: 978-3-86249-250-3 Mathe mit GeoGebra 7/8 Dreiecke, Vierecke, Lineare Funktionen und Statistik Arbeitsheft mit CD RS-MA-GEGE2 1.4 Steigung und Steigungsdreieck einer

Mehr

Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 7

Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 7 Kernlehrplan für das FSG Fachbereich Mathematik Jahrgangsstufe 7 Grundlage ist das Lehrbuch: Fundamente der Mathematik 7 vom Cornelsen Verlag (ISBN 978-3-06-040318-9) Stand: 26.8.16 Hinter den Inhalten

Mehr

Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 7 Februar 2016

Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 7 Februar 2016 Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 7 Februar 2016 Anzahl der schriftlichen Arbeiten: 5, Gewichtung der schriftlichen Leistungen 50%-60% Nachweis der Durchführung: siehe

Mehr

Die Punktespiegelung 1

Die Punktespiegelung 1 Die Punktespiegelung 1 1. Was geschieht, wenn du das Zentrum Z verschiebst? Formuliere deine Beobachtungen: a) Wenn das Zentrum auf eine Ecke der Originalfigur zu liegen kommt, dann b) Wenn das Zentrum

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1)

7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1) Name: Geometrie-Dossier 7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1) Inhalt: Fläche und Umfang von Rechteck und Quadrat Dreiecke (Benennung, Konstruktion) Winkelberechnung im Dreieck und

Mehr

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 7 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 7 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Die Umsetzung der Lehrplaninhalte in 7 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Schulinternes Curriculum Erwartete prozessbezogene am Ende der 8. Klasse: Argumentieren/Kommunizieren

Mehr

1. Grundlegendes in der Geometrie

1. Grundlegendes in der Geometrie 1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden

Mehr

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8

Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Grundwissen-Mathematik-7.Jahrgangsstufe (Algebra) G8 Terme Eine Variable ist ein Platzhalter für eine Zahl. Ein Term ist eine sinnvolle Abfolge von Rechenzeichen, Zahlen und Variablen. Beispiel zur Berechnung

Mehr

Kaiserin Auguste Viktoria Gymnasium Schuleigener Arbeitsplan Mathematik 2015 / 2016 (G9)

Kaiserin Auguste Viktoria Gymnasium Schuleigener Arbeitsplan Mathematik 2015 / 2016 (G9) Kaiserin Auguste Viktoria Gymnasium Schuleigener Arbeitsplan Mathematik 2015 / 2016 (G9) Die Reihenfolge der Themen ist verbindlich, um Transparenz und Vergleichbarkeit zu sichern. Die Länge der Einheiten

Mehr

Band 5. Lösen elementare mathematische Regeln und Verfahren (Messen, Rechnen, Schließen) zum Lösen von anschaulichen Alltagsproblemen nutzen

Band 5. Lösen elementare mathematische Regeln und Verfahren (Messen, Rechnen, Schließen) zum Lösen von anschaulichen Alltagsproblemen nutzen Mathematik Neue Wege 5/6 Vergleich mit dem Kernlehrplan Mathematik für das Gymnasium (G8) in Nordrhein-Westfalen / Kompetenzerwartungen am Ende der Jahrgangsstufe 6 Viele der im Kernlehrplan aufgeführten

Mehr

7. Terme und Gleichungen Argumentieren/Kommunizieren Lesen: Arithmetik/Algebra Ordnen: Verbalisieren: Operieren: Kommunizieren:

7. Terme und Gleichungen Argumentieren/Kommunizieren Lesen: Arithmetik/Algebra Ordnen: Verbalisieren: Operieren: Kommunizieren: 7. Terme Gleichungen Lernfeld: Rechenwege kurz knapp beschreiben 7.1 Aufstellen von Termen Formeln Im Blickpunkt: Tabellenkalkulation Terme 7.2 Aufbau eines Terms 7.3 Termumformungen Addieren Subtrahieren

Mehr

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen.

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen. MAT 07-01 Zuordnungen 14 DS Leitidee: Funktionaler Zusammenhang Thema im Buch: Unterwegs Werte aus Schaubildern ablesen und ihre Bedeutung erklären. entscheiden und begründen, ob es sich um eine nicht

Mehr

Kern- und Schulcurriculum Mathematik Klasse 7/8. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 7/8. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 7/8 Stand Schuljahr 2009/10 Klasse 7 UE 1 Prozent- und Zinsrechnung Anteile in Prozent Grundaufgaben der Prozentrechnung Promille Prozentuale Änderungen Zinsen

Mehr

Selbsttest Mathematik des FB 14 der Universität Kassel

Selbsttest Mathematik des FB 14 der Universität Kassel Selbsttest Mathematik des F 1 der Universität Kassel Der folgende Selbsttest soll Ihnen helfen Ihre mathematischen Fähigkeiten besser einzuschätzen, um zu erkennen, ob Ihre Mathematikkenntnisse für einen

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 5 5 Kapitel I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und

Mehr

KGS-Schneverdingen Schulinterner Lehrplan Mathematik Stoffverteilungsplan Klasse 6

KGS-Schneverdingen Schulinterner Lehrplan Mathematik Stoffverteilungsplan Klasse 6 Stoffverteilungsplan Klasse 6 Schulbuch: Elemente der Mathematik Die Kapitelangaben sind dem Lehrbuch entnommen 1. Gebrochene Zahlen Addieren und Subtrahieren Lernbereiche Umgang mit Brüchen sowie Umgang

Mehr

Daten erfassen und darstellen

Daten erfassen und darstellen MAT 05-01 Leitidee: Daten und Zufall Daten erfassen und darstellen Thema im Buch: Meine Klasse und ich - Zahlenangaben sammeln und vergleichen Daten in Ur-, Strichlisten und Häufigkeitstabellen zusammenfassen.

Mehr

Maurits Cornelis Escher ( ) Unmögliche Figuren. Parkettierungen. Kurzbiographie. Lehrerfortbildung: Geschichte(n) der Mathematik

Maurits Cornelis Escher ( ) Unmögliche Figuren. Parkettierungen. Kurzbiographie. Lehrerfortbildung: Geschichte(n) der Mathematik Maurits Cornelis Escher (1898-1972) Kurzbiographie Schon früh an Kunst interessiert Studium der dekorativen Künste Lebensmittelpunkt im Süden Europa Lehrerfortbildung: Geschichte(n) der Mathematik Inspiration

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

LEHRSÄTZE der elementaren GEOMETRIE

LEHRSÄTZE der elementaren GEOMETRIE Lehrsätze der elementaren Geometrie. Ein PAUMEDIA-Projekt Herbert Paukert. 1 LEHRSÄTZE der elementaren GEOMETRIE Version 2.0 Herbert Paukert Grundlagen der Abbildungsgeometrie [ 02 ] Das Koordinatensystem

Mehr

Inhaltsfelder Jahrgangsstufe 5 Jahrgangsstufe 6 Jahrgangsstufe 7 Jahrgangsstufe 8 Jahrgangsstufe 9

Inhaltsfelder Jahrgangsstufe 5 Jahrgangsstufe 6 Jahrgangsstufe 7 Jahrgangsstufe 8 Jahrgangsstufe 9 Mathematik-Wettbewerb des Landes Hessen Aufgabengruppe C (Hauptschulbereich) Aufteilung der Inhaltsfelder in den Jahrgangsstufen 5 9 auf die Einzeljahrgänge Die Themen der 1. Runde des Mathematik-Wettbewerbes

Mehr

Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe

Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe Inhaltliche Anforderungen für ein Mathematikstudium an der Pädagogischen Hochschule Karlsruhe Liebe Studierende, wenn Sie Mathematik an der Pädagogischen Hochschule Karlsruhe erfolgreich studieren möchten,

Mehr

Abfolge in EdM 7 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in EdM 7 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 4. Rationale Zahlen Lernfeld: Rechnen mit negativen Zahlen 4.1 Rationale Zahlen Anordnung und Betrag 4.2 Koordinatensystem 4.3 Zum Selbstlernen: Beschreiben von Änderungen mit rationalen Zahlen 4.4 Addieren

Mehr

Mathematik Geometrie

Mathematik Geometrie Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen

Mehr

1. Bruchzahlen. Werkzeuge Konstruieren: Die Schüler(innen) fertigen grafische Darstellungen zu Termen mit Bruchteilen an und arbeiten am Zahlenstrahl.

1. Bruchzahlen. Werkzeuge Konstruieren: Die Schüler(innen) fertigen grafische Darstellungen zu Termen mit Bruchteilen an und arbeiten am Zahlenstrahl. Jahrgangsstufe 6 1 Buch: Elemente der Mathematik, Braunschweig 2008, Druck A 2, Westermann Schroedel Diesterweg Verlag, ISBN 978-3-507-87231-8 Bleib fit im Umgang mit Brüchen 1. Lernfeld: Mehr oder weniger

Mehr

Lösungen Crashkurs 7. Jahrgangsstufe

Lösungen Crashkurs 7. Jahrgangsstufe Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1964/1965 Aufgaben und Lösungen

4. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 7 Saison 1964/1965 Aufgaben und Lösungen . Mathematik Olympiade Saison 196/1965 Aufgaben und Lösungen 1 OJM. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und grammatikalisch

Mehr

Lebendige Auseinandersetzung mit Mathematik

Lebendige Auseinandersetzung mit Mathematik Lebendige Auseinandersetzung mit Mathematik probieren systematisch erfinden Aufgaben überprüfen Ergebnisse entnehmen Informationen Muster-Gültigkeit Schönheit Regel-Maß ordnen vermuten verallgemeinern

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Flächenberechnung im Trapez

Flächenberechnung im Trapez Flächenberechnung im Trapez Das Trapez im Lehrplan Jahrgangsstufe 6 M 6.8 Achsenspiegelung (ca. 15 Std) Fundamentalsätze (umkehrbar eindeutige Zuordnungen, Geradentreue, Winkeltreue, Kreistreue), Abbildungsvorschrift

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5

Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Stoffverteilungsplan Mathematik im Jahrgang 5 Lambacher Schweizer 5 Kernlehrplan G8 Verbalisieren mathematische Sachverhalte, Begriffe, Regeln und Begründen verschiedene Arten des Begründens intuitiv nutzen:

Mehr

Beziehungen zwischen Winkeln

Beziehungen zwischen Winkeln Beziehungen zwischen Winkeln Autor(en): Pünchera, J. Objekttyp: Article Zeitschrift: Jahresbericht des Bündnerischen Lehrervereins Band (Jahr): 17 (1899) Heft: Der Geometrie-Unterricht in der I. und II.

Mehr

Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums

Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums Marie-Curie-Gymnasium Waldstrasse 1a 16540 Hohen Neuendorf Tel.: 03303/9580 Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums Um euch den Einstieg in den Mathematikunterricht zu erleichtern,

Mehr

Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend.

Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche Mathematisch argumentieren

Mehr

Problemlösen Erkunden: Offene Aufgaben ermuntern zu eigenen mathematischen Fragestellungen.

Problemlösen Erkunden: Offene Aufgaben ermuntern zu eigenen mathematischen Fragestellungen. Themenreihenfolge im Schulbuch 1. Zuordnungen - Dreisatz Lernfeld: Abhängigkeiten darstellen und nutzen 1.1 Tabelle und Graph einer Zuordnung Auf den Punkt gebracht: Hilfsmittel nutzen: Tabellenkalkulation

Mehr

Aufgaben zu geometrischen Grundbegriffen 1

Aufgaben zu geometrischen Grundbegriffen 1 Aufgaben zu geometrischen Grundbegriffen 1 Punkt, Gerade, Strecke und Strahl 1. Gib alle Buchstaben an, mit denen ein Punkt bezeichnet wird. A 2. Schreibe verschiedene Redewendungen auf, in denen das Wort

Mehr

Der Satz des Pythagoras. Kein Darwinscher Zufall

Der Satz des Pythagoras. Kein Darwinscher Zufall Der Satz des Pythagoras. Kein Darwinscher Zufall Detlef Dürr duerr@rz.mathematik.uni-muenchen.de 1. Mai 2012 1 Zahlen-Verhältnisse Die Grunderkenntnis der Gesetzmäßigkeit in der Natur ist Harmonie. Heute

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

Schulinternes Curriculum Mathematik. Jahrgang 7. Themenfolge

Schulinternes Curriculum Mathematik. Jahrgang 7. Themenfolge Schulinternes Curriculum Mathematik Jahrgang 7 Gültig ab: 2016/2017 Erläuterungen: prozessbezogene Kompetenzbereiche inhaltsbezogene Kompetenzbereiche P1 mathematisch argumentieren I1 Zahlen und Operationen

Mehr

5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen

5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen 5. Mathematik Olympiade Saison 1965/1966 Aufgaben und Lösungen 1 OJM 5. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr