Physik V Einführung: Kern und Teilchenphysik

Größe: px
Ab Seite anzeigen:

Download "Physik V Einführung: Kern und Teilchenphysik"

Transkript

1 Physik V Einführung: Kern und Teilchenphysik Georg Steinbrück, Dieter Horns Universität Hamburg Winter-Semester 2007/2008

2 Beschleuniger WS 2007/08 Steinbrück, Horns: Physik V 2

3 Beschleuniger: Prinzipien Warum Teilchenbeschleuniger? E=mc 2 : Hohe Energien, um schwere (neue) Teilchen zu erzeugen. λ=h/p: Untersuchung von Strukturen und Kräften bei kleinen Abständen Geladene Teilchen im elektrischen und magnetischen Feld Lorentzkraft: Energiezufuhr durch elektrisches Feld: Ablenkung im Magnetfeld: Für v c B-Feld viel effektiver als E-Feld! (1 GV/m entspricht 3 Tesla!) Spiralbahn im homogenen Magnetfeld Radius ρ = Lorentzkraft= Zentrifugalkraft Zyklotronfrequenz r r dp r r r F = = e( E + v B), dt p /( q B) r für v ω = c Für γ=1 (nicht-relativistische Teilchen) unabhängig von p: Prinzip Zyklotron! r p E = r = mγv q r senkrecht zu B qb γm r r E ds = q U WS 2007/08 Steinbrück, Horns: Physik V 3

4 1. Elektrostatische Beschleuniger WS 2007/08 Steinbrück, Horns: Physik V 4

5 Elektrostatische Beschleuniger I Einfaches Beispiel: siehe rechts Cockroft-Walton Generator (1930): Spanung durch Kaskadengenerator 1. Die erste (negative) Halbwelle lädt C1 auf 100V auf. Dabei ist das obere Ende von C1 positiv gegenüber dem unteren, welches demnach auf -100V liegt. 2. In der zweiten Halbwelle polt die Ausgangsspannung des Transformators um, sein oberes Ende hat nun 100V. Zusammen mit den 100V des Kondensators ergeben sich nun 200V am oberen Ende von C1, dh. die Spannung dieses Punktes wurde auf 200V hoch geschoben. Diese 200V laden C2 auf. 3. In der folgenden Halbwelle geht das obere Ende von C1 wieder auf 0V, daher kann nun C3 von C2 auf 200V geladen werden. 4. In der nächsten Halbwelle werden die 200V von C3 nun auf 400V hoch geschoben, damit liegen 200V zwischen dem oberen und unteren Ende von C4 und laden diesen auf 200V. Da das untere Ende von C4 bereits auf 200V liegt, erscheinen jetzt am Ausgang 400V. WS 2007/08 Steinbrück, Horns: Physik V 5

6 Elektrostatische Beschleuniger II Van de Graaff Beschleuniger (1930): Potential durch Bandgenerator Beschleunigungsspannungen bis zu ~10 MV, begrenzt durch Durchschlagsfestigkeit des umgebenden Mediums: Mit Gas befüllter Druckbehälter Prinzip: Aufbringen von positiven Ladungen auf schwach leitendes Transportband. Entladen des Bandes an Entladeeinheit Abfließen der Ladungen auf Hochspannungsterminal Aufteilen der Gesamtspannung über Widerstände im Ionenstrahlrohr, so dass eine gleichmäßige Beschleunigung ermöglicht wird. Aufteilen der Spannung durch Widerstandskette WS 2007/08 Steinbrück, Horns: Physik V 6

7 2. Linearbeschleuniger WS 2007/08 Steinbrück, Horns: Physik V 7

8 Linearbeschleuniger Driftröhrenbeschleuniger nach Gustaf Ising und Rolf Wideröe Erreichbare Energien bei Gleichspannung begrenzt, da sehr hohe Spannungen zu Koronaentladungen führen. Lösung: Wechselspannungs- Beschleuniger mit fester Frequenz ν Prinzip: Beschleunigung der Teilchen im elektrischen Feld im Spalt zwischen den Driftröhren. Kein Feld während die Spannung entgegengesetzt gepolt ist: Innerhalb der Driftröhren herrscht kein Feld (Faradayscher Käfig). Die Längen der Driftröhren sind so angeglichen, dass die Beschleunigung immer in Phase ist. Anwendung: Protonen, schwere Ionen: ß= , Vorbeschleuniger WS 2007/08 Steinbrück, Horns: Physik V 8

9 Linearbeschleuniger II Für hohe Energien: Hohlraumresonatoren RF-Kavitäten stehende Wellen in Resonatoren normal leitende: Bei hohen Frequenzen hohe Felder (bis 100 MV/m?). Verluste hoher Energieverbrauch supra-leitende: Felder bis ~40 MV/m Tesla Entwicklung (Desy): Hochreines Nb bei 2 K, 1.3 GHz Wahl für ee-linear Collider (nächster Großbeschleuniger!) 500 GeV-1TeV Linearbeschleuniger für XFEL (xray free electron laser) in Hamburg WS 2007/08 Steinbrück, Horns: Physik V 9

10 3. Kreisbeschleuniger WS 2007/08 Steinbrück, Horns: Physik V 10

11 Kreisbeschleuniger Nachteil Linearbeschleuniger: Energie = Länge * E-Feld Begrenzung Teilchen auf Kreibahn, um gleiche Beschleunigungsstrecke mehrfach zu durchlaufen (aber: bei hohen γ=e/mc2-werten Verluste durch Synchrotronstrahlung) Zwei Realisierungen: 1. Zyklotron: B konstant Bahnradius wächst mit Impuls 2. Synchrotron (Betatron): Bahnradius konstant, B wächst mit Impuls Zyklotron Zwei Dosen im Magnetfeld mit Hochfrequenz ω c für γ = 1: ω = c qb γm Einschuss der Teilchen bei r = 0 Ejektion des Strahls bei r = r max nur solange γ nahe bei 1 Beschleunigung von Protonen und Ionen Typ. Parameter: B=1.5 T, ω= 50 MHz, U = kv 25 MeV Strom ma WS 2007/08 Steinbrück, Horns: Physik V 11

12 Synchrotron Prinzip: Beschleunigerfrequenz ω HF (t) und Magnetfeld B werden synchron hochgefahren, so daß Teilchen auf konstanter Sollbahn gehalten werden. (Veksler, McMillan, Wideroe 1945) Teilchen legen riesige Stracken zurück Fokussierung wichtig, Strahloptik Speicherringe sind ebenfalls Synchrotrone Synchrotronschwingungen und Phasenfokussierung Wie verhindert man, dass Strahlpakete longitudinal auseinander laufen? relativistische Teilchen: p0 Sollimpuls mit Bahnlänge u0 p > po u > u0: Teilchen kommen später zum E-Feld kleineres Feld, weniger Beschleunigung nähern sich p0 an für p < p0 analog, aber mit umgekehrten Vorzeichen longitudinale Bewegung der Teilchen analog zur Bewegung in einem Parabel-potential, in dem Teilchen Synchrotronschwingungen durchführen im stabilen Bereich bewegen sich die Teilchenpakete auf stabilen Bahnen nicht-relativistische Teilchen: Teilchen mit höherem Impuls höhere Geschwindigkeit kommen früher zum E-Feld der stabile Bereich ist die ansteigende Flanke WS 2007/08 Steinbrück, Horns: Physik V 12

13 Magnete Teilchen mit q=e in s-richtung im transversalen B-Feld: r v = (0,0, v Ablenkungin x - Richtung ist dann : R Multipolentwicklung nach x für x << R e p -1 B (x, y,s) = eb y ( x) = s ) e p r und B(x, y,s) = (B B y y (x, y,s)/p By (0) + x x,b 2 B x + 2! x y y 2 Dipol Quadrupol Sextupol,s) x 2 3 B + 3! x y 3 Oktupol x Dipol: Ablenkung Quadrupol: Fokussierung Sextupol: Korrektur von Feldfehlern Oktupol: Korrektur von Feldfehlern WS 2007/08 Steinbrück, Horns: Physik V 13

14 Magnete 1. Dipolmagnete: wegen Stromverbrauch supraleitend. Bsp: B=5.2 T (Hera p: 920 GeV km Umfang) B=8.3 T (LHC p: 7000 GeV - 27 km Umfang) Krümmungsradius: p r = r[ m] = qb p[ GeV / c] 0.3q[ e] B[ T ] 2. Quadrupol Linsen Horizontal fokussierender Quadrupol Fokussierung nur in einer Ebene Defokussierung in anderer Ebene Fokussierung im beiden Ebenen durch Kombination von mehreren Quads F WS 2007/08 Steinbrück, Horns: Physik V 14

15 Kühlung Jedes Teilchen im Strahlpaket (typisch Teilchen pro Paket!) besetzt einen Punkt im 6- dim Phasenraum (x,x`,y,y`, δs,δp s ). Gesamtheit der Punkte beschrieben durch Phasenraumellipse. Satz von Liousville: In konservativem System ist die Phasenraumdichte konstent (konservativ: Keine Strahlungs oder Dämpfungsverluste). Der Physenraum des Teilchenstrahls im Beschleuniger ist zunächst gleich dem der Quelle! Verbesserung möglich durch Kühlung (nichtkonservative Beeinflussung des Teilchenstrahls). Beispiel: Stochastische Kühlung Erzeugung von Signal an Pickup-Elektrode proportional zutransversaler Auslenkung: Betatron-Schwingung Korrektur durch Kicker Nicht für einzelne Teilchen, sondern für Untersysteme von Teilchen mit ähnlichen Phasenraumkoord.: Makroteilchen WS 2007/08 Steinbrück, Horns: Physik V 15

16 Synchrotronstrahlung Geladene Teilchen mit Energie E 0 erfahren im Kreisbeschleuniger eine Zentripetalbeschleunigung. Energieabstrahlung: Hertz scher Dipol Die abgestrahlte Leistung ist: P = e 4πε e c 2 ( mc ) 2 0 Für den Krümmungsradius ρ gilt: 4 E B 2 B = p eρ 0 E0 eρc Damit ist der Energieverlust pro Umlauf E 0 2 e E = 3ε mc E ρ 0 [ GeV ] = 8.85x10 5 [ ] ( E GeV ρ[ m] 4 für Elektronen Beispiel LEP (CERN): E 0 = 100 GeV und ρ = 4.2km E0 = 2.8GeV! Hohe Elektronenenergien nur mit Linearbeschleunigern! WS 2007/08 Steinbrück, Horns: Physik V 16

17 Synchrotronstrahlung II Allerdings kann man sich die Synchrotronstrahlung auch zu Nutze machen: Gepulste Photonquellen extrem hoher Brillianz Hervorragend geeignet zu Materialuntersuchungen, Biologie, Chemie, Brillianz existierender und geplanter Photonquellen: HASYLAB am Doris Speicherring am DESY Brillianz : Anzahl Photonen pro Fläche Raumwinkel und Zeit WS 2007/08 Steinbrück, Horns: Physik V 17

18 FEL Prinzip: Elektronenstrahl aus relativistischen Strahlenpaketen (GeV) wird durch langen Undulator geschickt. Synchrotronstrahlung, ~ in Strahlrichtung emittiert Wechselwirkung der Synchrotronstrahlung mit dem Elektronenstrahl Mikrostrukturierung der Elektronenpakete: Scheiben senkrecht zur Flugrichtung Kohärente Abstrahlung aller Elektronen in Paket Addition der Amplituden der einzelnen Wellen, nicht der Intensitäten Intensität der emittierten Strahlung proportional zum Quadrat der Anzahl der emittierenden Elektronen Extrem hohe Brilianz: 10 8 x momentane Leistung im Vergleich zu exist. Quellen, Pulslänge (gegeben durch Länge Elektronenpakete) ~ 30 fs WS 2007/08 Steinbrück, Horns: Physik V 18

19 Großbeschleuniger, Beschleunigerlabore WS 2007/08 Steinbrück, Horns: Physik V 19

20 Beschleuniger Fortschritte bei der Entwicklung von Beschleunigern für pp und e + e - (Energie vs. Jahr): Beschleunigte Ladung strahlt Energie ab Synchrotronstrahlung abgestrahlte Leistung: (Energie x B-Feld) 2 / (mc 2 ) 4 ) Synchrotronlicht für Forschung + industrielle Anwendungen Elektronen verlieren in Kreisbeschleuniger so viel Energie, dass ab ~200GeV Linearbeschleuniger einzige Möglichkeit, um hohe Energien zu erreichen: p- Speicherringe (aber experimentell viel schwieriger, insbesondere für Präzisionsmessungen!) WS 2007/08 Steinbrück, Horns: Physik V 20

21 Beschleuniger: HERA Beschleunigeranlage: Teilchenquelle Vorbeschleuniger Hauptbeschleuniger/Speicherring, an dem Experimente gemacht werden HERA-Beschleuniger-Komplex WS 2007/08 Steinbrück, Horns: Physik V 21

22 Beschleuniger: Der Large Hadron Collider (LHC) am CERN WS 2007/08 Steinbrück, Horns: Physik V 22

23 Der Beschleunigerkomplex des CERN LEP ( ), LHC (ab 2007) SPS (1978) ISR (1972) PS (1960) CNGs (ab 2006) WS 2007/08 Steinbrück, Horns: Physik V 23

24 LHC: 27km supraleitender Magnete Kühlung mit flüssigem Helium ( C i.e. 1.7K) WS 2007/08 Steinbrück, Horns: Physik V 24

25 LHC: 27km supraleitender Magnete 1200 Supraleitende Magneten Ampere WS 2007/08 Steinbrück, Horns: Physik V 25

26 Die 4 LHC Experimente 44 m Länge; 22 m Durchmesser Benutzt den grössten supraleitenden Magneten der Welt 100 Millionen Messkanäle 30 m Länge; 20 m Durchmesser Benutzt einen der stärksten supraleitenden Gross-Magnete der Welt 100 Millionen Messkanäle WS 2007/08 Steinbrück, Horns: Physik V 26

27 Kenngrößen von Großbeschleunigern der Teilchenphysik WS 2007/08 Steinbrück, Horns: Physik V 27

Teilchenbeschleuniger Collider

Teilchenbeschleuniger Collider Teilchenbeschleuniger Collider 1. Theoretische Grundlagen 1.1 Warum baut man Collider In der heutigen Grundlagenforschung steht man oft vor Aufgabe, neue bisher nicht beobachtete Teilchen zu finden und

Mehr

Kreisbeschleuniger IX (Synchrotron)

Kreisbeschleuniger IX (Synchrotron) Kreisbeschleuniger IX (Synchrotron) Höhere Energien wenn B-Feld und ω HF zeitlich variieren 2 qb q c B q cb Energiegewinn/Umlauf: inn/umla ωteilchen = = E = mc Ec ω Extraktion bei B = B max bei höchsten

Mehr

Kerne und Teilchen. Moderne Physik III. 7. Grundlagen der Elementarteilchen-Physik 7.1 Der Teilchenzoo. Vorlesung # 14.

Kerne und Teilchen. Moderne Physik III. 7. Grundlagen der Elementarteilchen-Physik 7.1 Der Teilchenzoo. Vorlesung # 14. Kerne und Teilchen Moderne Physik III Vorlesung # 14 Guido Drexlin, Institut für Experimentelle Kernphysik 6. Detektoren und Beschleuniger 6.2 Teilchenbeschleuniger - Zyklotron - Synchrotron - Internationale

Mehr

Teilchenbeschleuniger

Teilchenbeschleuniger Beschleuniger Teilchenbeschleuniger Linearbeschleuniger Zyklotron Mikrotron Synchroton Speicherringe Stanford Linear Accelerator Center SLAC Röntgenphysik 58 Beschleuniger Linear Beschleuniger Linear Beschleuniger

Mehr

III. Experimentelle Methoden. 1. Teilchenbeschleuniger. Kosmische Höhenstrahlung

III. Experimentelle Methoden. 1. Teilchenbeschleuniger. Kosmische Höhenstrahlung III. Experimentelle Methoden 1. Teilchenbeschleuniger Höhere Schwerpunktsenergien Bessere Auflösung von Substrukturen Erzeugung neuer (schwerer) Teilchen Kosmische Höhenstrahlung Für lange Zeit war die

Mehr

Teilchenbeschleuniger

Teilchenbeschleuniger Beschleuniger Teilchenbeschleuniger Linearbeschleuniger Zyklotron Mikrotron Synchroton Speicherringe Stanford Linear Accelerator Center SLAC Röntgenphysik 58 Beschleuniger Linear Beschleuniger Linear Beschleuniger

Mehr

5 Teilchenbeschleuniger

5 Teilchenbeschleuniger 5 Teilchenbeschleuniger bestehen aus Teilchenquelle Beschleunigungsstruktur Elementen zur Ablenkung und Fokusierung des Strahls Beschleunigung beruht immer auf der Kraft von elektrischen Feldern auf Ladungen.

Mehr

Theory German (Germany)

Theory German (Germany) Q3-1 Large Hadron Collider (10 Punkte) Lies die allgemeinem Hinweise im separaten Umschlag bevor Du mit der Aufgabe beginnst. Thema dieser Aufgabe ist der Teilchenbeschleuniger LHC (Large Hadron Collider)

Mehr

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V

Einführung in die Beschleunigerphysik WS 2001/02. hc = h ν = = 2 10 10 J λ. h λ B. = = p. de Broglie-Wellenlänge: U = 1.2 10 9 V Bedeutung hoher Teilchenenergien Dann ist die Spannung Die kleinsten Dimensionen liegen heute in der Physik unter d < 10 15 m Die zur Untersuchung benutzten Wellenlängen dürfen ebenfalls nicht größer sein.

Mehr

Teilchenbeschleuniger Handout zum Seminarvortrag im F-Praktikum im SS 2006 Referentin: Nadine Coberger

Teilchenbeschleuniger Handout zum Seminarvortrag im F-Praktikum im SS 2006 Referentin: Nadine Coberger Teilchenbeschleuniger Handout zum Seminarvortrag im F-Praktikum im SS 2006 Referentin: Nadine Coberger 1) Motivation Ein Grund, warum sich Physiker mit Teilchenbeschleunigern beschäftigen ist sicherlich

Mehr

Einblicke in die Teilchenphysik

Einblicke in die Teilchenphysik Einblicke in die Teilchenphysik 1. Einführung 2. Beschleuniger 3. Detektoren 4. Bewegungsgleichungen und Symmetrien 5. Das Quark-Modell und die CKM-Matrix 6. CP-Verletzung im Standardmodell 7. Proton-

Mehr

3. Beschleunigertypen und ihre prinzipiellen Funktionsweisen

3. Beschleunigertypen und ihre prinzipiellen Funktionsweisen Inhalt 1. Einleitung 3. Beschleunigertypen und ihre prinzipiellen Funktionsweisen 5. Bauelemente im Beschleunigerbau 7. DESY 1. Einleitung 1.1 Motivation und Zielsetzung 1.2 Geschichte und Entwicklung

Mehr

Der Large Hadron Collider (LHC)

Der Large Hadron Collider (LHC) Der Large Hadron Collider (LHC)...ein Rundgang durch das größte Experiment der Welt 1 Der Large Hadron Collider Institut für Experimentelle Kernphysik Übersicht Die Welt der Elementarteilchen Teilchenbeschleuniger

Mehr

Herzlich Willkommen bei DESY. Was ist das DESY und welche Forschung wird bei uns betrieben?

Herzlich Willkommen bei DESY. Was ist das DESY und welche Forschung wird bei uns betrieben? Herzlich Willkommen bei DESY. Was ist das DESY und welche Forschung wird bei uns betrieben? Michael Grefe DESY Presse- und Öffentlichkeitsarbeit (PR) Was ist das DESY? > Deutsches Elektronen-Synchrotron

Mehr

Ringbeschleuniger und Speicherringe

Ringbeschleuniger und Speicherringe Ringbeschleuniger und Speicherringe Prof. Dr. Oliver Kester Sabrina Geyer Dr. Peter Forck Motivation Ringbeschleuniger 2 Vorlesung mit Übungen: Das Team Prof. Dr. Oliver Kester Dr. Peter Forck Sabrina

Mehr

Teilchenbeschleuniger

Teilchenbeschleuniger Teilchenbeschleuniger Martin Eibach Teilchenbeschleuniger werden in der Forschung und im täglichen Gebrauch angewendet, denn es gibt einige Möglichkeiten, beschleunigte Teilchen oder die von ihnen emittierte

Mehr

Teilchenphysik - Grundlegende Konzepte und aktuelle Experimente SS05 Uni Augsburg T02 Richard Nisius Page 1

Teilchenphysik - Grundlegende Konzepte und aktuelle Experimente SS05 Uni Augsburg T02 Richard Nisius Page 1 1. Einführung 2. Beschleuniger 3. Detektoren 4. Bewegungsgleichungen und Symmetrien 5. Das Quark-Modell und die CKM-Matrix 6. CP-Verletzung im Standardmodell 7. Proton- und Photonstruktur 8. Elektroschwache

Mehr

Kapitel 07. Betatron Betatronfokussierung Schwache Fokussierung

Kapitel 07. Betatron Betatronfokussierung Schwache Fokussierung Kapitel 07 Betatron Betatronfokussierung Schwache Fokussierung Einsat Betatrons spielen heute weder in der Mediin noch in der Hochenergiephysik eine bedeutende olle Ablöse durch LINAC, wegen: besseren

Mehr

Teilchenbeschleuniger

Teilchenbeschleuniger Lehrerfortbildung Elementarteilchen Physikzentrum Bad Honnef, 23. 27. Juni 2014 Teilchenbeschleuniger für die Hochenergiephysik Wolfgang Hillert Elektronen-Stretcher-Anlage Bad Honnef, 26.06.2014 Lehrerfortbildung

Mehr

Der Teilchenbeschleuniger. am CERN in Genf

Der Teilchenbeschleuniger. am CERN in Genf Genf Der Teilchenbeschleuniger CERN am CERN in Genf Frankreich CERN 1954-2004 Conseil Européen pour la Recherche Nucléaire European Center for Particle Physics 1953 2000 F CH CERN-Nutzer 538 70 27 4306

Mehr

Teilchenphysik Masterclasses. Das Leben, das Universum und der ganze Rest

Teilchenphysik Masterclasses. Das Leben, das Universum und der ganze Rest Teilchenphysik Masterclasses Das Leben, das Universum und der ganze Rest 1 Teil 1: Einführung Warum Teilchenphysik? 2 Fundamentale Fragen Wer? Wie? Wieviel? Was? Wo? Wann? Warum? 3 Warum Teilchenphysik?

Mehr

Teilchenbeschleuniger & Massenspektrometer. E3 Vorlesung

Teilchenbeschleuniger & Massenspektrometer. E3 Vorlesung Teilchenbeschleuniger & Massenspektrometer E3 Vorlesung 20.01.2015 21.01.2015 Kernphysik: Bindungsenergien Kernreaktionen Radioaktivität kev MeV/Nukleon Motivation Teilchenphysik: Erzeugung schwerer Teilchen

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

Examensaufgaben RELATIVITÄTSTHEORIE

Examensaufgaben RELATIVITÄTSTHEORIE Examensaufgaben RELATIVITÄTSTHEORIE Aufgabe 1 (Juni 2006) Ein Proton besitzt eine Gesamtenergie von 1800 MeV. a) Wie groß ist seine dynamische Masse? b) Berechne seine Geschwindigkeit in km/s. c) Welcher

Mehr

Neue Physik? Vorbemerkung. Experimente in frühen Tagen. Beschleunigungsprinzipien. Warum brauchen wir Teilchenbeschleuniger?

Neue Physik? Vorbemerkung. Experimente in frühen Tagen. Beschleunigungsprinzipien. Warum brauchen wir Teilchenbeschleuniger? Vorbemerkung Neue Physik? Warum brauchen wir Teilchenbeschleuniger? 1. Die erreichbare Auflösung ist umgekehrt roortional zum Imuls des Probeteilchens: λ=hc/=1/ 2. Suche nach neuen Teilchen und Wechselwirkungen.

Mehr

Werkzeuge der Kernphysik

Werkzeuge der Kernphysik Kapitel 1 Werkzeuge der Kernphysik 1.1 eilchenbeschleuniger Die meisten Experimente der Kern- und eilchenphysik laufen nach dem gleichen Schema ab: Ein Strahl von eilchen (Photonen, Elektronen, Protonen,

Mehr

Der Large Hadron Collider (LHC) und ein. Elektron-Positron-Linearbeschleuniger

Der Large Hadron Collider (LHC) und ein. Elektron-Positron-Linearbeschleuniger 1 Die großen Zukunftsprojekte: Der Large Hadron Collider (LHC) und ein Elektron-Positron-Linearbeschleuniger Prof. Dr. G. Quast Institut für experimentelle Kernphysik Universität Karlsruhe (TH) 2 Ursprung

Mehr

Erzeugung Beschleunigung Ablenkung Kollision. Magnetfeld

Erzeugung Beschleunigung Ablenkung Kollision. Magnetfeld Hebbeker Thomas Berlin Humboldt-Universitat BESCHLEUNIGER: Mikroskope der Quantenwelt Urania 04.04.2000 http://eeh01.physik.hu-berlin.de/~hebbeker/beschleuniger.html UBERSICHT Was macht ein Teilchenbeschleuniger?

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Unsichtbares sichtbar machen

Unsichtbares sichtbar machen Unsichtbares sichtbar machen Beschleuniger Detektoren Das Z Boson Blick in die Zukunft, Kirchhoff Institut für Physik, Universität Heidelberg Wozu Beschleuniger und Detektoren? Materie um uns herum ist

Mehr

Aktuelle Probleme der experimentellen Teilchenphysik

Aktuelle Probleme der experimentellen Teilchenphysik Beschleunigerphysik Aktuelle Probleme der experimentellen Teilchenphysik 04.11.2008 Lehrstuhl für Physik und ihre Didaktik Historischer Überblick (1) Linearbeschleuniger (Urform Wideröe-Struktur ca. 1930)

Mehr

Wie arbeitet ein Teilchenphysiker? Das Standardmodell, Detektoren und Beschleuniger.

Wie arbeitet ein Teilchenphysiker? Das Standardmodell, Detektoren und Beschleuniger. Grafik 2 Vorstellung des Instituts für Kern- und Teilchenphysik Wie arbeitet ein Teilchenphysiker? Das Standardmodell, Detektoren und Beschleuniger. Dipl. Phys. Kathrin Leonhardt 1 Grafik 2 Auf den Spuren

Mehr

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG

Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 3 G8_Physik_2011_Ph11_Loe Seite 1 von 7 Ph 11-1 Physik G8-Abitur 2011 Aufgabenteil Ph 11 LÖSUNG 1) a) b) - - + + + c) In einem Homogenen elektrischen Feld nimmt das Potential in etwa linear. D.h. Es sinkt

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Ideale und reale Spannungsquellen Kirchhoffsche Regeln Parallelschaltung und Reihenschaltungen von Widerständen Amperemeter

Mehr

Struktur der Materie für Lehramt. Detektoren und Beschleuniger

Struktur der Materie für Lehramt. Detektoren und Beschleuniger Struktur der Materie für Lehramt Detektoren und Beschleuniger Michael Martins, Erika Garutti Universität Hamburg Sommer-Semester 2013 Teil II: Struktur 1 Einführung 2 Tools: Teilchenprozessen, Relativistische

Mehr

Erzeugung und Anwendung von brillanter Röntgenstrahlung

Erzeugung und Anwendung von brillanter Röntgenstrahlung Erzeugung und Anwendung von brillanter Röntgenstrahlung Johannes Fachinger 15.Januar 2007 Röntgenstrahlung Röntgenstrahlung ist elektromagnetische Strahlung in einem Wellenlängenbereich von ca. 10 8 m

Mehr

Das unbekannte Universum

Das unbekannte Universum Das unbekannte Universum Ein Blick in den Aufbau der Materie Karsten Büßer Physik für Aufgeweckte Universität Hannover 30. Oktober 2004 Eine einfache Kinderfrage Warum ist es nachts eigentlich dunkel?

Mehr

Beschleuniger und Detektoren Vorlesung 4, Vorlesung TU Dresden Sommersemester 2009

Beschleuniger und Detektoren Vorlesung 4, Vorlesung TU Dresden Sommersemester 2009 eschleuniger und Detektoren Vorlesung 4, 8.04.009 Vorlesung TU Dresden Sommersemester 009 Dienstag, 4. DS Raum: SE/103/U Jun.-Prof. Dr. Arno Straessner Technische Universität Dresden Inst. für Kern- und

Mehr

Teilchenbeschleuniger. Seminarvortrag Sommersemester 2005 Jan Kovermann Betreuung: Prof. Achim Stahl

Teilchenbeschleuniger. Seminarvortrag Sommersemester 2005 Jan Kovermann Betreuung: Prof. Achim Stahl Teilchenbeschleuniger Seminarvortrag Sommersemester 2005 Jan Kovermann Betreuung: Prof. Achim Stahl Wozu? Hochenergiephysik direkte Teilchenkollisionen Erzeugung instabiler Teilchen für weitere Prozesse

Mehr

Strahlungsquellen für Technik und Medizin

Strahlungsquellen für Technik und Medizin Hanno Krieger Strahlungsquellen für Technik und Medizin Teubner Inhalt Abschnitt I: Teilchenbeschleuniger 1 Überblick über die Strahlungsquellen 9 1.1 Anwendungen von Strahlungsquellen 9 1.2 Arten von

Mehr

Beschleuniger und Detektoren

Beschleuniger und Detektoren Beschleuniger und Detektoren International master classes 2017 Myriam Schönenberger 1 24/03/2017 Wozu Teilchenbeschleuniger? unser Ziel ist die Untersuchung der Bausteine der Materie und der elementaren

Mehr

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995

Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 1) Ein Elektron (e = 1,6.10-19 C ; m e = 9,1.10-31 kg) mit der Anfangsgeschwindigkeit v o = 2.10 6 m/s durchläuft

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Insertion Devices. Wavelength-Shifter Das Wiggler/Undulator Feld Bewegungsgleichung Undulator Strahlung Eigenschaften Polarisation

Insertion Devices. Wavelength-Shifter Das Wiggler/Undulator Feld Bewegungsgleichung Undulator Strahlung Eigenschaften Polarisation Wavelength-Shifter Das Wiggler/Undulator Feld Bewegungsgleichung Undulator Strahlung Eigenschaften Polarisation Wellenlängenschieber R R In einem Speicherring gilt für die kritische Energie E c 1/R R:

Mehr

Unterrichtsmaterialien und Schulexperimente zur Teilchenphysik

Unterrichtsmaterialien und Schulexperimente zur Teilchenphysik Unterrichtsmaterialien und Schulexperimente zur Teilchenphysik...von der Fadenstrahlröhre zum Large Hadron Collider 1 J. Merkert Institut für Experimentelle Kernphysik Inhalt Materialien zur Teilchenphysik

Mehr

Beschleunigerphysik für Anfänger

Beschleunigerphysik für Anfänger Beschleunigerphysik für Anfänger Das Elektron Bei BESSY beschleunigen wir Elektronen. Elektronen sind normalerweise ein Teil des Atoms, dem kleinsten Bestandteil in den die Materie zerlegt werden kann,

Mehr

Magnetische Phänomene

Magnetische Phänomene Magnetische Phänomene Bekannte magnetische Phänomene: Permanentmagnete; Das Erdmagnetfeld (Magnetkompass!); Elektromagnetismus (Erzeugung magnetischer Kraftwirkungen durch Stromfluss) Alle magnetischen

Mehr

Das Higgs-Boson wie wir danach suchen

Das Higgs-Boson wie wir danach suchen Das Higgs-Boson wie wir danach suchen Beschleuniger und Detektoren Anja Vest Wie erzeugt man das Higgs? Teilchenbeschleuniger Erzeugung massereicher Teilchen Masse ist eine Form von Energie! Masse und

Mehr

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.

Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV. Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu

Mehr

Aufgabe 1 - Schiefe Ebene - (10 Punkte)

Aufgabe 1 - Schiefe Ebene - (10 Punkte) - schriftlich Klasse: 4AW (Profil A) - (HuR) Prüfungsdauer: Erlaubte Hilfsmittel: Bemerkungen: 4h Taschenrechner TI-nspire CAS Der Rechner muss im Press-to-Test-Modus sein. Formelsammlung Beginnen Sie

Mehr

4. Radiochemie und Kerntechnik

4. Radiochemie und Kerntechnik 4. Radiochemie und Kerntechnik Bindungsenergiekurve - Für alle Atomkerne mit Nukleonenzahlen zwischen 30 und 150 beträgt die mittlere Bindungsenergie je Nukleon ca. 8,5 MeV die halbempirische Bethe-Weizsäcker-Formel

Mehr

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 05 PHYS300 Grundkurs IIIb Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, othmar.marti@physik.uni-ulm.de) 5. 2. 2003 oder 2.. 2004 Aufgaben. In einer Leitung, die parallel zur x-achse

Mehr

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B Aufgabe 73 (Elektrizitätslehre, Lorentzkraft) Elektronen treten mit der Geschwindigkeit 2,0 10 5 m in ein homogenes elektrisches Feld ein s und durchlaufen es auf einer Strecke von s = 20 cm. Die Polung

Mehr

Von schnellen Teilchen und hellem Licht

Von schnellen Teilchen und hellem Licht Erich Lohrmann und Paul Söding Von schnellen Teilchen und hellem Licht 50 Jahre Deutsches Elektronen-Synchrotron DESY WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I v Inhaltsverzeichnis Vorwort X/ 1 Die

Mehr

4 Methoden der Kern- und Elementarteilchenphysik 4.1 Teilchenbeschleuniger

4 Methoden der Kern- und Elementarteilchenphysik 4.1 Teilchenbeschleuniger 4 Methoden der Kern- und Elementarteilchenphysik 4.1 Teilchenbeschleuniger Motivation Teilchenbeschleuniger ermöglichen Streuexperimente oder Reaktionen mit Teilchen, deren... Energie wesentlich höher

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 kbasu@astro.uni-bonn.de Website: www.astro.uni-bonn.de/tp-l

Mehr

Kapitel 08. Mikrotron

Kapitel 08. Mikrotron Kapitel 08 Mikrotron 1.1 Das klassische Mikrotron Hochfrequenz-Kreisbeschleuniger für Elektronen Elektronen in einem homogenen, zeitlich konstanten Magnetfeld auf Kreisbahnen Aber: Radien wachsen mit zunehmender

Mehr

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern

Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Felder und Bewegung von Ladungsträgern in Feldern Systematisierung Feld Unterschiede: Beschreibung Ursache Kräfte auf elektrisches Feld Das elektrische Feld ist der besondere Zustand des

Mehr

Herzlich willkommen bei DESY! Tag der offenen Tür 2003 Rasmus Ischebeck

Herzlich willkommen bei DESY! Tag der offenen Tür 2003 Rasmus Ischebeck Herzlich willkommen bei DESY! Tag der offenen Tür 2003 Rasmus Ischebeck Willkommen bei DESY! Menschen bei DESY Forschung bei DESY Zu Gast bei DESY Willkommen bei DESY! Menschen bei DESY Forschung bei DESY

Mehr

Grosse Beschleuniger für kleinste Teilchen

Grosse Beschleuniger für kleinste Teilchen Grosse Beschleuniger für kleinste Teilchen Fragen an die experimentelle Elementarteilchenphysik Konzepte der Beschleuniger Beispiel: Der LHC am Cern Erkenntnisgewinne: Wo stehen wir? - Was erwarten wir?

Mehr

Ferienkurs der Experimentalphysik II Musterlösung Übung 3

Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Michael Mittermair 29. August 213 1 Aufgabe 1 Wie groß ist die Leistung, die von einem geladenen Teilchen mit der Ladung q abgestrahlt wird, das

Mehr

Ausarbeitung zum Vortrag Teilchenbeschleuniger

Ausarbeitung zum Vortrag Teilchenbeschleuniger Vortragende: Friederike Bachor Betreuer: Marco Dehn Seminarleiter: Dr. P. Achenbach gehalten am 24. Oktober 2011 Johannes Gutenberg-Universität Mainz Ausarbeitung zum Vortrag Teilchenbeschleuniger A. Einleitung

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

Institut für Angewandte Physik LINAC AG. Prof. Dr. H. Podlech 1

Institut für Angewandte Physik LINAC AG. Prof. Dr. H. Podlech 1 Hochfrequenz-Resonatoren Prof. Dr. H. Podlech 1 Maxwellgleichungen Bedeutung?? Prof. Dr. H. Podlech 2 Maxwellgleichungen im Vakuum Prof. Dr. H. Podlech 3 Wellengleichungen 2. Maxwell-Gl. Wellengleichung

Mehr

1.1 Einsatzbereiche ionisierender Strahlungsquellen Arten ionisierender Strahlungsquellen 13

1.1 Einsatzbereiche ionisierender Strahlungsquellen Arten ionisierender Strahlungsquellen 13 Inhalt Abschnitt I: Teilchenbeschleuniger 1 Überblick über die Strahlungsquellen 9 1.1 Einsatzbereiche ionisierender Strahlungsquellen 9 1.2 Arten ionisierender Strahlungsquellen 13 2 Grundlagen zur Teilchenbeschleunigung

Mehr

Teilchenbeschleuniger

Teilchenbeschleuniger Teilchenbeschleuniger Unersetzbare Werkzeuge für die Forschung C.P. Welsch Anwendungsgebiete Hochenergiephysik Hauptfokus dieser Woche Medizinische Anwendungen Lichtquellen Seminar Dienstagabend Materialwissenschaften...

Mehr

Vorstellung einer Methode zur Festkörperuntersuchung

Vorstellung einer Methode zur Festkörperuntersuchung Synchrotron-Strahlung Vorstellung einer Methode zur Festkörperuntersuchung Dennis Aulich & Daniel Schmidt Technische Universität Berlin FAKULTÄT II, Mathematik und Naturwissenschaften Synchrotron-Strahlung

Mehr

Wechselwirkung zwischen Strahlung und Materie

Wechselwirkung zwischen Strahlung und Materie Wintersemester 2010/2011 Radioaktivität und Radiochemie Wechselwirkung zwischen Strahlung und Materie 11.11.2010 Udo Gerstmann I 0 I I = I. 0 e-µ x Schwächung von Strahlung Energieverlust schwerer geladener

Mehr

Reihen- und Parallelschaltung von Kondensatoren

Reihen- und Parallelschaltung von Kondensatoren Ladung Spannung Kapazität Skizze wir-sind-klasse.jimdo.com Das elektrische Feld Energie des Kondensators Die Energie sitzt nach Faradays Feldvorstellung nicht bei den Ladungen auf den Platten sondern zwischen

Mehr

Dennis S. Weiß & Christian Niederhöfer. Versuchsprotokoll. (Fortgeschrittenen-Praktikum) zu Versuch 18. Magnetische Quadrupole

Dennis S. Weiß & Christian Niederhöfer. Versuchsprotokoll. (Fortgeschrittenen-Praktikum) zu Versuch 18. Magnetische Quadrupole Montag, 26.4.1999 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Fortgeschrittenen-Praktikum) zu Versuch 18 Magnetische Quadrupole 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische Grundlagen

Mehr

Ist das Higgs entdeckt? erste Ergebnisse der Weltmaschine und wie es weiter geht.

Ist das Higgs entdeckt? erste Ergebnisse der Weltmaschine und wie es weiter geht. Ist das Higgs entdeckt? erste Ergebnisse der Weltmaschine und wie es weiter geht. Öffentlicher Abendvortrag 14. September 2012 Volkshochschule Urania, Berlin Dr. Martin zur Nedden Humboldt-Universität

Mehr

Formelsammlung Physik

Formelsammlung Physik Energie, Arbeit, Leistung: Arbeit [J] W = F s Wärme [J] Q = c m Δθ Elektrische Energie [J] E = U I t Spannenergie [J] E = 1 2 Ds Kinetische Energie [J] E "# = 1 2 mv Potentielle Energie [J] E "# = mgh

Mehr

Klausur 2 Kurs 12Ph3g Physik

Klausur 2 Kurs 12Ph3g Physik 2009-11-16 Klausur 2 Kurs 12Ph3g Physik Lösung (Rechnungen teilweise ohne Einheiten, Antworten mit Einheiten) Die auf Seite 3 stehenden Formeln dürfen benutzt werden. Alle anderen Formeln müssen hergeleitet

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

GOTTTEILCHEN und WELTMASCHINE

GOTTTEILCHEN und WELTMASCHINE Harald Appelshäuser Institut für Kernphysik GOTTTEILCHEN und WELTMASCHINE dem Urknall auf der Spur mit dem Teilchenbeschleuniger am CERN Large Hadron Collider (LHC) 8,6 km Large Hadron Collider (LHC) 1232

Mehr

Von Farbladungen und Quarkteilchen: die Starke Wechselwirkung. Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt

Von Farbladungen und Quarkteilchen: die Starke Wechselwirkung. Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt Von Farbladungen und Quarkteilchen: die Starke Wechselwirkung Harald Appelshäuser Institut für Kernphysik JWG Universität Frankfurt Die vier Kräfte Gravitation Starke Kraft Schwache Kraft Elektromagnetismus

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Wozu immer größere Beschleuniger?

Wozu immer größere Beschleuniger? Daniel A.Stricker-Shaver Wozu immer größere Beschleuniger? Welche Arten gibt es und warum? Was haben sie uns gebracht? Wie sieht die Zukunft aus? 1 Warum Beschleuniger : Äquivalenz von Masse und Energie

Mehr

1.12 Elektromagnetische Schwingungen und Wellen

1.12 Elektromagnetische Schwingungen und Wellen 1.12 Elektromagnetische Schwingungen und Wellen 1.12.1 Die Maxwellschen Gleichungen (im Vakuum) (1831-1879) 1.12.2 Elektromagnetische Schwingungen der Schwingkreis Zum Schwingkreis Oszillografen-Bilder

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 29. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 29. 05.

Mehr

Ph4I Zusammenfassung

Ph4I Zusammenfassung Physik 4 für Informatiker Ph4I Zusammenfassung Stand: 2013-08-12 https://github.com/hsr-stud/ph4i/ Inhaltsverzeichnis 1 Elektrostatik 3 1.1 Elektrische Ladung..................................... 3 1.2

Mehr

Teilchenbeschleuniger Technologien & Konzepte

Teilchenbeschleuniger Technologien & Konzepte Teilchenbeschleuniger Technologien & Konzepte Daniel Schell 04.11.2011 1 Parameter eines Teilchenbeschleunigers Zu den Parametern, die ein Teilchenbeschleuniger besitzt, ist unteranderem die Strahlintensität

Mehr

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft

12. Elektrodynamik Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Alte Physik III. 10. Februar 2011

Alte Physik III. 10. Februar 2011 D-MATH/D-PHYS Prof. R. Monnier Studienjahr HS11 ETH Zürich Alte Physik III 10. Februar 2011 Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus, und kreuzen Sie Ihre Studienrichtung

Mehr

Der Injektor der Speicherringanlage ANKA

Der Injektor der Speicherringanlage ANKA (272) Der Injektor der Speicherringanlage ANKA D. Einfeld, M. Pont, FGS 2.5 GeV Speicher-Ring Einleitung Im Speicherring von ANKA soll zur Erzeugung der gewünschten Synchrotronstrahlung ein 400- ma-elektronenstrahl

Mehr

Klassische Physik - Quantenpysik

Klassische Physik - Quantenpysik Klassische Physik - Quantenpysik Elektronenfalle aus 40 Eisen- Atomen auf einer Kupfer Oberfläche www.almaden.ibm.com Klassische Physik um 1900 Teilchen und Wellen Rastertunnelmikroskop Wechselwirkungsfreie

Mehr

Teilchenbahnen im Magnetfeld

Teilchenbahnen im Magnetfeld Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im B Feld Kopetschke 2011 1 Teilchenbahnen im Magnetfeld 1) Protonen im Kreisverkehr: Protonen bewegen sich von unten kommend in einem Magnetfeld, das in

Mehr

12. Elektrodynamik. 12. Elektrodynamik

12. Elektrodynamik. 12. Elektrodynamik 12. Elektrodynamik 12.1 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Maxwell sche Verschiebungsstrom 12.4 Magnetische Induktion 12.5 Lenz sche Regel 12.6 Magnetische Kraft 12. Elektrodynamik

Mehr

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25

Versuch: Induktions - Dosenöffner. Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Versuch: Induktions - Dosenöffner Experimentalphysik I/II für Mediziner: Sommersemester 2010 Caren Hagner Magnetismus 25 Der schwebende Supraleiter (idealer Diamagnet) Supraleiter B ind Magnet B Magnet

Mehr

Erzeugung ionisierender Strahlung Apparate und Röntgentechnik. Stephan Scheidegger ZHAW School of Engineering

Erzeugung ionisierender Strahlung Apparate und Röntgentechnik. Stephan Scheidegger ZHAW School of Engineering Erzeugung ionisierender Strahlung Apparate und Röntgentechnik Stephan Scheidegger ZHAW School of Engineering Lernziele Funktion & Aufbau von Röntgengenerator & Röntgenröhre in eigenen Worten beschreiben

Mehr

y =y z =z (1) t = x = Gamma-Faktor

y =y z =z (1) t = x = Gamma-Faktor Gamma-Faktor Warum kann man eine Rakete nicht auf Lichtgeschwindigkeit beschleunigen? Diese Frage führt unmittelbar zur Speziellen Relativitätstheorie und zu den Lorentz- Transformationen. Die Lorentz-Transformationen

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

Messung der longitudinalen Akzeptanz eines Race-Track-Mikrotron am Beispiel der 3. Stufe von MAMI C

Messung der longitudinalen Akzeptanz eines Race-Track-Mikrotron am Beispiel der 3. Stufe von MAMI C Messung der longitudinalen Akzeptanz eines Race-Track-Mikrotron am Beispiel der 3. Stufe von MAMI C Tobias Weber Mario Vormstein 19. November 2009 Inhaltsverzeichnis 1 Vorbereitung 3 1.1 Grundlagen..................................

Mehr

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung 2.1 Coulomb-Kraft und elektrische Ladung 2 Elektrostatik 2.1 Coulomb-Kraft und elektrische Ladung Abb. 2.1 Durch Reiben verschiedener Stoffe aneinander verbleiben Elektronen der Atomhüllen überwiegend

Mehr

Inhalt der Vorlesung B2

Inhalt der Vorlesung B2 Inhalt der Vorlesung B 4. Elektrizitätslehre, Elektrodynamik Einleitung Ladungen & Elektrostatische Felder Elektrischer Strom Magnetostatik Zeitlich veränderliche Felder - Elektrodynamik Wechselstromnetzwerke

Mehr

TESLA: Der Freie-Elektronen Laser

TESLA: Der Freie-Elektronen Laser TESLA: Der Freie-Elektronen Laser Jörg Rossbach, Deutsches Elektronen-Synchrotron, DESY 1) Was können heutige Strahlungsquellen? Was hätte man gerne? 2) Wie sieht ein Röntgen-FEL aus? 3) Was haben wir

Mehr