Run Length Coding und Variable Length Coding

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Run Length Coding und Variable Length Coding"

Transkript

1 Fachbereich Medieninformatik Hochschule Harz Run Length Coding und Variable Length Coding Referat Matthias Zittlau Abgabe:

2 Inhaltsverzeichnis 1. RLC Einführung Prinzip Effektivität Anwendung VLC Einführung Prinzip Effektivität Anwendung Quellen 3.1 Literaturverzeichnis Internetquellen Bildquellen...5

3 1. RLC (Run Length Coding) - Lauflängenkodierung 1.1 Einführung: RLC zählt zu einem der einfachsten Verfahren Daten zu komprimieren und stellt nur geringe Anforderungen an die Hard- und Software. Dieses Verfahren komprimiert den einfachsten Typ einer Redundanz in einer Datei, die langen, sich wiederholenden Folgen von gleichen Zeichen, Läufe bzw. runs genannt. RLC existiert in verschiedenen Ausprägungen. Um das Prinzip des RLC zu verdeutlichen und einige Probleme aufzuzeigen, wird nachfolgend eine Beispiel-Zeichenfolge kodiert. 1.2 Prinzip: Das Grundprinzip des RLC: Durch das Ersetzen von mehreren gleichen, aufeinander folgenden Zeichen mit dem einzelnen Zeichen und der Angabe der Anzahl wird die anfallende Datenmenge reduziert, ohne das Informationsgehalt verloren geht. Beispiel-Zeichenfolge (Beispiel von [4]): AAABBBAACCCCAAADEEEF5AAA#BBBB 3ABBBAACCCCAAADEEEF5AAA#BBBB 3A3BAACCCCAAADEEEF5AAA#BBBB 3A3B2ACCCCAAADEEEF5AAA#BBBB 3A3B2A4CAAADEEEF5AAA#BBBB 3A3B2A4C3ADEEEF5AAA#BBBB 3A3B2A4C3A1DEEEF5AAA#BBBB Hier wird das erste Problem deutlich. Ein einzelnes Zeichen verlängert durch dieses Verfahren die Zeichenkette. Lösung: Einzelne Zeichen müssen ohne Angabe der Anzahl kodiert werden. 3A3B2A4C3ADEEEF5AAA#BBBB 3A3B2A4C3AD3EF5AAA#BBBB 3A3B2A4C3AD3EF5AAA#BBBB 3A3B2A4C3AD3EF5AAA#BBBB Ein weiteres Problem tritt auf falls, das Symbol, das in unserem Code die Zeichenanzahl beschreibt, selbst in der Zeichenkette vor kommt. Lösung: Vor jeder Angabe der Anzahl wird ein Escape Zeichen eingesetzt (als Escape Zeichen wird das am unwahrscheinlichsten bzw. seltenste auftretende Zeichen gewählt). #3A#3B#2A#4C#3AD#3EF#5AAA#BBBB #3A#3B#2A#4C#3AD#3EF#53A#BBBB #3A#3B#2A#4C#3AD#3EF53A#BBBB Das nächste Problem könnte auftreten, falls das Escape Zeichen selbst in der zu kodierenden Zeichenkette auftritt. Lösung: Ein Escape Zeichen wird zu 2 Escape Zeichen kodiert. #3A#3B#2A#4C#3AD#3EF53A##BBBB #3A#3B#2A#4C#3AD#3EF53A###4B Seite: 1

4 RLC Code: #3A#3B#2A#4C#3AD#3EF53A###4B Zusammengefasst ergibt sich folgendes Prinzip: Mehrere aufeinander folgende, gleiche Zeichen werden durch das einzelne Zeichen ersetzt und mit einer Angabe der Anzahl versehen, vor die ein Escape Zeichen eingefügt wird. Falls das Escape Zeichen in der Zeichenkette selbst vorkommt, wird es ebenfalls mit einen Escape Zeichen versehen und einzelne Zeichen werden unverändert übernommen. 1.3 Effektivität: Dieses Verfahren hat nur eine positive Auswirkung, wenn mindestens vier aufeinander folgende Zeichen auftreten. Bei einem bzw. drei aufeinander folgenden Zeichen entsteht keine Kompression. Eine Folge von 2 gleichen Zeichen bzw. ein Escape Zeichen bewirkt eine Verlängerung der Zeichenkette. 1.4 Anwendung: Zur Anwendung kommt RLC meist bei einfachen Grafi ken, die einen hohen Anteil von gleichfarbigen Flächen aufweisen. RLC ist unter anderem Bestandteil von BMP, TIFF und PCX-Unterformaten. In der MPEG-Kodierung wird RLC nach der DCT (Diskrete Cosinus Transformation) angewandt, um die ermittelten Koeffi zienten zu komprimieren. Seite: 2

5 2. VLC (Variable Length Coding) Kodierung mit variabler Länge 2.1 Einführung: Bei konventionellen Codes werden für alle Zeichen bzw. Symbole eine einheitliche Länge verwendet, unerheblich in welcher Häufi gkeit sie auftreten. Somit benötigen häufi g auftretende Zeichen dieselbe Codelänge, wie selten auftretende. Bei einer Kodierung mit variabler Länge wird die Häufi gkeit der zu kodierenden Zeichen berücksichtigt und ermöglicht so eine beträchtliche Platzeinsparung. Um dies zu verdeutlichen wird auch hier wieder eine Beispiel-Zeichenfolge mit dem Prinzip des VLC kodiert. 2.2 Prinzip: Das VLC Verfahren kodiert die Zeichen mit möglichst geringer Anzahl Bits, welche am häufi gsten vorkommen. Selten auftretende Zeichen werden mit mehr Bits kodiert. Beispiel-Zeichenfolge (Beispiel von [3]): ABRACADABRA Binärdarstellung mit Hilfe von fünf Bits würde folgende Kodierung ergeben: = A = B = R = C = D Es wird deutlich das alle Buchstaben die gleiche Anzahl Bits benötigen, unerheblich in welcher Häufi gkeit sie auftreten. Bei einem Code mit variabler Länge wird dem am häufi gsten verwendeten Buchstaben die kürzesten Bitfolgen zugewiesen. In unserm Beispiel würde idealer Weise A mit 0 kodiert, B mit 1, R mit 01, C mit 10 und D mit 11. ABRACADABRA kodiert mit unserem VLC Beispiel wäre dann: VLC hat die Zeichenfolge in den möglichst kürzesten Code kodiert. Das Problem bei diesem Code ist aber das er nicht mehr eindeutig dekodiert werden kann, so kann 01 als AB aber auch als R interpretiert werden. Um dieses Problem zu beheben müssten Begrenzungszeichen nach jedem kodierten Zeichen eingefügt werden. 0#1#01#0#10#0#11#0#1#01#0 Dies verlängert den Code natürlich wieder erheblich, dennoch ist der Code kürzer als der oben dargestellte fünf Bit Binärcode. Die Problematik mit den Begrenzungszeichen kann nur umgangen werden wenn sichergestellt ist das kein Anfang eines Zeichencodes als selbstständiger Zeichencode verfügbar ist. Wenn wir dieses Kriterium beachten könnte A mit 11, B mit 00, C mit 010, D mit 10 und R mit 011 kodiert werden um die folgende Zeichenfolge nur noch eindeutig dekodieren zu können Mit Hilfe des folgenden Codebaumes können wir sehen das kein Anfang unserer Zeichencodes übereinstimmt und wir können garantieren, dass unser Code auch nur eindeutig dekodiert werden kann. Seite: 3

6 Abb.1 binärer Codebaum (nach [3]) Der Codebaum wird, wie folgt, gelesen. Man beginnt an der Wurzel (es wird nur abwärts gelesen), jeder Schritt nach links steht für die 0 jeder Schritt nach rechts für die 1. Hat man einen Endpunkt erreicht beginnt man erneut bei der Wurzel. 2.3 Effektivität: Ein Code mit variabler Länge ist am effi zientesten wenn keine Trennungszeichen benötigt werden und wenn es ein präfi xfreier Code ist (Präfi x = Vorsilbe). 2.4 Anwendung: Codes mit variabler Länge sind zum Beispiel die arithmetische Kodierung, die Huffman-Kodierung oder die Shannon- Fano-Kodierung. Mit Hilfe einer VLC-Kodierung wird bei der MPEG-Kodierung nach dem RLC nochmal eine Datenkomprimierung erreicht.

7 3. Quellen 3.1 Literaturverzeichnis: [1] Bruns, Prof. Dr. Kai 2005: Taschenbuch der Medieninformatik: Carl Hanser Verlag Münschen Wien [2] Strutz, Tilo 2002: Bilddatenkompression: Friedr. Vieweg & Sohn Verlagsgesellschaft mbh, Braunschweig/Wiesbaden 3.2 Internetquellen: [3] ( ) [4] les/datenkomp.ppt ( ) 3.3 Bildquellen: Seite 4 Abb.1 binärer Codebaum (nach [3]) Seite: 5

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 6. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Datenkomprimierung Bei den meisten bisher betrachteten

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Praktikum BKSPP. Aufgabenblatt Nr. 1. 1 Umrechnung zwischen Stellenwertsystemen

Praktikum BKSPP. Aufgabenblatt Nr. 1. 1 Umrechnung zwischen Stellenwertsystemen Dr. David Sabel Institut für Informatik Fachbereich Informatik und Mathematik Johann Wolfgang Goethe-Universität Frankfurt am Main Praktikum BKSPP Sommersemester 21 Aufgabenblatt Nr. 1 Abgabe: Mittwoch,

Mehr

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut Datenkompression Holger Rauhut 1. September 2010 Skript für die Schülerwoche 2010, 8.-11.9.2010 Hausdorff Center for Mathematics, Bonn 1 Allgemeines Datenkompression hat zum Ziel, Daten in digitaler Form,

Mehr

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung

Mehr

2. Digitale Codierung und Übertragung

2. Digitale Codierung und Übertragung 2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Speicherbedarf und Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München Prof. Hußmann

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

2 Informationstheorie

2 Informationstheorie 2 Informationstheorie Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Grundbegriffe Informatik (IT: Information

Mehr

Kodierungsalgorithmen

Kodierungsalgorithmen Kodierungsalgorithmen Komprimierung Verschlüsselung Komprimierung Zielsetzung: Reduktion der Speicherkapazität Schnellere Übertragung Prinzipien: Wiederholungen in den Eingabedaten kompakter speichern

Mehr

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Bilddatenformate BMP Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Format: Raster Farben: 1 Bit (s/w), 4 Bit (16 Farben), 8 Bit (256 Farben), 24 Bit (16,7 Mio. Farben) Kompression: Keine (meist) oder

Mehr

Digitalisierung. analoges Signal PAM. Quantisierung

Digitalisierung. analoges Signal PAM. Quantisierung Digitalisierung U analoges Signal t U PAM t U Quantisierung t Datenreduktion Redundanzreduktion (verlustfrei): mehrfach vorhandene Informationen werden nur einmal übertragen, das Signal ist ohne Verluste

Mehr

Proseminar WS 2002/2003

Proseminar WS 2002/2003 Technische Universität Chemnitz Fakultät für Informatik Professur Theoretische Informatik Proseminar WS 2002/2003 Thema: Datenkompression Dynamisches / Adaptives Huffman-Verfahren Danny Grobe Rainer Kuhn

Mehr

Paper Computer Science Experiment

Paper Computer Science Experiment Paper Computer Science Experiment Great Principles of Computing Computation (Informationsspeicherung) Thema Digitale Repräsentation von Grafiken und Bildern Unterrichtsform Einzel- und Partnerarbeit Voraussetzung

Mehr

Basisinformationstechnologie II

Basisinformationstechnologie II Basisinformationstechnologie II Sommersemester 2014 28. Mai 2014 Algorithmen der Bildverarbeitung I: Kompression Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G.

Mehr

Zahlensysteme: Oktal- und Hexadezimalsystem

Zahlensysteme: Oktal- und Hexadezimalsystem 20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen

Mehr

Algorithmus zur komprimierten Übertragung von Textdaten an mobile Endgeräte

Algorithmus zur komprimierten Übertragung von Textdaten an mobile Endgeräte Fachhochschule Wedel Seminararbeit Algorithmus zur komprimierten Übertragung von Textdaten an mobile Endgeräte Sven Reinck 7. Januar 2007 Inhaltsverzeichnis Inhaltsverzeichnis Motivation 2 Wörterbuch 2.

Mehr

Unicode und UTF-8. Anna-Katharina Wurst. 28. April 2015. WP5 Angewandte Programmierung

Unicode und UTF-8. Anna-Katharina Wurst. 28. April 2015. WP5 Angewandte Programmierung 28. April 2015 WP5 Angewandte Programmierung David Kaumanns & Sebastian Ebert SoSe 2015 CIS Ludwig-Maximilians-Universität München 2 Inhalt 1 Zeichensätze ASCII ISO 8859-x Unicode 2 Kodierung UTF-8 3 Anwendung

Mehr

Übung 13: Quellencodierung

Übung 13: Quellencodierung ZHAW, NTM, FS2008, Rumc, /5 Übung 3: Quellencodierung Aufgabe : Huffmann-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten

Mehr

Einführung in Kompressionstechniken

Einführung in Kompressionstechniken Einführung in Kompressionstechniken W. Kowarschick 7. Februar 997. November 9 W. Kowarschick Motivation Dateigrößen Text Vektorgraphiken Rasterbilder Tomographien Telephon CD-Stereo Bildfolgen VD7 VD7

Mehr

MPEG Video Layer 1. Fachbereich Medieninformatik. Hochschule Harz. Referat. Kolja Schoon. Thema: MPEG Video Layer 1

MPEG Video Layer 1. Fachbereich Medieninformatik. Hochschule Harz. Referat. Kolja Schoon. Thema: MPEG Video Layer 1 Fachbereich Medieninformatik Hochschule Harz MPEG Video Layer 1 Referat Kolja Schoon 10952 Abgabe: 15.01.2007 Stand: (Januar 2007) Autor: Kolja Schoon Seite 1 Inhaltsverzeichnis 1. Einleitung / Vorwort...3

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Mathematik für Information und Kommunikation

Mathematik für Information und Kommunikation Mathematik für Information und Kommunikation Am Beispiel des Huffman- Algorithmus Thomas Borys und (Christian Urff) Huffman im Alltag MPEG Telefax JPEG MP3 ZIP avid Huffman avid Huffman [95-999] www.soe.ucsc.edu/people/faculty/huffman.html

Mehr

Eigene Dokumente, Fotos, Bilder etc. sichern

Eigene Dokumente, Fotos, Bilder etc. sichern Eigene Dokumente, Fotos, Bilder etc. sichern Solange alles am PC rund läuft, macht man sich keine Gedanken darüber, dass bei einem Computer auch mal ein technischer Defekt auftreten könnte. Aber Grundsätzliches

Mehr

Hauptspeicherinhalt. Ton. Vektorgrafik Bitmapgrafik Digit. Video. 1. Darstellung von Daten im Rechner. Abb. 1.1: Einteilung der Daten

Hauptspeicherinhalt. Ton. Vektorgrafik Bitmapgrafik Digit. Video. 1. Darstellung von Daten im Rechner. Abb. 1.1: Einteilung der Daten Hauptspeicherinhalt Programmcode Daten numerisch logisch alphanumerisch Ton Grafik Ganze Zahlen Gleitkommazahlen Zeichen Zeichenketten vorzeichenlos mit Vorzeichen Vektorgrafik Bitmapgrafik Digit. Video

Mehr

Thema: IPTV. Fachbereich Medieninformatik. Hochschule Harz IPTV. Referat. Marek Bruns. Abgabe: 15.01.2007

Thema: IPTV. Fachbereich Medieninformatik. Hochschule Harz IPTV. Referat. Marek Bruns. Abgabe: 15.01.2007 Fachbereich Medieninformatik Hochschule Harz IPTV Referat Marek Bruns 11408 Abgabe: 15.01.2007 Inhaltsverzeichnis 1 Was bedeutet IPTV?...3 2 Vorraussetzungen an Soft- und Hardware...3 3 Vom Sender zum

Mehr

Übrigens: um den Algorithmus im Unterricht einzuführen, sind keine Formeln notwendig! Warum reicht die normale ASCII-Codierung nicht aus?

Übrigens: um den Algorithmus im Unterricht einzuführen, sind keine Formeln notwendig! Warum reicht die normale ASCII-Codierung nicht aus? Huffman-Code Dieser Text ist als Hintergrundinformation ausschliesslich für die Lehrperson gedacht. Der Text ist deshalb eher technisch gehalten. Er lehnt sich an das entsprechende Kapitel in "Turing Omnibus"

Mehr

Kurze Einführung in IBM SPSS für Windows

Kurze Einführung in IBM SPSS für Windows Kurze Einführung in IBM SPSS für Windows SPSS Inc. Chicago (1968) SPSS GmbH Software München (1986) 1984: Datenanalyse Software für den PC 1992: Datenanalyse Software unter Windows 1993: Datenanalyse Software

Mehr

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg Vortrag am 25. Januar 200 Werner von Siemens Gymnasium Magdeburg Zeitansatz: 5h (inklusive Programmieraufgaben) Datenkompression Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005. Das Problem.. Quellcodierung und Datenkompression. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder übertragen kann, schicken.

Mehr

Informationsdarstellung im Rechner

Informationsdarstellung im Rechner Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer

Mehr

Thema: DTS (apt-x100) Fachbereich Medieninformatik. Hochschule Harz. DTS (apt-x100) Referat. Olaf Cempel. Abgabe: 15.01.2007

Thema: DTS (apt-x100) Fachbereich Medieninformatik. Hochschule Harz. DTS (apt-x100) Referat. Olaf Cempel. Abgabe: 15.01.2007 Fachbereich Medieninformatik Hochschule Harz DTS (apt-x00) Referat Olaf Cempel 273 Abgabe: 5.0.2007 Inhaltsverzeichnis Einleitung... 2 Technische Details... 3 Formate...2 3. DTS 5. Discrete (DTS Digital

Mehr

Codierungstheorie. Code-Arten und Code-Sicherung

Codierungstheorie. Code-Arten und Code-Sicherung Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Codierung. H.-G. Hopf

Codierung. H.-G. Hopf Codierung H.-G. Hopf Inhalt Informationsübermittlung Codierung von Zeichen GDI: Codierung / 2 Inhalt Informationsübermittlung Codierung von Zeichen GDI: Codierung / 3 Ideale Kommunikation Übertragungskanal

Mehr

ElsterOnline-Portal Benutzeranleitung CSV-Format der Import-Datei ZM. im BZSt-Verfahren Zusammenfassende Meldung

ElsterOnline-Portal Benutzeranleitung CSV-Format der Import-Datei ZM. im BZSt-Verfahren Zusammenfassende Meldung ElsterOnline-Portal Benutzeranleitung CSV-Format der Import-Datei im BZSt-Verfahren Zusammenfassende Meldung Stand: 03.11.2015 Seite 1 von 6 Inhaltsverzeichnis 1 Einleitung... 3 2 Versionierung der Importfunktion...

Mehr

Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression

Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression Digitale Bildverarbeitung Bildkompression Einleitung Datenmenge für ein unkomprimiertes Bild Verwendungszweck des Bildes Bild soll weiterverarbeitet werden Bild soll archiviert werden Bild soll per E-Mail

Mehr

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert.

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. Anwendungen von Bäumen 4.3.2 Huffman Code Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. => nutzbar für Kompression Code fester

Mehr

- - CodE 11 CodE 0 0 0 0 0 0 0 0 2.o C 1 10.0 C 2 off 3 3.0 4 2.0 5 off 6 1 8 20.0 9 60 C 7 4.0 10 80 C 1 38 C 12 8 k 13 on 14 30.0 15 10 16 - - CodE 11 CodE 0 0 0 0 0 0 0 0 2.o C 1 10.0 C 2

Mehr

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128)

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128) Darstellung von Text ASCII-Code 7 Bit pro Zeichen genügen (2 7 = 128) 26 Kleinbuchstaben 26 Großbuchstaben 10 Ziffern Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. - CR (carriage

Mehr

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. ASCII-Tabelle. Parity-Bit. Länderspezifische Zeichen

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. ASCII-Tabelle. Parity-Bit. Länderspezifische Zeichen Darstellung von Text ASCII-Code 7 Bit pro Zeichen genügen ( 7 = 18) 6 Kleinbuchstaben 6 Großbuchstaben 10 Ziffern Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. - CR (carriage return

Mehr

Einführung in die Informatik und Medieninformatik

Einführung in die Informatik und Medieninformatik Name, Vorname Matrikelnummer Klausur zur Vorlesung Einführung in die Informatik und Medieninformatik LVNr. 36 600, WS 2012/13, im Studiengang Medieninformatik Dienstag, 12. Februar 2013 16:00 18:00 Uhr

Mehr

Fachbereich Medieninformatik. Hochschule Harz H.264/AVC. Referat. Olaf Cempel. Abgabe: 15.01.2007

Fachbereich Medieninformatik. Hochschule Harz H.264/AVC. Referat. Olaf Cempel. Abgabe: 15.01.2007 Fachbereich Medieninformatik Hochschule Harz H.264/AVC Referat Olaf Cempel 11273 Abgabe: 15.01.2007 Inhaltsverzeichnis 1 Einleitung...1 2 Einsatzgebiete...1 3 Funktionsweise von H.264...1 3.1 Slices und

Mehr

Kapitel 3. Codierung von Text (ASCII-Code, Unicode)

Kapitel 3. Codierung von Text (ASCII-Code, Unicode) Kapitel 3 Codierung von Text (ASCII-Code, Unicode) 1 Kapitel 3 Codierung von Text 1. Einleitung 2. ASCII-Code 3. Unicode 2 1. Einleitung Ein digitaler Rechner muss jede Information als eine Folge von 0

Mehr

Grundlagen und Basisalgorithmus

Grundlagen und Basisalgorithmus Grundlagen und Basisalgorithmus Proseminar -Genetische Programmierung- Dezember 2001 David König Quelle: Kinnebrock W.: Optimierung mit genetischen und selektiven Algorithmen. München, Wien: Oldenbourg

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Sachauseinandersetzung und Begründung der Auswahl

Sachauseinandersetzung und Begründung der Auswahl Unterrichtsentwurf zum Thema Vergleich von Morse- und ASCII-Code Lernziele Die SchülerInnen wenden die Begriffe der mittleren Codewortlänge, Präfixfreiheit und binären Kodierung in der Beschreibung des

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

A2.3: Zur LZ78 Komprimierung

A2.3: Zur LZ78 Komprimierung A2.3: Zur LZ78 Komprimierung Im Gegensatz zur Entropiecodierung nach Huffman oder Shannon, bei der man die Quellenstatistik (möglichst genau) kennen muss, sind solche Einschränkungen bei den von Abraham

Mehr

Mathematisches Praktikum - SoSe 2014

Mathematisches Praktikum - SoSe 2014 Mathematisches Praktikum - SoSe 2014 Prof. Dr. Wolfgang Dahmen Felix Gruber, M. Sc., Christian Löbbert, M. Sc., Yuanjun Zhang, M. Sc., Klaus Kaiser, M. Sc. Zusatzaufgabe 3 für Informatiker Bearbeitungszeit:

Mehr

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Eigenschaften von Kompressionsverfahren

Eigenschaften von Kompressionsverfahren 6 Textkompression Eigenschaften von Kompressionsverfahren Das Ziel der Datenkompression ist es, eine gegebene Information (Datenquelle) auf eine kompaktere Weise zu repräsentieren. Dies geschieht, indem

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Aufbau und Funktionsweise eines Computers

Aufbau und Funktionsweise eines Computers Aufbau und Funktionsweise eines Computers Ein kurzer Überblick Informatik I 1 WS 2005/2006 Organisation der Hardware Architektur eines einfachen Computersystems mit Bus: Informatik I 2 WS 2005/2006 1 System-Architektur

Mehr

Grundlagen der Informatik I Informationsdarstellung

Grundlagen der Informatik I Informationsdarstellung Grundlagen der Informatik I Informationsdarstellung Einführung in die Informatik, Gumm, H.-P./Sommer, M. Themen der heutigen Veranstaltung. ASCIi Code 2. Zeichenketten 3. Logische Operationen 4. Zahlendarstellung

Mehr

Proseminar Datenkomprimierung Dr. U. Tamm. Bildkompression WS 2002/03. Florian Strunk

Proseminar Datenkomprimierung Dr. U. Tamm. Bildkompression WS 2002/03. Florian Strunk Proseminar Datenkomprimierung Dr. U. Tamm Bildkompression WS 2002/03 Florian Strunk Problematik: Die Datencodierung und Kompression ist so alt wie die Geschichte des Computers. Seit dem es hochauflösende

Mehr

Inhalt. Copyright Susanne Hagemann 2015. Alle Rechte vorbehalten. Suchen und Ersetzen 2. Absatzformatierung 3. Formatvorlagen 4

Inhalt. Copyright Susanne Hagemann 2015. Alle Rechte vorbehalten. Suchen und Ersetzen 2. Absatzformatierung 3. Formatvorlagen 4 TWA_Word.docx Diese Datei enthält Screenshots zu einigen der in Einführung in das translationswissenschaftliche Arbeiten vorgestellten Word-Funktionen (Word 2013). Sie existiert zunächst als DOCX, weil

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Qualitätskriterien digitaler Bilder im Langzeitarchiv! KOST Veranstaltung in Bern vom Dr. Peter Fornaro

Qualitätskriterien digitaler Bilder im Langzeitarchiv! KOST Veranstaltung in Bern vom Dr. Peter Fornaro Qualitätskriterien digitaler Bilder im Langzeitarchiv! KOST Veranstaltung in Bern vom 11. 11. 2009 Dr. Peter Fornaro Workflow Aufnahme Nachbearbeitung Archivierung Das Archivieren beginnt bei der Aufnahme!

Mehr

A1.7: Entropie natürlicher Texte

A1.7: Entropie natürlicher Texte A1.7: Entropie natürlicher Texte Anfang der 1950er Jahre hat Claude E. Shannon die Entropie H der englischen Sprache mit einem bit pro Zeichen abgeschätzt. Kurz darauf kam Karl Küpfmüller bei einer empirischen

Mehr

DV- und Informationssysteme (ID11)

DV- und Informationssysteme (ID11) DV- und Informationssysteme (ID11) Inhalte der Veranstaltung Organisatorisches (Termine, Lehrmaterialien etc.) Prüfung Ziele der Veranstaltung Inhalte der Veranstaltung 1. Grundbegriffe Bits und Bytes

Mehr

Theoretische Informatik SS 04 Übung 1

Theoretische Informatik SS 04 Übung 1 Theoretische Informatik SS 04 Übung 1 Aufgabe 1 Es gibt verschiedene Möglichkeiten, eine natürliche Zahl n zu codieren. In der unären Codierung hat man nur ein Alphabet mit einem Zeichen - sagen wir die

Mehr

Beschreibung UTF-8 Codierung

Beschreibung UTF-8 Codierung fabio tripicchio e-mail-marketing Beschreibung: Beschreibung UTF-8 Codierung Beschreibung Bei Verwendung eines Accounts bei XQ der den Zeichensatz UTF 8 nutzt ist es zwingend erforderlich, jegliche Adressdaten

Mehr

Einführung in die Informatik und Medieninformatik

Einführung in die Informatik und Medieninformatik Name, Vorname Matrikelnummer Klausur zur Vorlesung Einführung in die Informatik und Medieninformatik LVNr. 36 600, WS 2013, im Studiengang Medieninformatik Donnerstag, 13. Februar 2014 10:00 12:00 Uhr

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informationstheorie und Codierung Prof. Dr. Lilia Lajmi Juni 25 Ostfalia Hochschule für angewandte Wissenschaften Hochschule Braunschweig/Wolfenbüttel Postanschrift: Salzdahlumer Str.

Mehr

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen

1 Grundlagen. 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen 1 Grundlagen 1.1 Erste Grundbegriffe 1.2 Kryptographische Systeme 1.3 Informationstheoretische Grundlagen Die Überlegungen dieses Kapitels basieren auf der Informationstheorie von Shannon. Er beschäftigte

Mehr

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung 1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen,

Mehr

DIGITALE VIDEO KOMPRESSION AM BEISPIEL DES JPEG-VERFAHRENS

DIGITALE VIDEO KOMPRESSION AM BEISPIEL DES JPEG-VERFAHRENS 1 DIGITALE VIDEO KOMPRESSION AM BEISPIEL DES JPEG-VERFAHRENS Um das digitale Schneiden von digitalisierten Bildern zu ermöglichen, ist es notwendig, die drastisch hohe Datenmenge, die für jedes Bild gespeichert

Mehr

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1 9 Codes 9.1 Charakterisierung und Klassifizierung Definition: Das Ergebnis einer eindeutigen Zuordnung zweier Zeichen- bzw. Zahlenmengen wird Code genannt. Die Zuordnung erfolgt über eine arithmetische

Mehr

Thema: JPEG / Motion JPEG. Fachbereich Medieninformatik. Hochschule Harz. JPEG / Motion JPEG. Referat. Autor: Andreas Janthur

Thema: JPEG / Motion JPEG. Fachbereich Medieninformatik. Hochschule Harz. JPEG / Motion JPEG. Referat. Autor: Andreas Janthur Fachbereich Medieninformatik Hochschule Harz JPEG / Motion JPEG Referat Andreas Janthur 9962 Abgabe: 15.01.2007 Seite: 1 Inhaltsverzeichnis Einleitung... I 1 JPG... 1 1.1 DC Transformation (discrete cosinus

Mehr

Redundanz. Technische Informationsquelle Entropie und Redundanz Huffman Codierung. Martin Werner WS 09/10. Martin Werner, Dezember 09 1

Redundanz. Technische Informationsquelle Entropie und Redundanz Huffman Codierung. Martin Werner WS 09/10. Martin Werner, Dezember 09 1 Information, Entropie und Redundanz Technische Informationsquelle Entropie und Redundanz Huffman Codierung Martin Werner WS 9/ Martin Werner, Dezember 9 Information und Daten Informare/ Informatio (lat.)

Mehr

Container-Formate (IFF = Interchange Formats) AIFF -C / Wave / SND / SD2F

Container-Formate (IFF = Interchange Formats) AIFF -C / Wave / SND / SD2F Fachbereich Medieninformatik Hochschule Harz Container-Formate (IFF = Interchange Formats) AIFF -C / Wave / SND / SD2F Referat Marco Schlender 10945 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung...I

Mehr

Eine verlustbehaftete Komprimierung ist es, wenn wir einige Kleidungsstücke zu

Eine verlustbehaftete Komprimierung ist es, wenn wir einige Kleidungsstücke zu Komprimierungen In Netzwerken müssen viele Daten transportiert werden. Dies geht natürlich schneller, wenn die Datenmengen klein sind. Um dies erreichen zu können werden die Daten komprimiert. Das heisst,

Mehr

QR Code. Christina Nemecek, Jessica Machrowiak

QR Code. Christina Nemecek, Jessica Machrowiak QR Code Christina Nemecek, Jessica Machrowiak 1 Inhaltsangabe. Einführung Definition Entstehung Grundlagen Aufbau Fehlertoleranz und -erkennung Generieren des QR Codes Lesen des QR Codes Quellen 2 Einführung.

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Facharbeit Informatik Public Key Verschlüsselung Speziell: PGP Ole Mallow Basiskurs Informatik

Facharbeit Informatik Public Key Verschlüsselung Speziell: PGP Ole Mallow Basiskurs Informatik Facharbeit Informatik Public Key Verschlüsselung Speziell: PGP Ole Mallow Basiskurs Informatik Seite 1 von 9 Inhaltsverzeichnis Inhaltsverzeichnis...2 1. Allgemein...3 1.1 Was ist Public Key Verschlüsselung?...3

Mehr

Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert

Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert Binäre Repräsentation von Information Bits und Bytes Binärzahlen ASCII Ganze Zahlen Rationale Zahlen Gleitkommazahlen Motivation Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert

Mehr

Einführung XOP Fast Infoset. Seminar: XML und intelligente Systeme. 31. Oktober 2005. XML und Binärdaten. Kai Rabien krabien@techfak.uni-bielefeld.

Einführung XOP Fast Infoset. Seminar: XML und intelligente Systeme. 31. Oktober 2005. XML und Binärdaten. Kai Rabien krabien@techfak.uni-bielefeld. Seminar: XML und intelligente Systeme 31. Oktober 2005 XML und Binärdaten Kai Rabien krabien@techfak.uni-bielefeld.de Überblick Einführung Binärdaten in XML Die Problematik Ansätze XOP Vorstellung XOP,

Mehr

Quellen- und Leitungskodierung. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 132

Quellen- und Leitungskodierung. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 132 Quellen- und Leitungskodierung 0 1 Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 132 Begriffe Quellencodierung: Dient der Optimierung des Durchsatzes Dazu gehört auch Kompression Kanalcodierung:

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen reguläre Grammatiken/prachen Beschreibung für Bezeichner in Programmiersprachen Beschreibung für wild cards in kriptsprachen (/* reguläre Ausdrücke */)?; [a-z]; * kontextfreie Grammatiken/prachen Beschreibung

Mehr

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK

ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK ABITURPRÜFUNG 2009 LEISTUNGSFACH INFORMATIK (HAUPTTERMIN) Bearbeitungszeit: 270 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler,

Mehr

Proseminar Datenkomprimierung Dr. U. Tamm. JPEG - Kompression WS 2002/03. Torsten Zichner

Proseminar Datenkomprimierung Dr. U. Tamm. JPEG - Kompression WS 2002/03. Torsten Zichner Proseminar Datenkomprimierung Dr. U. Tamm JPEG - Kompression WS 2002/03 Torsten Zichner Inhaltsangabe: 1. Einleitung 2. JPEG Kompression 2.1. Konvertierung des Bildes in ein geeignetes Farbmodell 2.2.

Mehr

Einführung in Automation Studio

Einführung in Automation Studio Einführung in Automation Studio Übungsziel: Der links abgebildete Stromlaufplan soll mit einer SPS realisiert werden und mit Automation Studio programmiert werden. Es soll ein Softwareobjekt Logik_1 in

Mehr

Referat für Algorithmische Anwendungen WS 2006/ 07: Verlustfreie Datenkompression mit dem Deflate-Algorithmus (LZ77- und Huffman-Codierung)

Referat für Algorithmische Anwendungen WS 2006/ 07: Verlustfreie Datenkompression mit dem Deflate-Algorithmus (LZ77- und Huffman-Codierung) Referat für Algorithmische Anwendungen WS 2006/ 07: Verlustfreie Datenkompression mit dem Deflate-Algorithmus (LZ77- und Huffman-Codierung) Benedikt Arnold, 11041025, ai686@gm.fh-koeln.de Sebastian Bieker,

Mehr

Vorlesungsmodul Sicherheit in der Informationstechnik - VorlMod SichInf - Matthias Ansorg

Vorlesungsmodul Sicherheit in der Informationstechnik - VorlMod SichInf - Matthias Ansorg Vorlesungsmodul Sicherheit in der Informationstechnik - VorlMod SichInf - Matthias Ansorg 13. Oktober 2004 bis 26. März 2005 2 Studentische Mitschrift zur Vorlesung Sicherheit in der Informationstechnik

Mehr

Übung 1: Quellencodierung

Übung 1: Quellencodierung ZHAW, NTM2, Rumc, /7 Übung : Quellencodierung Aufgabe : Huffman-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten

Mehr

Kryptographie und Codierung für den Mathematikunterricht

Kryptographie und Codierung für den Mathematikunterricht Kryptographie und Codierung für den Mathematikunterricht Pädagogische Hochschule Karlsruhe University of Education École Supérieure de Pédagogie Institut für Mathematik und Informatik Th. Borys Was verstehst

Mehr

Datenverschlüsselung - Einstieg

Datenverschlüsselung - Einstieg Datenverschlüsselung - Einstieg Dr. Thomas Schwotzer 21. November 2011 1 Die Gefahren Bevor wir beginnen: Auch diese Lecture Note kann das Lesen eines Buches nicht ersetzen. Es wird [1] wärmestens empfohlen.

Mehr

E-Government-GesetzGesetz. Verfahrensablauf

E-Government-GesetzGesetz. Verfahrensablauf E-Government-GesetzGesetz Verfahrensablauf 1 Bürgerkartenumgebung EGov-G 2010 Pauer 3 Ermittlung der Stammzahl für natürliche Personen Die Stammzahl wird durch eine symmetrische Verschlüsselung der ZMR-Zahl

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Übung: AutoID Barcodes Teil 1

Übung: AutoID Barcodes Teil 1 Identifizierungs- und Automatisierungstechnik Übung: AutoID Barcodes Teil 1 Prof. Dr. Michael ten Hompel Sascha Feldhorst Lehrstuhl für Förder- und Lagerwesen TU Dortmund 1 AutoID - Barcodes Gliederung

Mehr

Anleitung fu r den IT-Innovationen Editor

Anleitung fu r den IT-Innovationen Editor Anleitung fu r den IT-Innovationen Editor Die Kurzfassung Ihrer Abschlussarbeit wird mit einem eigenen Latex-basierten Editor erstellt. Latex-Kenntnisse sind dazu nicht erforderlich. Der Editor ist nur

Mehr

Datenaufbereitung in SPSS. Daten zusammenfügen

Datenaufbereitung in SPSS. Daten zusammenfügen Daten zusammenfügen I. Fälle hinzufügen Diese Schritte müssen Sie unternehmen, wenn die Daten in unterschiedlichen Dateien sind; wenn also die Daten von unterschiedlichen Personen in unterschiedlichen

Mehr