Approximationsalgorithmen für eine Rasenmäher- oder eine Fräsetour

Größe: px
Ab Seite anzeigen:

Download "Approximationsalgorithmen für eine Rasenmäher- oder eine Fräsetour"

Transkript

1 Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Informatik I Christoph Koch Approximationsalgorithmen für eine Rasenmäher- oder eine Fräsetour 22. Mai 2006 Seminararbeit im SS 2006 Betreuer: Thomas Kamphans

2

3 Zusammenfassung In dieser Ausarbeitung geht es um die Probleme eine möglichst kurze Rasenmäher- oder Fräsetour zu finden. Dabei ist eine Fläche (Wiese) als Polygon in der Ebene gegeben, welche durch einen Kreis oder ein Quadrat (Rasenmäher) abgefahren werden muß, so dass jeder Punkt des Polygons mindestens einmal besucht wurde. Beim Fräsen wird im Gegensatz zum Rasen mähen das Übertreten des Polygonrandes verboten. Ausserdem werden wir weiter gute Approximationen für eine TSP-Tour (Traveling Salesman Problem) erhalten. Inhaltsverzeichnis 1 Einführung 2 2 Voraussetzungen 2 3 Approximation der Rasenmäher-Tour 3 4 Approximation des Fräse-Problems 10 5 TSP auf dem Gitterpraph 12 6 Zusammenfassung 19 1

4 1 Einführung Betrachten wir folgendes Problem. Wer kennt das nicht, man kommt nach Hause von der Arbeit/Schule/Uni und man will noch etwas schönes machen. Dann erinnert man sich oder bekommt es aufgetragen, von der Mutter oder vom Vater, dass man doch noch den Rasen mähen soll, bevor man geht. Man will also schnell fertig werden und überlegt sich den vermutlich kürzesten Weg, damit man dementsprechend auch schneller fertig ist. Nur wie sieht jetzt der tatsächlich kürzeste Weg aus und ist es mir erlaubt mit dem Rasenmäher über die Ränder zu fahren oder ist dort ein Blumenbeet und deshalb nicht zugelassen (siehe Fräseproblem). Beide Probleme lassen wahrscheinlich keine effiziente Berechnung eines kürzesten Pfades zu (Fräseproblem ist NP-hart für Flächen ohne Löcher, mit Löcher noch schwieriger und das Rasenmäherproblem ist ebenfalls NP-hart), jedoch werden wir Algorithmen kennen lernen [1], die eine gute Approximation an den kürzesten Pfad berechnen. In dieser Ausarbeitung werden wir uns erst mit dem Rasenmäher- Problem befassen, bevor wir uns das Fräsen und auch das TSP genauer anschauen. 2 Voraussetzungen Wir haben eine planare Region (Wiese) R, sowie einen Mäher χ, der entweder ein Kreis oder ein achsenparalleles Quadrat ist, gegeben. Dabei bezeichnet im Folgenden n die Anzahl an Eckpunkten und δr die Grenze von R. Ohne die Generalität zu verletzen können wir annehmen, dass χ ein Einheitskreis oder ein Einheitsquadrat ist. Der Referenzpunkt des Mähers ist dabei der Mittelpunkt. χ(p) bezeichnet die vom Mäher überdeckte Fläche, wenn der Referenzpunkt auf p liegt. Des Weiteren gibt es zwei mögliche Bewegungsarten für den Mäher. Bei der rechtwinkligen Bewegung bewegt sich der Mäher entlang von Liniensegmenten, die parallel zu einer Koordinatenachse liegen, während die willkürliche Bewegung eine geradlinige Bewegung mit einer willkürliche Richtung ist. Im Folgenden sprechen wir von einer einfachen Umgebung, wenn die Region R keine Löcher hat. Es kann vorausgesetzt werden, daß die Region als Menge von Liniensegmenten gegeben ist. Für einige Beweise ist es nötig die Region zu rastern. Dafür wird ein Gitternetz über die Region gelegt, wobei die Schnittpunkte der Gitterlinien, also die Gitterpunkte, Ganze Zahlen als Koordinaten haben. Eine Möglichkeit die Lage des Gitternetzes zu bestimmen, wäre z.b. die Ausgangsposition des Mähers als Position für eine Gitterzelle zu nehmen. Im Folgenden sprechen wir von einer Fläche, wenn wir die 1x1 Quadrate meinen, die vom Gitternetz eingerahmt sind. Eine Zelle ist dagegen ein 1x1 Quadrat das einen Gitterpunkt als Mittelpunkt hat (vgl. Abbildung 1). 2

5 Abbildung 1: Der Unterschied zwischen einer Zelle und einer Fläche. 3 Approximation der Rasenmäher-Tour Eine Rasenmäher-Tour ist eine Tour T, so dass jeder Punkt der Region R mindestens einmal von dem Mäher χ überdeckt wurde, d.h.: R p T χ(p) T opt sei eine optimale Rasenmäher-Tour und T opt seine Länge. S sei die Menge der Mittelpunkte derjenigen Zellen, die einen nichtleeren Schnitt mit der Region R haben. Das heißt, dass alle Zellen mit Mittelpunkten aus S die Region R überdecken. Wir müssen also bei unserer Tour nur alle Punkte aus S besuchen und haben somit schon eine gültige Rasenmäher-Tour. Dies gleicht dem Problem eine TSP-Tour für S zu finden. Dies bringt uns zu unserem ersten Lemma. Lemma 1 Jede Tour auf der Punktmenge S ist eine Rasenmäher-Tour für einen (Einheitsquadrat) Mäher χ. Das Ziel des nächsten Lemmas ist es zu zeigen, dass es hinreichend ist, nach Touren auf dem Gitternetz zu suchen. Dafür brauchen wir die eingeführten Flächen (Flächen des Gitternetzes). Lemma 2 Für einen quadratischen Mäher mit der Seitenlänge 1, dem nur achsenparallele Bewegungen erlaubt sind, existiert eine Tour T G auf dem Gitternetz mit T G T opt und T G schneidet dieselben Flächen wie T opt. Um dies zu beweisen zeigen wir ein Verfahren, mit dem man eine optimale Tour auf das Gitternetz legen könnte ohne die Länge der Tour zu erhöhen. Dabei bleibt die Menge an Flächen die durch die Tour geschnitten werden gleich. Beweis. Wenn die optimale Tour T opt komplett durch einen Block von 4 Zellen laufen würde, die eine gemeinsame Ecke teilen, dann muss T G diese 3

6 eine Ecke beinhalten (vgl. Abbildung 2). Man beachte, dass es bei diesem Lemma erst einmal nur um dieselbe Schnittmenge der Flächen mit T opt und der Flächen mit T G geht, T G ist nicht notwendigerweise eine Rasenmäher- Tour. Abbildung 2: Eine Tour die P enthält schneidet dieselben Flächen wie die Tour π in dieser Abbildung Sollte T opt nicht komplett in einem Block von 4 Flächen liegen, dann legen wir nacheinander die Wendepunkte und die Toursegmente auf das Gitternetz. Wendepunkte sind Punkte, bei denen die Tour die Richtung ändert. Sollte ein solcher Punkt im Inneren einer Zelle liegen, also nicht auf dem Gitternetz, dann können wir diesen auf das Gitternetz legen ohne die Länge der Tour zu verlängern. Dazu betrachten wir folgendes Beispiel: Der Punkt p liegt innerhalb einer Fläche und ist ein Wendepunkt der Tour mit L -Form. Der Punkt a ist der Punkt an dem die Tour die Fläche von p betritt und der Punkt b ist der Punkt an dem die Tour die Fläche wieder verlässt. Die Tour kann dann umgeklappt werden, so daß diese auf dem Gitternetz liegt und aus Symmetriegründen nicht länger ist (vgl. Abbildung 3). Wenn wir dieses Verfahren für alle Wendepunkte anwenden, dann erhalten wir eine Tour T, bei der alle Wendepunkte auf dem Gitternetz liegen. Als nächstes müssen noch die Toursegmente, die nicht auf dem Gitternetz liegen, auf das Gitternetz geschoben werden, um eine vollständig auf dem Gitternetz liegende Tour zu erhalten. Sollte T schon auf dem Gitternetz liegen, so sind wir schon fertig. Ansonsten braucht man lediglich die Wendepunkte die noch nicht auf den Gitterpunkten liegen eben auf solche verschieben. Dabei gibt es zwei Fälle die wir betrachten müssen. Sei b ein Wendepunkt auf einer vertikalen Gitterlinie (der Fall einer horizontalen Gitterlinie ist äquivalent, nur gespiegelt) dann kann in b die Tour um 90 die Richtung ändern (1), oder um 180 (2)(Kehrtwende). zu (1): Wir betrachten eine von b ausgehende, horizontale Kante ab. Zu a und b gibt es je eine inzidente, vertikale Kante, die a mit einem weiteren Punkt 4

7 Abbildung 3: Der Teilpfad von a nach b über p kann auf das Gitternetz geklappt werden. d und b mit einem weiteren Punkt c verbindet. Abhängig von der Lage von c und d sind 2 Fälle zu unterscheiden:(i) c und d liegen auf verschiedenen Seiten von ab und (ii) c und d liegen auf derselben Seite von ab. (i) In diesem Fall können wir das Segment ab einfach horizontal verschieben bis es auf einer horizontalen Gitterlinie liegt oder auf einen weiteren Wendepunkt trifft. Wir verändern die Länge der Tour dadurch nicht. Sollte ein Wendepunkt getroffen werden so reduzieren wir dadurch die Anzahl an Wendepunkten (vgl. Abbildung 4). (b) Wir verschieben in diesem Fall ab horizontal in die Richtung, bei der die Länge der Tour reduziert wird. Auch dabei gibt es wieder die zwei Möglichkeiten (treffen auf Wendepunkt oder horizontale Gitterlinie) mit denen genauso verfahren wird (vgl. Abbildung 4). zu (2): Bei den Kehrtwenden gibt es ebenfalls 2 Unterfälle: (i) Das Toursegment liegt bereits auf dem Gitternetz, d.h. wir müssen nur noch dieses Segment verkürzen bis b auf einem Gitterpunkt liegt. (II) Das Toursegment liegt nicht auf dem Gitternetz, dann verschieben wir dieses Segment parallel zu sich selber, bis b auf einem Gitterpunkt und dementsprechend auch das Segment auf dem Gitternetz liegt. (vgl. Abbildung 5) Sobald dieses Verfahren terminiert, erhalten wir die gewünschte Tour T G die komplett auf dem Gitternetz verläuft und die dieselben Flächen wie T opt besucht. Wenn wir diese Tour betrachten, dann ist sie maximal genauso lang, wie die optimale Tour, also T G T opt (vgl. Lemma 2), aber es muss nicht 5

8 Abbildung 4: Links ist der Fall (1(i)) und rechts (1(ii)). unbedingt eine Rasenmäher-Tour sein, denn durch das Verschieben der Tour auf das Gitternetz, kann es Regionen geben, die nicht gemäht wurden (vgl. Abbildung 6). Sollte allerdings die Menge S G, die Menge an Gitterpunkten die durch T G besucht werden, mindestens die Punkte aus S beinhalten, so haben wir eine Rasenmäher-Tour. Ansonsten werden wir eine Möglichkeit kennenlernen, die Tour T G in eine Rasenmäher-Tour umzuwandeln, und zeigen, dass diese Tour maximal 3 mal so lang ist, wie eine optimale Tour. Im Folgenden beschreibt Π den Pfad den wir erhalten, wenn man von T G ein Teilstück, also eine Kante auf dem Gitternetz der Länge 1, entfernt. Weiter bezeichnet F die Region die überdeckt bzw. gemäht wurde, wenn ein quadratischer Mäher mit Seitenlänge 2 dem Pfad Π folgt. Lemma 3 Jeder Mittelpunkt aus S wird entweder von der Tour Π besucht oder ist in der L Distanz von 1 von der Tour Π entfernt, d.h. S Π δf. Beweis. Sei p S ein Mittelpunkt einer Zelle und P eine von den 4 Flächen, die p als Eckpunkt haben. π ist nun der Abschnitt der optimalen Tour T opt, der in P liegt. Der Bereich der gemäht wird, wenn man π mit dem Mäher abfährt liegt komplett in der Vereinigung der Zellen C 1...C 4, dessen Mittelpunkte die Eckpunkte der Fläche P sind (vgl. Abbildung 7). Da wir aber schon gezeigt haben, dass T G und folglich auch Π dieselbe Menge an Flächen durchläuft, können wir folgern, dass mindestens eine Ecke von P in S G liegt. Dies wiederum führt uns dahin, dass alle 4 Eckpunkte von P in der Vereinigung von Π und δf liegen. Diese Vereinigung beinhaltet alle Punkte von S G und alle weiteren Mittelpunkte der Zellen die einen L -Abstand 1 6

9 Abbildung 5: Links ist der Fall (2(i)) und rechts (2(ii)). Abbildung 6: Die blaue Tour erhalten wir nach Anwenden des o.g. Verfahren. Nur die lila Fläche wird gemäht und der Rest nicht. von Π haben. Dadurch hätten wir auch die Punkte wieder aufgesammelt, die durch vorheriges verschieben verloren gegangen sind. Die folgende Menge S G = S (Π δf ) hilft uns, den Faktor von 3 zu zeigen. Lemma 4 Es existiert eine Tour, die S G (folglich auch S) abläuft, mit einer maximalen Länge von 3 T G + 6 (folglich 3 T opt + 6) Beweis. Der Beweis dafür nimmt einen bestehenden Ansatz aus [3] für den schon gezeigt wurde, dass für einen Pfad der Länge l und eine Scheibe mit Umfang c ein Weg existiert, der maximal 2l + c lang ist. Wir wissen, dass unsere L Scheibe mit Radius 1 einen Umfang von 8 hat und wir wissen, dass es eine Tour T gibt, die δf abfährt, und deren Länge maximal 2l Π +8 = 2( T G 1)+8 = 2 T G +6 beträgt. Allerdings müssen die Touren T 7

10 Abbildung 7: Ein Mäher der auf π langfährt schneidet die 4 Flächen. und T G noch zu einer Tour zusammengesetzt werden. Da es aber mindestens eine Stelle gibt, an der Π und δf parallel zueinander verlaufen und einen Abstand von 1 haben, kann man dort 2 Teilstücke swappen, also jeweils eine Kante von δf und von Π nehmen und als Überbrückung benutzen (vgl. Abbildung 8). Somit haben wir T und T G kombiniert, erhalten eine Länge von 2 T G T G = 3 T G + 6 und wir überdecken dabei alle Punkte von Π und δf und folglich auch alle Punkte von S G und S. Abbildung 8: Die rote und die blaue Tour werden durch einen Swap an der grün markierten Stelle zu einer Tour zusammengefügt. Die Tour T G zu berechnen ist allerdings NP-hart. Da wir aber gesehen haben, daß es einer TSP-Tour gleicht, können wir durch schon bekannte Verfahren die Tour approximieren. Wir haben zusätzlich noch einen Approximationsfaktor α T SP der mit dem bisherigen Ergebnis multipliziert werden muss um die Tour T G zu approximieren. Z.B. kann man die Tour approximieren in dem wir den MST (Minimal Spanning Tree) 2 mal abfahren (vgl. Abbildung 8

11 9) und hätten dabei also den Wert α T SP = 2 und dementsprechend eine Tour T G von α T SP 3 T opt = 6 T opt. Rao und Smith [5] haben eine bessere Approximation von (1 + ɛ) gezeigt, was wiederum eine Approximation von T G von (3 + ɛ) zuläßt. Abbildung 9: Eine TSP-Approximation die den MST benutzt hat einen Faktor von 2. Für den Fall, daß dem Rasenmäher willkürliche Bewegungen erlaubt sind kann man die approximierte Länge mit einem zusätzlichen Faktor β = Dieser Faktor kommt zustande, indem wir eine optimale Tour 2+ 2 T opt auf ein Gitternetz mit Diagonalen legen. Dabei sind alle Gitterpunkte mit horizontalen und vertikalen Nachbarn der Entfernung 1 und mit allen diagonalen Nachbarn mit der Entfernung 2 verbunden. Sollte der Rasenmäher nun die Form eines Einheitskreises haben, so müssen wir eine andere Form der Zelle wählen, nämlich ein reguläres Sechseck mit Durchmesser 2. Die Mittelpunkte dieser Zellen werden wieder zu einem Gitternetz verbunden, welches nun Flächen definiert, die gleichseitigen Dreiecken mit Seitenlänge 3 entsprechen. Ein Pfad kann gefunden werden, der die approximierte Länge um einen Faktor γ = erweitert. Insgesamt bringt uns das zu folgendem Theorem: Theorem 5 Es gibt für das Rasenmäher Problem einen Approximationsalgorithmus mit konstantem Faktor, der in polynomieller Zeit ausgeführt werden kann (je nach Wahl der TSP-Heuristik). Für den Fall, daß der Rasenmäher ein achsenparalleles Einheitsquadrat ist, haben wir einen Approximationsfaktor von 3α T SP für rechtwinklige Bewegungen und 3βα T SP 2 für willkürliche Bewegungen mit β = Sollte der Rasenmäher 2 ein Einheitskreis sein, so haben wir einen Approximationsfaktor von 3γα T SP mit γ =

12 4 Approximation des Fräse-Problems Betrachten wir nun das Problem des Fräsen bei dem der Mäher immer innerhalb der Region R bleiben muss. Das heißt, eine Fräser-Tour ist eine Tour π, bei der jeder Punkt der Region R mindestens ein mal von dem Mäher χ überdeckt wurde ohne dass ein Punkt ausserhalb des Polygons überdeckt wurde, d.h.: R = χ(p) p T Theorem 6 In Zeit O(n log n) kann entschieden werden, ob eine zusammenhängende Region mit n Kanten von einem Einheitskreis- oder Einheitsquadrat Mäher gefräst werden kann. In derselben Zeit kann auch eine Tour mit einer Länge maximal 2.5 mal so lang wie eine optimale Tour gefunden werden. Abbildung 10: Ein Polygon und ihre Fräsetouren. Beweis. Man kann in Zeit O(n log n) feststellen ob eine Region gefräst werden kann oder nicht. Dies kann man mit Hilfe des inneren und des 10

13 äusseren Offsets lösen, indem man diese nacheinander erst berechnet und dann mit dem Originalpolygon vergleicht. Sollten die beiden nicht übereinstimmen, so haben wir einen Flaschenhals oder eine spitze Ecke, was eine Fräsetour nicht zulässt. Deshalb können wir voraussetzen, daß die Region R gefräst werden kann. Wir werden sehen, dass sich die von 2.5 * T opt aus 3 Teilen zusammensetzt. B ist die Region, in die wir den Mittelpunkt der Fräse legen können, ohne den Rand zu schneiden. Weiter bezeichnen wir δb als den Rand von B, der alle Punkte enthält, bei denen die Fräse, bei Platzierung auf diesen Punkten, den Rand berühren würden (vgl Abbildung 10) und können die Länge von δb als δb bezeichnen. δb ist aber gerade eine untere Schranke für T opt. Zu beachten bleibt dabei, dass sich δb aus mehreren Teilen zusammensetzen kann, wenn die Region Löcher enthält. Wir bezeichnen R δb als die Region die schon gefräst wurde, wenn die Fräse δb entlang fährt. Wie schon erwähnt, kann sich R δb aus mehreren Teilen zusammensetzen, wenn R Löcher enthält. Wenn R \ R δb nicht leer ist, dann gibt es noch Fläche die noch nicht gefräst wurde und wir können diese mit horizontalen Streifen (Strip Lines) S i mit vertikaler Breite 1 und disjunktem Inneren bedecken (vgl. Abbildung 10). Jeder dieser Streifen hat dabei eine Mittellinie und jeder Streifen liegt nur innerhalb von R. So benötigen wir mindestens die Länge der Summe aller Streifenlängen, d.h. L str = um die Region R komplett zu fräsen, entspricht höchstens T opt. s L Si i=1 Schauen wir uns die Menge der Endpunkte der Mittellinen der Streifen an, dann stellen wir fest, dass es sich dabei um eine Menge mit gerader Anzahl hält. Nehmen wir auf der Grenze δb nur jeden zweiten Punkt dieser Menge, dann können wir die Menge der Endpunkte in zwei disjunkte Mengen M 1 (δb) und M 2 (δb) unterteilen. Dadurch dass wir einen Mäher mit Radius 1 haben überdecken wir gleich 2 Streifen und können bei einer Zick- Zack-Tour jeden zweiten Endpunkt überspringen. M (δb) ist das bessere Matching mit Länge M (δb). Da wir den ganzen Weg δb mit T opt abgeschätzt haben und wir nun das bessere Matching nehmen (im worst case genau die Hälfte) folgt: M (δb) L δb 2 Topt 2 Unsere Tour setzt sich also aus folgenden drei Teilen zusammen. Erstens sind wir einmal den Rand abgefahren um zu gewährleisten, dass dort auch wirklich jeder Punkt gefräst wurde, denn gerade die Tour M (δb) fräst nicht die ganze Region R δb (vgl. Abbildung 11). Die Tour δb haben wir mit 11

14 Abbildung 11: Sollte der Rand von R abgefahren werden durch die Fräse, so entstehen diese Lücken O. T opt als obere Schranke abgeschätzt. Als zweites brauchten wir die Tour, die den Innenraum des Polygons fräst. L str haben wir ebenfalls mit T opt als obere Schranke abgeschätzt. Zusätzlich um die Streifen zu verbinden haben wir noch das bessere Matching der Mengen M 1 (δb) und M 2 (δb) genommen und mit Topt 2 als obere Schranke abgeschätzt. Dies bringt uns in der Summe zu einer Approximation von 2.5 T opt. Damit ist aber noch nicht gezeigt, dass es sich auch wirklich um eine Tour handelt, die nicht noch einmal neu ansetzen muss oder einen Weg doppelt geht. Betrachten wir also einmal den Graphen, der aus den Endpunkten der Mittellinen der Streifen und den Punkten, wo eine solche Linie δb berührt besteht. Diese Punkte/Knoten haben den Grad 4 (vgl. Abbildung 11), denn die Mittellinie eines Streifens geht von da aus weg, δb geht durch den Punkt und M (δb) geht von dort aus weg. Daraus folgt dass wir eine Euler Tour haben und wir daraus eine berechenbare Fräse-Tour generieren können, die nicht länger als 2.5 T opt ist. 5 TSP auf dem Gitterpraph Nachdem wir eine 2.5-Approximation des Fräse-Problems kennengelernt haben, zeigen wir eine weitere Approximation für einen Spezialfall dessen. Nehmen wir als Werkzeug ein Einheitsquadrat an, das achsenparallele Bewegungen machen darf. Weiterhin sei die Region R einfach mit nur rechtwinkligen 12

15 Kanten, deren Punkte auf dem Mittelpunkten der Flächen liegen. Wie man feststellen kann, ist das Fräse-Problem in diesem Fall äquivalent zu dem Problem, eine optimale TSP Tour auf dem Gittergraph G zu finden, der sich zusammensetzt aus den Knoten bzw. Mittelpunkten derjenigen Zellen, die R bedecken. Definition 7 Ein Knoten v auf einem Gittergraph G heisst Schnittknoten, wenn beim entfernen von v der Graph G nicht mehr zusammenhängend ist. Für die weiteren Berechnungen setzen wir voraus, dass G keine solche Schnittknoten hat. Dies können wir tun, denn sollte G einen solchen Knoten v haben, dann können wir das Approximationsproblem zerlegen, indem wir für jede Komponente die wir erhalten, wenn wir v entfernen, das Problem lösen und dann die Touren zusammensetzen. Ntafos [4] hatte dieses Problem bereits behandelt und eine 4 3 -Approximation vorgestellt, auch unter der Annahme, dass keine Schnittknoten existieren. Wir wollen jetzt in dem nächsten Abschnitt diese Approximation auf 6 5 verbessern, was uns zu folgendem Theorem führt. Theorem 8 Sei G ein einfacher Gittergraph, mit der Knotenmenge V, die die Mittelpunkte der Zellen sind, welche ein einfaches rechtwinkliges Polygon R mit n Kanten beschreiben und sei N die Anzahl von V. Wir setzen voraus, dass G keine Schnittknoten hat. In Zeit O(n) kann eine Tour gefunden werden, die alle N Knoten von G besucht und maximal 6N 4 5 lang ist. Abbildung 12: Hier sieht man die Kontur und ein Beispiel für einen Flaschenhals. Für den Beweis teilen wir die Knoten V in zwei Teile, nämlich die Zellen V I, die innerhalb von R liegen und die Zellen V B, die auf einer oder mehreren Seiten den Rand von R berühren. 13

16 Definition 9 Existiert ein Gittergraph G zu einer Region R ohne Schnittknoten und sei V B die Menge der Knoten deren Zellenränder den Rand von R berühren, dann gibt es einen einfachen Zyklus, der die Menge V B abfährt und jeden Knoten genau einmal besucht. Einen solchen Zyklus nennen wir Kontur von G (vgl. Abbildung 12). Definition 10 Wir sprechen von einem Flaschenhals, wenn zwei Kanten e und f von der Kontur C (1) parallel sind und den Abstand 1 haben und (2) es keine Kante g gibt so dass e, g und f einen Teilpfad der Länge 3 bilden (vgl. Abbildung 12). Abbildung 13: Die Aufteilung von G an der Stelle des Flaschenhalses. Um in unserem Beweis fortzufahren zeigen wir erst, dass es ausreicht nur den Fall ohne Flaschenhälse zu betrachten. Dazu beweisen wir folgendes Lemma. Lemma 11 Betrachten wir einen einfachen Gittergraphen G mit N Ecken, der keinerlei Schnittknoten hat. Wenn wir annehmen, dass eine Tour, für jeglichen Gittergraphen ohne Flaschenhälse existiert, die maximal 6N 4 5 lang ist, und dass jeder Knoten von Grad 2 mit seinen Nachbarn verbunden ist, dann können wir auch eine Tour dieser Länge für einen einfachen Gittergraphen ohne Schnittknoten in der jeder Knoten mit Grad 2 ist mit seinen Nachbarn verbunden ist. Beweis. Das Lemma lässt sich mit Hilfe einer Induktion über die Anzahl an Flaschenhälsen beweisen. Seien e = (v 1, v 2 ) und f = (v 3, v 4 ) zwei Kanten, die einen Flaschenhals bilden, der G in die beiden Teilgraphen G 1 und G 2 zerlegt. G 1 beinhaltet dabei N 1 und G 2 N 2 viele Knoten. Daraus ergibt sich, 14

17 dass die komplette Anzahl an Knoten N = N 1 + N ist (vgl. Abbildung 13). Wir können somit G in folgende beiden Teile zerlegen: H 1 bestehend aus G 1, v 1, v 2,v 3,v 4 und H 2 bestehend aus G 2, v 1,v 2,v 3, v 4. In H 1 sind jetzt allerdings die Knoten v 2 und v 4 wieder von Grad 2 genau wie in H 2 die Knoten v 1 und v 3. Daraus folgt, dass wir eine Tour für H 1 haben, die aus dem Pfad π 1 von v 1 bis v 3 und den Kanten (v 2, v 4 ), e und f besteht und die Länge 6(N 1+4) 4 5 = 6N hat. Gleiches gilt für eine Tour für H 2 bestehend aus dem Pfad π 2 von v 2 nach v 4 und den Kanten (v 1, v 3 ), e und f. Betrachtet man nun die Tour die sich aus π 1, π 2, e und f zusammensetzt, dann sieht man dass dies eine Tour für G ist in der alle Knoten von Grad 2 mit ihren Nachbarn verbunden sind und man spart dabei noch 4 Kanten im Vergleich zu den beiden einzelnen Touren. Es ergibt sich also eine resultierende Länge von maximal : (6N 1 +20)+(6N 2 +20) 5 4 = 6(N 1+N 2 +4) 4 5 = 6N 4 5 Wir können also nun für den Rest des Beweises von Theorem 5 annehmen, dass wir keine Flaschenhälse haben. Kommen wir also zur Konstruktion einer Tour die wir mit 6 5 N Kanten abschätzen können. Die Idee besteht darin, dass die Kontur C entlanggelaufen wird und bei bestimmten Ereignissen ein Abstecher in das Innere gemacht wird. Wir werden sehen, dass wir nie mehr als einen Knoten pro 5 Knoten doppelt besuchen werden. Das Ziel ist es also so wenig wie möglich Kanten zu verwenden. Klar ist auch dass N T opt. Da wir uns im Gittergraphen bewegen, liegen die inneren Knoten V I auf ganzzahligen y-koordinaten. Wir zerlegen weiterhin die Menge V I in kleinere Mengen, die aus den Knoten bestehen, die eine Doppelreihe G j I bilden. D.h. alle Knoten mit der Y-Koordinate 2j und 2j + 1 liegen dabei auf so einer Doppelreihe. Betrachten wir eine solche Doppelreihe, dann stellen wir fest, dass jede vertikale Reihe entweder 0, 1 oder 2 innere Knoten hat. Beachte, dass die Knoten von V B, die auf der Kontur liegen, keine inneren Knoten sind. Wir sprechen in diesem Zusammenhang von einer leeren Spalte, wenn kein innerer Knoten in der Spalte ist oder von einem Einfachspalte (ein innerer Knoten) oder einer Doppelspalte (2 innere Knoten). Nun gibt es eine Reihe von Modifikationen die wir an unserer bestehenden Tour C (Kontur) vornehmen werden, um alle Knoten V zu besuchen. Diese Tour nennen wir C. Wir behalten die Invariante bei, dass C eine geschlossene Tour sein muss. Initial ist C = C. Sollte C alle Knoten V besucht haben, so ist 15

18 C = T unsere resultierende Tour. Des Weiteren bezeichnet V I die Menge aller inneren Knoten, die noch nicht besucht wurden. Definition 12 Eine Modifikation einer Kontur C heisst frei, wenn durch die Modifikation keine Doppelbesuche von Knoten entstehen. Es gibt zwei Arten von Modifikationen, die frei sind. Beachte, dass die Modifikationen jeweils nur an Doppelreihen durchgeführt werden. Abbildung 14: Die beiden Möglichkeiten einer freien Modifikation. (I) Wenn eine leere Spalte eine Doppelspalte als Nachbarn hat und die Knoten der Doppelspalte über eine Kante (u, v) verbunden sind, modifziere die Tour indem die Kante (u, v) gelöscht wird und anstelle dessen der Umweg von u über die beiden inneren Knoten aus V I hin zu v als neue Kanten in C eingeführt werden. Dieser Vorgang kann so lange durchgereicht werden, bis keine leeren Spalten mehr Nachbarn von C in dieser Doppelreihe sind (vgl Abbildung 14(I)). (2) Wenn 2 benachbarte Einfachspalten einen inneren Knoten von V I in derselben Zeile haben und es eine Kante (u, v) gibt die die beiden Knoten die bereits zu C gehören verbindet, dann löschen wir die Kante (u, v) und gehen wieder den Umweg von u über die beiden inneren Knoten zu v. Auch dieser Vorgang kann fortgesetzt werden, bis kein solcher Fall mehr in dieser Doppelreihe auftritt (vgl. Abbildung 14(II)). Wir führen diese beiden freien Modifikationen so lange durch, bis wir keine solche mehr durchführen können. Sollte die Menge V I jetzt leer sein, so sind wir fertig. Ist dem nicht so, so haben wir noch keine fertige Tour C die auch alle inneren V I besucht. V I zerfällt dabei in mehrere Zusammenhangskomponenten H die wir für die einzelnen Doppelreihen G j I (den Doppelreihen) separat betrachten und für die folgende Bedingungen gelten: 1. Es kann keine Doppelspalte aus H mit einer vertikalen Kante von C benachbart sein. 2. Es gibt keine drei aufeinander folgende Einfachspalten, die den inneren Knoten aus V I in derselben Zeile haben. 16

19 3. Die einzige Möglichkeit in der H zwei aufeinander folgende Einfachspalten haben darf, ist wenn H nur eine einzige horizontale Kante besitzt und diese die beiden Knoten aus den Einfachspalten verbindet. Bis jetzt haben wir also für jeden Knoten aus V genau eine Kante eingefügt. Es gibt jetzt aber noch 6 weitere Fälle, die auftreten können, wenn wir die beiden freien Modifikationen durchgeführt haben. Bei denen kommt es allerdings zu Doppelbesuchen von Knoten, wobei wir nie mehr als einen Knoten pro 5 Knoten doppelt besuchen werden: Abbildung 15: Weitere Fälle für die Modifikation von C. (a) H besteht aus einem einzigen Knoten aus V I. In diesem Fall müssen 5 Knoten aus C in der Nachbarschaft von jenem Knoten aus H liegen. Wir verbinden also diesen Knoten aus H mit einem beliebigen Nachbarknoten mit Hin- und Rückweg und haben somit einen Knoten doppelt besucht. Demnach haben wir für 6 Knoten einen doppelt besucht und sind immer noch besser als unser gewünschtes Ergebnis (vgl. Abbildung 15(a)). 17

20 (b) H besteht aus 2 horizontal benachbarten Knoten. Die Knoten von C in diesen beiden Einfachspalten können keine gemeinsame Kante haben, da wir sonst hier schon eine freie Modifikation vorgenommen hätten. Diese beiden Knoten haben also eine vertikale Kante in entgegengesetzter Richtung zu H und die beiden Endpunkte sind wiederum verbunden, da wir vorausgesetzt haben, dass es keine Flaschenhälse gibt, und somit auf C (vgl. Abbildung 15(b)). Wir modifizieren also C so, dass die beiden Knoten aus H miteinander verbunden werden (Hin und Rückweg) und einer der beiden mit einem Knoten aus C in derselben Zeile verbunden wird (Hin und Rückweg). Wir haben also bei 10 Knoten 2 doppelt besucht, dementsprechend bei 5 Knoten einen. (c) H besteht nur aus Doppelspalten. Um diese Knoten zur Tour C hinzuzufügen verbinden wir alle Knoten aus H zu einem Zyklus und verbinden dann einen beliebigen Knoten aus H der eine Kantenlänge von C entfernt ist mit C durch Hinzufügen einer Hin- und einer Rückkante (vgl. Abbildung 15(c)). (d) H besteht aus einer oder mehreren Doppelspalten und genau einer Einfachspalte. Die Tour wird so modifiziert, dass wir aus den Knoten aus H und dem Knoten aus C der auf der Einfachspalte liegt einen Zyklus bauen (vgl. Abbildung 15(d)). (e) H besteht aus einer oder mehreren Doppelspalten und genau zwei Einfachspalten dessen Knoten in derselben Zeile liegen. Verbinde alle Knoten aus H, außer einem der beiden aus den Einfachspalten mit dem Knoten aus C der in der Einfachspalte liegt, von dem Knoten, den wir mitverbinden wollen, zu einem Zyklus. Der noch nicht verbundene Knoten wird mittels Hin- und Rückkante mit dem Zyklus verbunden (vgl. Abbildung 15(e)). (f) H besteht aus einer oder mehreren Doppelspalten und genau einer Einfachspalte dessen Knoten auf unterschiedlichen Zeilen liegen. Modifiziere genau wie bei (e)(vgl. Abbildung 15(f)). Bei keinem dieser Fälle haben wir mehr Knoten doppelt besucht als bei (b) also pro 5 Knoten genau einen. Daraus folgt, dass wir 6 5N Kanten haben. Um Lemma 5 abzuschliessen sind wir aber noch nicht ganz fertig. Wir müssen noch zeigen, dass wir für 4 Knoten keine Kante verschwenden um 6N 4 5 zu erhalten. Dabei betrachten wir die Unterteilung in oben erwähnte Doppelreihen. Dabei kann man entweder oben anfangen die Knotenreihen in Doppelreihen zu unterteilen oder unten. Im schlechtesten Fall kommt eine Konstellation zustande, in der mindestens 3 Knoten aus V B als Rand ganz unten oder ganz oben liegen, je nachdem wie man unterteilt hat. Dies kommt daher, da wir angenommen haben, dass es keine Flaschenhälse gibt. Weiterhin bildet die Doppelreihe über dieser Zeile eine Doppelreihe vom 18

21 Fall (a)(vgl. Abbildung 16). In diesem Fall haben wir für 6 Knoten einen Knoten doppelt besucht. Wenn wir die Approximation von 6 5 nehmen, dann haben wir zusätzlich noch einen Knoten der nicht mehr doppelt besucht werden muss. Zusammen mit den 3 Knoten vom Rand haben wir in diesem schlechtesten Fall 4 Knoten die wir definitiv nicht doppelt besuchen müssen oder in einem weiteren Fall eine Rolle spielen. Wir können somit die 4 aus dem Nenner wieder streichen und erhalten letztendlich den Approximationsfaktor von 6 5 N. Abbildung 16: Die beiden oberen Zeilen bilden den Fall (a) wobei der Knoten unten links nie mehr besucht wird, wie die drei in der untersten Zeile. 6 Zusammenfassung In dieser Ausarbeitung wurden Algorithmen vorgestellt, die Approximationen für entweder das Rasenmäher-Problem oder das Fräse-Problem liefern. Wir haben gezeigt dass für das Rasenmäher-Problem eine Approximation von (3 + ɛ) und für das Fräse-Problem eine 2.5-Approximation möglich ist. Des Weiteren haben wir einen Spezialfall des Fräse-Problems betrachtet und dafür eine Approximation von 6 5 N geliefert. 19

22 Literatur [1] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell. Approximation algorithms for lawn mowing and milling. Comput. Geom. Theory Appl., 17:25 50, [2] S. Arora. Nearly linear time approximation schemes for Euclidean TSP and other geometric problems. In Proc. 38th Annu. IEEE Sympos. Found. Comput. Sci., pages , [3] S. P. Fekete and W. R. Pulleyblank. Traveling the boundary of minkowski sums. Inform. Process. Lett., 66: , [4] S. Ntafos. Watchman routes under limited visibility. Comput. Geom. Theory Appl., 1(3): , [5] S. B. Rao and W. D. Smith. Approximating geometrical graphs via spanners and banyans. In Proc. 30th Annu. ACM Sympos. Theory Comput., pages ,

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

Billard auf polygonförmigen Tischen

Billard auf polygonförmigen Tischen Billard auf polygonförmigen Tischen Myriam Freidinger 1 Der Fagnano Billardstrahl im Dreieck Lemma 1. Sei ABC ein spitzwinkliges Dreieck und P,Q und R die Basispunkte der Höhen von A,B und C, dann beschreibt

Mehr

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP

Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick

Mehr

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien

Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Kap. 7.1 Heuristiken Kap. 7.2 Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 23. VO DAP2 SS 2008 14. Juli 2009

Mehr

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone

Was bisher geschah. 1. Zerlegung in monotone Polygone 2. Triangulierung der monotonen Teilpolygone Was bisher geschah Motivation, Beispiele geometrische Objekte im R 2 : Punkt, Gerade, Halbebene, Strecke, Polygon, ebene Zerlegung in Regionen (planare Graphen) maschinelle Repräsentation geometrischer

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Featurebasierte 3D Modellierung

Featurebasierte 3D Modellierung 1 Featurebasierte 3D Modellierung Moderne 3D arbeiten häufig mit einer Feature Modellierung. Hierbei gibt es eine Reihe von vordefinierten Konstruktionen, die der Reihe nach angewandt werden. Diese Basis

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

Die Komplexität von Domino

Die Komplexität von Domino Die Komplexität von Domino - oder die Frage nach dem Problem, ob man ein Polygon mit einer Menge von Dominosteinen bedecken kann Referent: Thorsten Reinhardt Freie Universität Berlin / FB Informatik Seminar

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

Triangulierung von einfachen Polygonen

Triangulierung von einfachen Polygonen Triangulierung von einfachen Polygonen - Seminarvortrag von Tobias Kyrion - Inhalt: 1.1 Die Problemstellung Quellenangabe 1.1 Die Problemstellung Definition Polygon: endlich viele paarweise verschiedene

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Ausgabe 22. Dezember 2016 Abgabe 17. Januar 2017, 11:00 Uhr

Mehr

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1 Der Fünf- Farben-Satz Seminar aus reiner Mathematik, WS 13/14 Schweighofer Lukas, November 2013 Seite 1 Inhaltsverzeichnis Vorwort...3 Graphentheoretische Grundlagen...4 Satz 2 (Eulerscher Polyedersatz)...7

Mehr

Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis)

Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis) Westfälische Wilhelms-Universität Münster Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis) Ausarbeitung im Rahmen des Seminars Einführung

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

Flächeninhalt, Volumen und Integral

Flächeninhalt, Volumen und Integral Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld

Westfählische Wilhelms-Universität. Eulersche Graphen. Autor: Jan-Hendrik Hoffeld Westfählische Wilhelms-Universität Eulersche Graphen Autor: 21. Mai 2015 Inhaltsverzeichnis 1 Das Königsberger Brückenproblem 1 2 Eulertouren und Eulersche Graphen 2 3 Auffinden eines eulerschen Zyklus

Mehr

Isomorphie von Bäumen

Isomorphie von Bäumen Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................

Mehr

Der Höhenschnittpunkt im Dreieck

Der Höhenschnittpunkt im Dreieck Der Höhenschnittpunkt im Dreieck 1. Beobachte die Lage des Höhenschnittpunktes H. Wo befindet sich H? a) bei einem spitzwinkligen Dreieck, b) bei einem rechtwinkligen Dreieck, c) bei einem stumpfwinkligen

Mehr

Aufgabe 1 ( Punkte). Ihr kennt vermutlich schon Dreieckszahlen:

Aufgabe 1 ( Punkte). Ihr kennt vermutlich schon Dreieckszahlen: Fachbereich Mathematik Tag der Mathematik 10. November 01 Klassenstufen 7, 8 Aufgabe 1 (4+4+6+4+ Punkte). Ihr kennt vermutlich schon Dreieckszahlen: n+1 n D 1 = 1 D = 3 D 3 = 6 D 4 = 10 D n = n (n+1) Wir

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

6. Übung zur Linearen Optimierung SS08

6. Übung zur Linearen Optimierung SS08 6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl

Mehr

Ausarbeitung über den Satz von Menger und den Satz von König

Ausarbeitung über den Satz von Menger und den Satz von König Ausarbeitung über den Satz von Menger und den Satz von König Myriam Ezzedine, 0326943 Anton Ksernofontov, 0327064 Jürgen Platzer, 0025360 Nataliya Sokolovska, 0326991 1. Beweis des Satzes von Menger Bevor

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Mathematik B-Tag Freitag, 20. November, 8:00 15:00 Uhr. Um die Ecke. Mathematik B-Tag Seite 1 von 9 -

Mathematik B-Tag Freitag, 20. November, 8:00 15:00 Uhr. Um die Ecke. Mathematik B-Tag Seite 1 von 9 - Mathematik B-Tag 2015 Freitag, 20. November, 8:00 15:00 Uhr Um die Ecke Mathematik B-Tag 2015 - Seite 1 von 9 - Erkundung 1 (Klavier) Ein Klavier soll durch einen 1 m breiten Gang um die Ecke (rechter

Mehr

16. Platonische Körper kombinatorisch

16. Platonische Körper kombinatorisch 16. Platonische Körper kombinatorisch Ein Würfel zeigt uns, daß es Polyeder gibt, wo in jeder Ecke gleich viele Kanten zusammenlaufen, und jede Fläche von gleich vielen Kanten berandet wird. Das Tetraeder

Mehr

Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 =

Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 = Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Lösung Das Dreieck ist rechtwinklig, da 13 2 = 12 2 + 5 2 Also gilt für die gesuchte Höhe auf der Hypotenuse

Mehr

Geometrische Algorithmen

Geometrische Algorithmen Geometrische Algorithmen Thomas Röfer Motivation Scan-line-Prinzip Konvexe Hülle Distanzprobleme Voronoi-Diagramm Rückblick Manipulation von Mengen Vorrangwarteschlange Heap HeapSort swap(a, 0, 4) 1 5

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks

Mehr

Färbungsbeweise. 1 Aufgaben

Färbungsbeweise. 1 Aufgaben Schweizer Mathematik-Olympiade smo osm Färbungsbeweise Aktualisiert: 1. Dezember 2015 vers. 1.0.0 1 Aufgaben Einstieg 1.1 Kann man überlappungsfrei und ohne Löcher die Figuren auf den Bildern unten mit

Mehr

Die Quadratur des Kreises

Die Quadratur des Kreises Die Quadratur des Kreises Häufig hört man Leute sagen, vor allem wenn sie vor großen Schwierigkeiten stehen, so was wie hier wird die Quadratur des Kreises versucht. Was ist mit dieser Redewendung gemeint?

Mehr

Vorlesungen vom 5.Januar 2005

Vorlesungen vom 5.Januar 2005 Vorlesungen vom 5.Januar 2005 5 Planare Graphen 5.1 Beispiel: Gas, Wasser, Elektrik Drei eingeschworene Feinde, die im Wald leben, planen Trassen zu den Versorgungswerken für die drei Grundgüter Gas, Wasser

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten

Mehr

Bipartite Graphen. Beispiele

Bipartite Graphen. Beispiele Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

Übungsblatt 2 - Lösung

Übungsblatt 2 - Lösung Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer

Mehr

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal

Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal 3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition

Mehr

Triangulierung von einfachen Polygonen

Triangulierung von einfachen Polygonen Triangulierung von einfachen Polygonen Tobias Kyrion Inhaltsverzeichnis 1.1 Die Problemstellung....................... 1 2.1 Ein naiver Algorithmus...................... 2 3.1 Zerlegung in monotone Teilpolygone..............

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Dipl-Math. Wolfgang Kinzner 4.4.2012 Kapitel 6: Matchings und TSP-Problem Matching und Matchingproblem Flussalgorithmus

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

11. Übung zu Algorithmen I 6. Juli 2016

11. Übung zu Algorithmen I 6. Juli 2016 11. Übung zu Algorithmen I 6. Juli 2016 Lisa Kohl lisa.kohl@kit.edu mit Folien von Lukas Barth Roadmap Ausblick: Was sind schwierige Probleme? Travelling Salesman Problem - Reprise ein ILP ein Algorithmus

Mehr

Das Heiratsproblem. Definition Matching

Das Heiratsproblem. Definition Matching Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Elemente der SchulgeometrieGrundschule. Aufgabenblatt 4 Flächeninhalt

Elemente der SchulgeometrieGrundschule. Aufgabenblatt 4 Flächeninhalt Elemente der SchulgeometrieGrundschule Aufgabenblatt 4 Flächeninhalt Achtung Fehler!! Alle Punkte auf der Kreislinie sind gleichweit von Mittelpunkt des Kreises entfernt. Die Distanz entspricht dem Radius

Mehr

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E.

\ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Das Komplement Ḡ = (V, ( V ) \ E) eines Graphen G = (V, E) besitzt die gleiche Knotenmenge V und hat als Kantenmenge alle Kanten des vollständigen Graphen ohne die Kantenmenge E. Ein Graph H = (V, E )

Mehr

Anleitungen für die Papierverpackungen ab Seite 86

Anleitungen für die Papierverpackungen ab Seite 86 1 Anleitungen für die Papierverpackungen ab Seite 86 Engelchen 2 Stück Papier im Format 10x15 cm ein Stück Schnur eine Perle mit Durchmesser 3 cm Für die Engel nimmt man 2 Stück Papier in der Größe 10

Mehr

6 Einige Beweisprinzipien. Themen: Das Invarianzprinzip Das Extremalprinzip

6 Einige Beweisprinzipien. Themen: Das Invarianzprinzip Das Extremalprinzip 6 Einige Beweisprinzipien Themen: Das Invarianzprinzip Das Extremalprinzip Das Invarianzprinzip In einem Problem wird ein Objekt behandelt, das sich ständig ändert, beispielsweise eine Zahlenfolge oder

Mehr

Klassenstufen 7, 8. Fachbereich Mathematik Tag der Mathematik 9. November 2013

Klassenstufen 7, 8. Fachbereich Mathematik Tag der Mathematik 9. November 2013 Fachbereich Mathematik Tag der Mathematik 9. November 2013 Klassenstufen 7, 8 12 Aufgabe 1 (5+++5+2 Punkte). Meister Hora hat eine kuriose Uhr: Bei dieser springt der Stundenzeiger nicht wie üblich jede

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann

Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Bäume und Wälder Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Ida Feldmann 2-Fach Bachelor Mathematik und Biologie 6. Fachsemester Inhaltsverzeichnis Einleitung 1 1. Bäume

Mehr

2.4A. Reguläre Polyeder (Platonische Körper)

2.4A. Reguläre Polyeder (Platonische Körper) .A. Reguläre Polyeder (Platonische Körper) Wie schon in der Antike bekannt war, gibt es genau fünf konvexe reguläre Polyeder, d.h. solche, die von lauter kongruenten regelmäßigen Vielecken begrenzt sind:

Mehr

Anwendungsbeispiel Strahlensatz

Anwendungsbeispiel Strahlensatz Anwendungsbeispiel Strahlensatz L5 Das berühmteste Beispiel der Proportionalität ist der Strahlensatz aus der Geometrie (siehe dazu auch Geometrie). Hier noch einmal die Hauptsätze des Strahlensatzes:

Mehr

Selbsteinschätzungstest Auswertung und Lösung

Selbsteinschätzungstest Auswertung und Lösung Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor

Mehr

Das Falten-und-Schneiden Problem

Das Falten-und-Schneiden Problem Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit

Mehr

Ebene Elementargeometrie

Ebene Elementargeometrie Ebene Elementargeometrie Im Folgenden unterscheiden wir neben Definitionen (Namensgebung) und Sätzen (nachweisbaren Aussagen) so genannte Axiome. Axiome stellen der Anschauung entnommene Aussagen dar,

Mehr

Triangulierungen von Punktmengen und Polyedern

Triangulierungen von Punktmengen und Polyedern Triangulierungen von Punktmengen und Polyedern Vorlesung im Sommersemester 2000 Technische Universität Berlin Jörg Rambau 21.06.2000 Flipdefizit 10 In diesem Kapitel starten wir die Untersuchung von Triangulierungen,

Mehr

Beschriftung in Dynamischen Karten

Beschriftung in Dynamischen Karten Vorlesung Algorithmische Kartografie Teil 2 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 11.06.2013 Die Ära der dynamischen Karten Die meisten

Mehr

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Verena Monschang Vortrag 20.05.20 Dieser Seminarvortrag thematisiert in erster Linie die Kopplung von Markovketten. Zu deren besseren Verständnis

Mehr

Einführung in die Graphentheorie. Monika König

Einführung in die Graphentheorie. Monika König Einführung in die Graphentheorie Monika König 8. 11. 2011 1 Vorwort Diese Seminararbeit basiert auf den Unterkapiteln 1.1-1.3 des Buches Algebraic Graph Theory von Chris Godsil und Gordon Royle (siehe

Mehr

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.

P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S. Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion

Mehr

Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51)

Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51) Fachbereich Mathematik Tag der Mathematik 9. November 2013 Klassenstufen 9, 10 Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51) Aufgabe 1 (6+4+4+3+3 Punkte). In dieser Aufgabe geht es

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Themenbereich: Besondere Dreiecke Seite 1 von 6

Themenbereich: Besondere Dreiecke Seite 1 von 6 Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften

Mehr

Berechnung minimaler Manhattan-Netzwerke

Berechnung minimaler Manhattan-Netzwerke Rheinische Friedrich-Wilhelms-Universität Bonn Institut für Informatik I Martin Köhler Berechnung minimaler Manhattan-Netzwerke 12. Juni 2006 Diplomarbeit Betreuer: Prof. Dr. Rolf Klein Erklärung Mit der

Mehr

Vervollständigung Lateinischer Quadrate

Vervollständigung Lateinischer Quadrate Vervollständigung Lateinischer Quadrate Elisabeth Schmidhofer 01.12.2013 Inhaltsverzeichnis 1 Vorwort 3 2 Einleitung 4 2.1 Beispele.............................................. 4 3 Lateinische Quadrate

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, 01.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Städtewettbewerb Frühjahr 2009

Städtewettbewerb Frühjahr 2009 Städtewettbewerb Frühjahr 2009 Lösungsvorschläge Hamburg 4. März 2009 [Version 1. April 2009] M Mittelstufe Aufgabe M.1 (3 P.). In ein konvexes 2009-Eck werden sämtliche Diagonalen eingezeichnet. (Diagonalen

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph.

Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. a) Es seien W 1 = (V, E 1 ), W 2 = (V, E 2 ) Untergraphen von G, die beide Wälder sind. Weiter gelte E 1 > E 2.

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und

Mehr

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen

Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul

Mehr

Konvexe Mengen mit konstanter Breite

Konvexe Mengen mit konstanter Breite PROSEMINAR KONVEXE MENGEN Konvexe Mengen mit konstanter Breite Christoph Buck Vortrag vom 11.05.2005 ProseminarWS 2004/2005 bei Prof. Dr. E. Oeljeklaus Universität Bremen 1 Dieser Vortrag im Rahmen des

Mehr

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung

Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman Problem. Flüsse in Netzwerken

Mehr

Das Steinerbaumproblem

Das Steinerbaumproblem Das Steinerbaumproblem Natalie Richert Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn 4. Februar 008 / 3 Überblick Problembeschreibung Vorstellung von zwei Approimationsalgorithmen

Mehr

Beispiellösungen zu Blatt 114 (Klasse 5 8)

Beispiellösungen zu Blatt 114 (Klasse 5 8) µ κ Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 114 (Klasse 5 8) Indem wir ein Blatt Papier zweimal falten, können wir eine seiner Seiten vierteln. Um

Mehr

8 Tangenten an Quadriken

8 Tangenten an Quadriken 8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung

Mehr

Wie komme ich von hier zum Hauptbahnhof?

Wie komme ich von hier zum Hauptbahnhof? NP-Vollständigkeit Wie komme ich von hier zum Hauptbahnhof? P Wie komme ich von hier zum Hauptbahnhof? kann ich verwende für reduzieren auf Finde jemand, der den Weg kennt! Alternativ: Finde eine Stadtkarte!

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende

Mehr

Aufgaben für die Klassenstufen 11/12

Aufgaben für die Klassenstufen 11/12 Aufgaben für die Klassenstufen 11/12 mit Lösungen Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben OE1, OE2, OE3 Aufgaben OG1, OG2, OG3, OG4 Aufgaben OS1, OS2, OS3, OS4, OS5, OS6, OS7, OS8 Aufgabe

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

Polyeder und Platonische Körper

Polyeder und Platonische Körper Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung

Mehr

Aufgaben. zu Inhalten der 5. Klasse

Aufgaben. zu Inhalten der 5. Klasse Aufgaben zu Inhalten der 5. Klasse Universität Klagenfurt, Institut für Didaktik der Mathematik (AECC-M) September 2010 Zahlbereiche Es gibt Gleichungen, die (1) in Z, nicht aber in N, (2) in Q, nicht

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Das Voronoi Diagramm. 1. Definition. 2. Eigenschaften. 3. Größe und Speicherung. 4. Konstruktion. 5. Verwendung

Das Voronoi Diagramm. 1. Definition. 2. Eigenschaften. 3. Größe und Speicherung. 4. Konstruktion. 5. Verwendung Das Voronoi Diagramm 1. Definition 2. Eigenschaften 3. Größe und Speicherung 4. Konstruktion 5. Verwendung Das Voronoi- Diagramm Voronoi Regionen Euklidische Distanz: d(p,q) = (px-qx)^2+(py-qy)^2 Das Voronoi-Diagramm

Mehr

3. Musterlösung. Problem 1: Boruvka MST

3. Musterlösung. Problem 1: Boruvka MST Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Dynamische Geometrie

Dynamische Geometrie Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage

Mehr