Quantitative Methoden (CC 303)
|
|
|
- Caroline Dittmar
- vor 7 Jahren
- Abrufe
Transkript
1 CHAIR OF SERVICE OPERATIONS MANAGEMENT Dr. Esther Mohr Bachelor Quantitative Methoden (CC 303) Bachelor-Prüfung HWS 2014/ Dezember 2014 Persönliche Daten: Name:... Vorname:... Matr.-Nr.:... Punkte: A1:... / 8 Bonuspunkte: A2:... / 8... / 2 A3:... / 19 A4:... / 10 :... / 45 Note:... Hinweis zur Bearbeitungszeit der Klausur: Die Bearbeitungsdauer der Klausur beträgt 45 Minuten. Insgesamt sind maximal 45 Punkte zu erreichen. Die erreichbare Punktzahl ist in jeder Aufgabe angegeben und soll als Anhaltspunkt für die Bearbeitungszeit dienen. Die Klausur umfasst 4 Aufgaben, welche alle zu bearbeiten sind. Das vorliegende Klausurexemplar besteht aus 9 nummerierten Seiten (inkl. Deckblatt) und ist vollständig (und zusammengeheftet) abzugeben. Beantworten Sie die Fragen in den dafür vorgesehenen Feldern. Lösungen auf Konzeptpapier (Rückseiten) werden nicht gewertet. Beantworten Sie die Fragen knapp und deutlich. Begründen Sie Ihre Antworten. Bei Rechenaufgaben muss das Endergebnis klar ersichtlich sein. Für Rechenaufgaben ohne Angabe des Lösungsweges wird nicht die volle Punktzahl vergeben. Zugelassene Hilfsmittel: Als Hilfsmittel sind nur Schreibutensilien und ein nicht programmierbarer Taschenrechner zugelassen. Die Nutzung weiterer Hilfsmittel (z.b. Vorlesungs- und Übungsmaterialien, Bücher, PC oder andere elektronische Hilfsmittel) ist nicht gestattet. Verwenden Sie keine Bleistifte. Wertung der Klausur: Antworten oder Teile einer Antwort, die nicht korrigiert werden sollen, sind deutlich durchzustreichen. Diese werden mit 0 Punkten bewertet. Unterschrift des Kandidaten:... 1
2 Aufgabe 1 Grundlagen Matrixrechnung (8 Punkte) Gegeben ist die folgende Matrix: (a) Bestimmen Sie A 2 und A A = (5 Punkte) (b) Bestimmen Sie die Inverse von A. (3 Punkte) 2
3 Aufgabe 2 Weiterführende Matrixrechnung (8 Punkte) (a) Gegeben ist das folgende lineare Gleichungssystem: Bestimmen sie a und b so, dass das LGS (a.1) keine Lösung besitzt. (a.2) genau eine Lösung besitzt. 2x 1 + ax 3 = 8 x 1 + x 2 + 2x 3 = 7 4x 2 + 2x 3 = b (a.3) unendlich viele Lösungen besitzt. Hinweis: Es müssen keine expliziten Lösungen für x 1, x 2 und x 3 angegeben werden. 3
4 (b) Gegeben ist die folgende Matrix: A = 0 c Bestimmen Sie c so, dass det(a) = 30 gilt. Bonusfrage Gastvortrag Ein Unternehmen kann durch die Anwendung von Optimierungsmethoden einen geschäftlichen Mehrwert erzielen. Nennen Sie zwei Beispiele. 4
5 Aufgabe 3 Lineare Optimierung (19 Punkte) Das Unternehmen Blumenproduktion pflanzt Rosen, Nelken und Sonnenblumen an, welche möglichst gewinnbringend verkauft werden sollen. Pro verkaufter Rose erhält das Unternehmen einen Gewinn von 2 GE, pro verkaufter Nelke 1.50 GE und pro Sonnenblume 1 GE. Die Kosten für den Anbau der Blumen belaufen sich auf 4 GE pro Rose, 2 GE pro Nelke und 1 GE pro Sonnenblume. Das Gesamtbudget des Unternehmens zum Anbau der Blumen beträgt 50 GE. Der Wasserbedarf der Rosen beträgt 9 Liter, die Nelken benötigen 3 Liter und den Sonnenblumen reicht 1 Liter aus. Der Wassertank hat eine Kapazität von 100 Litern. Hinweis: GE sind Geldeinheiten. (a) Formulieren Sie den obigen Sachverhalt als Lineares Optimierungsproblem und geben Sie die Entscheidungsvariablen an. (5 Punkte) 5
6 (b) Geben sei das folgende Lineare Optimierungsproblem: max 30x x 2 s.t. 3x 1 + 2x 2 18 x 1 4 2x 2 12 x 1, x 2 0 (b.1) Lösen Sie das Problem graphisch und geben Sie die Lösung an. (b.2) Geben Sie den zugehörigen optimalen Zielfunktionswert an. (5 Punkte) (1 Punkt) X X 1 6
7 (c) Geben Sie zum Linearen Optimierungsproblem aus Aufgabenteil (b) das Anfangstableau für den Simplex-Algorithmus an. (d) Erstellen Sie mithilfe des Simplex-Algorithmus ein nachfolgendes Tableau zum Anfangstableau aus Aufgabenteil (c). (4 Punkte) (e) Gehen Sie von Ihrer Lösung zu Aufgabenteil (d) aus. In welcher Ecke des Simplex befinden Sie sich? Begründen Sie ihre Antwort kurz. 7
8 Aufgabe 4 Lineare Algebra (10 Punkte) (a) Gegeben ist die folgende Matrix: A = Bestimmen Sie den (a.1) Rang von A. (3 Punkte) (a.2) zweiten sukzessiven Hauptminor von A. (1 Punkte) 8
9 (b) Welche Anforderung muss eine Matrix erfüllen, damit ihre Determinante bestimmt werden kann? (1 Punkt) (c) Welche Anforderung muss die Determinante einer Matrix erfüllen, damit die Matrix invertierbar ist? (1 Punkt) (d) Woran erkennt man, dass der duale Simplex-Algorithmus angewandt werden muss? (e) Wofür kann die Sensitivitätsanalyse genutzt werden? 9
Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker
TECHNISCHE UNIVERSITÄT BERLIN WS 2/2 Fachbereich 3 - Mathematik Seiler / Rambau Prüfungs-/Übungsschein-Klausur (Rechenteil Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................
AUFGABENTEIL. Klausur: Modul Optimierungsmethoden des Operations Research. Termin:
Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. Andreas Kleine AUFGABENTEIL Klausur: Modul 32621 Termin: 19.09.2016 Prüfer: Prof. Dr. Andreas
Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler
Wintersemester 2007/08 27.2.2008 Dr. Sascha Kurz Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname: Anschrift:
AUFGABEN. Klausur: Modul Optimierungsmethoden des Operations Research. Termin:
Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Prof. Dr. Andreas Kleine AUFGABEN Klausur: Modul 32621 Optimierungsmethoden des Operations Research Termin:
AUFGABENTEIL. Klausur: Modul Optimierungsmethoden des Operations Research. Termin:
Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. Andreas Kleine AUFGABENTEIL Klausur: Modul 32621 Termin: 23.03.2017 Prüfer: Prof. Dr. Andreas
Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker
TECHNISCHE UNIVERSITÄT BERLIN SS 2001 Fachbereich 3 - Mathematik Pohst / Lusala Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester
AUFGABEN. Klausur: Modul Planen mit mathematischen Modellen. Termin:
Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. Andreas Kleine AUFGABEN Klausur: Modul 31811 Termin: 07.03.2016 Prüfer: Univ.-Prof. Dr. Andreas
Klausur zur Mathematik I (Modul: Lineare Algebra I)
Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Anusch Taraz Sommersemester 215 Klausur zur Mathematik I (Modul: Lineare Algebra I) 28.8.215 Sie haben 6 Minuten Zeit zum Bearbeiten
AUFGABENTEIL. Klausur: Modul Optimierungsmethoden des Operations Research. Termin:
Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. Andreas Kleine AUFGABENTEIL Klausur: Modul 32621 Termin: 14.09.2015 Prüfer: Prof. Dr. Andreas
Probeklausur Optimierung
Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)
Klausur zur Vorlesung Ausgewählte Kapitel der Ingenieurmathematik
Name: der Ingenieurmathematik Master-Studiengang Maschinenbau und Mechatronik 1. Februar 2008, 8.30-10.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 90 min, 1.5 Zeitstunden Computer,
Klausur zur Mathematik I (Modul: Lineare Algebra I)
Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Anusch Taraz Wintersemester 2014/15 Klausur zur Mathematik I (Modul: Lineare Algebra I) 18.02.2015 Sie haben 60 Minuten Zeit zum
Klausur zur Vorlesung Höhere Mathematik I
Name: 30. Januar 200,.00-3.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 20 min, 2 Zeitstunden Skript, Vorlesungsmitschrift Schreiben Sie bitte auf dieses Deckblatt oben rechts
Klausur Lineare Algebra I
Klausur Lineare Algebra I Fachbereich Mathematik WS / Prof. Dr. Kollross 9. März Name:.................................................. Vorname:............................................... Studiengang:...........................................
Klausur Algorithmen und Datenstrukturen II 10. August 2015
Technische Universität Braunschweig Sommersemester 2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen und Datenstrukturen
1. Klausur zu Vektor- und Matrizenrechnung I und II WS 2009/10 und SS 2010 am Dienstag, dem 27. Juli 2010
Dr. M. Scheer Fakultät für Mathematik Technische Universität Dortmund 1. Klausur zu Vektor- und Matrizenrechnung I und II WS 2009/10 und SS 2010 am Dienstag, dem 27. Juli 2010 Name: Vorname: Matr.-Nr.:
Klausur zur Vorlesung Höhere Mathematik I
Name: 28. Januar 2004, 8.30-10.30 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Übungen, Formelsammlung Schreiben Sie bitte auf dieses
FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT
FERNUNIVERSITÄT IN HAGEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT MATRIKELNUMMER: NAME: VORNAME: UNTERSCHRIFT: KLAUSUR: TERMIN: PRÜFER: Marktversagen 21.03.2011, 9 11 Uhr Prof. Dr. A. Endres Aufgabe A B C
Lineare Algebra und Numerische Mathematik für D-BAUG
P. Grohs T. Welti F. Weber Herbstsemester 2 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Mittsemesterprüfung HS, Typ A Name a a Note Vorname Leginummer Datum 29..2 2 4 6 Total
Probeklausur zur Linearen Algebra II (B2)
Prof. Dr. Salma Kuhlmann Gabriel Lehéricy 12. Juli 2016 Lothar Sebastian Krapp Sommersemester 2016 Probeklausur zur Linearen Algebra II (B2) Klausurnummer: 1 Matrikelnummer: Pseudonym: Aufgabe 1 2 3 erreichte
Aufgabe Summe
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Florian Sahling Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten-
Klausur: Mathematik/BWL WS 2017/18
Eignungsprüfung für den Hochschulzugang Klausur: Mathematik/BWL WS 2017/18 Bewerber Name, Vorname... Geburtsdatum:.. Hilfsmittel: Bearbeitungszeit: einfacher Taschenrechner 120 Minuten maximale Punktzahl:
Hauptklausur. Lineare Algebra. (BaM-LA1, L3M-AG) Prof. Dr. Martin Möller // Jonathan Zachhuber. WiSe 2016/17 // 20. Februar 2017
Hauptklausur Lineare Algebra (BaM-LA1, L3M-AG) Prof. Dr. Martin Möller // Jonathan Zachhuber WiSe 2016/17 // 20. Februar 2017 Kontrollieren Sie, ob Sie alle 6 Aufgabenblätter erhalten haben, und geben
Klausur Mathematik. Note:
Fachhochschule Südwestfalen Fachhochschule Münster Hochschule Bochum Verbundstudiengang Wirtschaftsingenieurwesen Hochschule Bochum Hochschule für Technik und Wirtschaft Klausur Mathematik Datum: 18.09.2010
AUFGABENTEIL MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR THEORIE DER LEISTUNGSERSTELLUNG 17. SEPTEMBER 2009, UHR
FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT AUFGABENTEIL MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR. 31531 THEORIE DER LEISTUNGSERSTELLUNG TERMIN: PRÜFER: 17. SEPTEMBER 2009, 09 00 11 00 UHR PROF. DR. DR. H.C. G.
Klausur zur Vorlesung Lineare Algebra I
Heinrich-Heine-Universität Düsseldorf 23.7.2 Mathematisches Institut Lehrstuhl für Algebra und Zahlentheorie Prof. Dr. Oleg Bogopolski Klausur zur Vorlesung Lineare Algebra I Bearbeitungszeit: 2 min Bitte
Informatik für Ingenieure (InfIng)
Informatik für Ingenieure (InfIng) Klausur-Vorbereitung Doz. Dipl.-Ing. H. Hiller WS 2012/13 Rückblick FH D Seite 2 FB 5 Klausurvorbereitung Funktion? while-schleife? Objekt? Kleiner Tipp von mir: Es handelt
Probeklausur zur Analysis II
Probeklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 3. Februar 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten
Klausur Lineare Algebra I & II
Prof. Dr. G. Felder, Dr. Thomas Willwacher ETH Zürich, Sommer 2010 D MATH, D PHYS, D CHAB Klausur Lineare Algebra I & II Bitte ausfüllen! Name: Vorname: Studiengang: Bitte nicht ausfüllen! Aufgabe Punkte
Lösungsskizze zur Hauptklausur Lineare Algebra I
Lösungsskizze zur Hauptklausur Lineare Algebra I Aufgabe Seien V und W zwei K-Vektorräume für einen Körper K. a) Wann heißt eine Abbildung f : V W linear? b) Wann heißt eine Abbildung f : V W injektiv?
Nachname Vorname Matrikelnummer Platznummer
Klausur: Buchführung 1/5 Nachname Vorname Matrikelnummer Platznummer Allgemeine Hinweise: Notieren Sie sowohl auf dieser Seite als auch auf der Lösungsvorlage Ihren Nachnamen, Vornamen, Matrikelnummer
Erreichte Punkte
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Florian Sahling Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten-
Klausur zur Vorlesung Höhere Mathematik I
Name: 4. Februar 2002, 8.30-10.30 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Übungen Schreiben Sie bitte auf dieses Deckblatt oben
Erreichte Punkte
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Svenja Lagershausen Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten-
Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL
Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Sommersemester 2015 Universität Frankfurt FB 12, Institut für Mathematik 13.07.2015 Dr. Andreas Maurischat Dauer: 90 Minuten Hilfsmittel: Stifte und ein zweiseitig
Aufgabe I II III Gesamt Maximale Punktzahl Erreichte Punktzahl
Matrikelnummer: Name: Vorname: Unterschrift: Klausur: Ökonomie der Umweltpolitik Termin: 08.03.2017 09:00 11:00 Prüfer: Prof. Dr. A. Endres Aufgabe I II III Gesamt Maximale Punktzahl 35 15 50 100 Erreichte
FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT
FERNUNIVERSITÄT IN HAGEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT MATRIKELNUMMER: NAME: VORNAME: KLAUSUR: Ökonomie der Umweltpolitik TERMIN: 04.03.2008 11.30-13.30 Uhr PRÜFER: Prof. Dr. A. Endres Aufgabe 1
Bachelor Betriebswirtschaft
Name, Vorname Matrikel-Nr. Studienzentrum Studiengang Bachelor Betriebswirtschaft Modul Operations Research Art der Leistung Prüfungsleistung Klausur-Kennzeichen WI-OPR-P12-090606 Datum 06.06.2009 Ausgegebene
K L A U S U R. Bearbeitungshinweise: Bitte tragen Sie hier Ihre Kennziffer ein: Bitte tragen Sie hier Ihren Namen ein: 60 Minuten.
Bitte tragen Sie hier Ihre Kennziffer ein: Bitte tragen Sie hier Ihren Namen ein: K L A U S U R Bachelor 2008/I Einführung in die VWL Prof. Dr. Peter Bofinger Lehrstuhl für Volkswirtschaftslehre, Geld
Klausur Management Science. Donnerstag, 19. Februar 2015
run Lehrstuhl fiir Operations Management Prof. Dr. Rainer Kolisch ArcisstraBe 21, 80333 Miinchen Klausur Management Science Donnerstag, 19. Februar 2015 Name: Vorname: Matrikelnummer: Studiengang: Fachsemester:
AUFGABENTEIL. Modul-Abschlussklausur zum. B-Modul Nr , Theorie der Leistungserstellung. 29. März 2012, 9:00 bis 11:00 Uhr
Fakultät für Wirtschaftswissenschaft AUFGABENTEIL Modul-Abschlussklausur zum B-Modul Nr. 31531, Theorie der Leistungserstellung Termin: Prüfer: 29. März 2012, 9:00 bis 11:00 Uhr Prof. Dr. Dr. h. c. Günter
Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen!
Klausur: 1122 1 von 12 Prüfung: Produktion, Logistik und Operations Research SS 29 Prüfer: Prof. Dr. Karl Inderfurth Prüfungsbogen Vom Klausurteilnehmer auszufüllen! Name, Vorname : Fakultät : Matrikelnummer
( ) Lineare Gleichungssysteme
102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv
Klausur Algorithmen und Datenstrukturen II 29. Juli 2013
Technische Universität Braunschweig Sommersemester 2013 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und Datenstrukturen
Modulklausur Konstruktion und Analyse ökonomischer Modelle
Modulklausur Konstruktion und Analyse ökonomischer Modelle Aufgabenheft Termin: 04.03.2015, 09:00-11:00 Uhr Prüfer: Univ.-Prof. Dr. J. Grosser Aufbau der Klausur Pflichtaufgabe Maximale Punktzahl: 34 Wahlpflichtaufgabe
Aufgabe Summe
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Jun.-Prof. Dr. Florian Sahling Klausur zur Vorlesung Betriebliches Rechnungswesen II Industrielle Kosten-
HINWEISE auf Seite III!
Klausur zum Modul 31691 AUFGABENTEIL I F E R N U N I V E R S I T Ä T I N H A G E N FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT KLAUSUR zum MODUL 31691 Steuerliche Gewinn- und Vermögensermittlung, konstitutive
Name:... Vorname:... Matr.-Nr.:... Studiengang:...
Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................
Mathematik-Klausur vom 30. März 2005
Mathematik-Klausur vom 30. März 2005 Aufgabe 1 a) Welche lineare Funktion f(x) = mx + b nimmt für x = 1 den Funktionswert 1 und für x = 4 den Funktionswert 7 an? b) Berechnen Sie die erste Ableitung der
Fachhochschule Düsseldorf Wintersemester 2008/09
Fachhochschule Düsseldorf Wintersemester 2008/09 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 26.01.2009 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige
Technische Universität München Fakultät für Mathematik Mathematik 1 (Elektrotechnik) Probeklausur Prof. Dr. Anusch Taraz 24.
Note: Name Vorname Lerngruppen-Nummer Tutorübung-Nr. Hiermit bestätige ich, dass ich vor Prüfungsbeginn darüber in Kenntnis gesetzt wurde, dass ich im Falle einer plötzlich während der Prüfung auftretenden
Marktversagen Prof. Dr. A. Endres
FERNUNIVERSITÄT IN HAGEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Matrikelnummer Name: Vorname: Klausur: Prüfer: Marktversagen Prof. Dr. A. Endres Termin: Dienstag, 04. März 2008 09.00-11.00 Uhr Aufgabe A
3. Tragen Sie Ihre Lösungen in den dafür vorgesehenen umrandeten Bereichen hinter der jeweiligen Fragestellung ein.
Klausur: Jahresabschluss (BWL IV) WS 2012/2013 1. Termin Prüfer: Prof. Dr. Stefan Wielenberg/ Prof. Dr. Kay Blaufus Zulässige Hilfsmittel: Wirtschaftsgesetze ohne eigene Ergänzungen, nicht programmierbarer
Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht. Prof. Dr. A. Endres
FERNUNIVERSITÄT IN HAGEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Matrikelnummer Name: Vorname: Unterschrift: Klausur: Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht Prüfer: Prof. Dr.
FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT
FERNUNIVERSITÄT IN HAGEN FAKULTÄT WIRTSCHAFTSWISSENSCHAFT Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. A. Kleine Lehrstuhl für Angewandte
Bachelor-Prüfung. Prüfung: Klausur zur Höheren Mathematik II Prof. Dr. E. Triesch Termin: Fachrichtung:... Matr.-Nr.:... Name:...
RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lehrstuhl II für Mathematik Bachelor-Prüfung Höhere Mathematik II Prüfung: Klausur zur Höheren Mathematik II Prüfer: Prof. Dr. E. Triesch Termin: 24.02.2009
Entscheidungstheorie (SBWL) SS08
Fach: Prüfer: Veranstaltung: CP anrechnen lassen für: ggfls. streichen und dann bitte Veranstaltung und Prüfungsnummer angeben Banken und Finanzierung Prof. Dr. Dr. A. Löffler Entscheidungstheorie (SBWL)
FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT
FERNUNIVERSITÄT IN HAGEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT MATRIKELNUMMER: NAME: VORNAME: UNTERSCHRIFT: KLAUSUR: TERMIN: PRÜFER: Marktversagen 20. 09. 2010 9-11 Uhr Prof. Dr. A. Endres Aufgabe 1 2 Summe
Bitte tragen Sie hier Ihre Kennziffer ein: Bitte tragen Sie hier Ihren Namen ein: K L A U S U R
Bitte tragen Sie hier Ihre Kennziffer ein: Bitte tragen Sie hier Ihren Namen ein: K L A U S U R Bachelor 2007/II Einführung in die VWL Prof. Dr. Peter Bofinger Lehrstuhl für Volkswirtschaftslehre, Geld
FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT
FERNUNIVERSITÄT IN HAGEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT MATRIKELNUMMER: NAME: VORNAME: UNTERSCHRIFT: KLAUSUR: Marktversagen TERMIN: 21.09.2015 09:00-11:00 Uhr PRÜFER: Prof. Dr. A. Endres Aufgabe
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Nachholklausur zur Linearen Algebra I, WS 03/04
16.4.2004 Nachholklausur zur Linearen Algebra I, WS 03/04 Prof. Dr. H. Pahlings Tragen Sie bitte auf diesem Deckblatt leserlich und in Blockbuchstaben Ihren Namen und Ihre Matrikelnummer ein und unterschreiben
Klausur AVWL 1. Klausurtermin:
Klausur AVWL 1 Klausurtermin: 25.02.2015 Dieses Deckblatt bitte vollständig und deutlich lesbar ausfüllen! Vom Prüfer Vom Prüfer Name: auszufüllen: auszufüllen: Aufg.1: / 25 Vorname: Punkte: Aufg.2: /
Nachholklausur Wirtschafts- und Finanzmathematik
Vorname: Nachname: Matrikel-Nr.: Nachholklausur Wirtschafts- und Finanzmathematik Prüfer Burkart, Etschberger, Jansen Prüfungsdatum 7. Juli 2016 Prüfungsort Augsburg Studiengang IM und BW Bearbeitungszeit:
Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Klausur Mathematik 1
Mathematik für Ökonomen SS 2015 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 1 21.07.2015, 08:30-10:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib- und
Bonus-/Probeklausur VWL I - Mikroökonomie 13. Dezember 2008
PROF. DR. CLEMENS PUPPE VWL I - Mikroökonomie Lehrstuhl für Wirtschaftstheorie (VWL I) Wintersemester 2008/2009 Bonus-/Probeklausur VWL I - Mikroökonomie 13. Dezember 2008 Name: Vorname: Matrikelnr.: Hinweise:
Matrikel- Nummer: Aufgabe Summe Punkte /1 /3 /3 /3 /7 /5 /3 /3 /3 /31
Scheinklausur Höhere Mathematik Musterlösung 8.. 00, Version Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 4 5 6 7 8 9 Summe Punkte / / / / /7 /5 / / / / Bitte beachten Sie die folgenden Hinweise:
Klausur zur Vorlesung Höhere Mathematik II
Name: 9. Juli 2001, 11.00-13.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift(en), Formelsammlung Schreiben Sie bitte auf dieses Deckblatt
AUFGABEN. Klausur: Modul Problemlösen in graphischen Strukturen. Termin:
Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. Andreas Kleine AUFGABEN Klausur: Modul 31801 Problemlösen in graphischen Strukturen Termin:
Klausur zur Veranstaltung Industrielle Produktionssysteme im SS 04
Universität Hannover Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Veranstaltung Industrielle Produktionssysteme im SS 04 Hinweise: Die Klausur
Klausur zur Mathematik II (Modul: Lineare Algebra II)
Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Wintersemester 0/04 Klausur zur Mathematik II (Modul: Lineare Algebra II) 05.0.04 Sie haben 60 Minuten Zeit zum
FERNUNIVERSITÄT IN HAGEN WIRTSCHAFTSWISSENSCHAFT
FERNUNIVERSITÄT IN HAGEN FAKULTÄT WIRTSCHAFTSWISSENSCHAFT Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Univ.-Prof. Dr. A. Kleine Lehrstuhl für Angewandte
FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT
FERNUNIVERSITÄT IN HAGEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT MATRIKELNUMMER: NAME: VORNAME: UNTERSCHRIFT: KLAUSUR: Marktversagen TERMIN: 14.03.2016 09:00-11:00 Uhr PRÜFER: Prof. Dr. A. Endres Aufgabe
UNIVERSITÄT DUISBURG-ESSEN
Art der Prüfung: Kurzklausur für Lehramtsstudierende Termin: Sommersemester 2008 Nachtermin Studiengang: Studierende auf Lehramt, die eine erfolgreiche Teilnahme benötigen; Lehramt Sowi GHR; Lehramt Sowi
A U F G A B E N S A M M L U N G Z U R L I N E A R E N A L G E B R A
RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft Dr. Alfred Bischoff A U F G A B E N S A M M L U N G Z U R L I N E A R E N A L G E B R A Diese Aufgabensammlung ist ausschließlich zum persönlichen
Übungen zum Ferienkurs Lineare Algebra 2015/2016: Lösungen
1 Lineare Abhängigkeit 1.1 Für welche t sind die folgenden Vektoren aus 3 linear abhängig? (1, 3, 4), (3, t, 11), ( 1, 4, 0). Das zur Aufgabe gehörige LGS führt auf die Matrix 1 3 4 3 t 11. 1 4 0 Diese
Unterschrift des Prüfers
Name : Vorname : Modulklausur: Investition und Finanzierung (31021) Teil: Termin: Prüfer: Investition 27. September 2013, 15:30 17:30 Uhr Aufgabe 1 2 3 Gesamt Maximale Punktzahl 21 13 16 50 Erreichte Punktzahl
Klausur zur Vorlesung,,Algorithmische Mathematik II
Institut für angewandte Mathematik, Institut für numerische Simulation Sommersemester 2015 Prof. Dr. Anton Bovier, Prof. Dr. Martin Rumpf Klausur zur Vorlesung,,Algorithmische Mathematik II Bitte diese
Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL Sommmersemester Aufgabe Punkte
Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL Sommmersemester 2014 29.07.2014 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt: Aufgabe 1 2 3 4
Die simultane Anwendung des Gauß-Verfahrens zur Lösung der beiden Gleichungssysteme
Übungsblatt Aufgabe.1 (F92 - A9-8P) a). Gegeben seien die Matrix 1 0 2 1 1 2 A = 0 1 0 0 2 0 und die Vektoren b 1 2 0 =, b = 4 2 4 4 1 2 Die simultane Anwendung des Gauß-Verfahrens zur Lösung der beiden
Klausur zur Vorlesung Lineare Algebra und Geometrie I
Klausur zur Vorlesung Lineare Algebra und Geometrie I Ruhr-Universität Bochum Prof. Dr. Peter Eichelsbacher 3. April 2007, 9.00-13.00 Uhr, 240 Minuten Name und Geburtsdatum: Matrikelnummer: Hinweise: Überprüfen
Masterprüfung Spezialisierungsmodul Organisation und Führung Wintersemester 2016/17, 14. März 2017
Lehrstuhl für Organisation und Führung Institut für Unternehmensführung Masterprüfung Spezialisierungsmodul Organisation und Führung Wintersemester 2016/17, 14. März 2017 Name: Vorname: Ich bestätige hiermit,
Wirtschaftsmathematik/Statistik SS 2009
Hochschule Bochum / Fachhochschule Münster Fachhochschule Südwestfalen / Fachhochschule Bielefeld weiterbildender Verbundstudiengang (MBA) Technische Betriebswirtschaft - Herr Dr. Andreas Kladobra - Hochschule
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Prof. Dr. F. Otto 24.03.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen WS 2010/2011 Name:................................
