Pearson- Korrelationskoeffizienten höherer Grade

Größe: px
Ab Seite anzeigen:

Download "Pearson- Korrelationskoeffizienten höherer Grade"

Transkript

1 Pearson- Korrelationskoeffizienten höherer Grade Dipl.- Ing. Björnstjerne Zindler, M.Sc. Erstellt: 13. März 2014 Letzte Revision: 16. März 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Der Lineare Korrelationskoeffizient ρ (1) 3 3 Der Quadratische Korrelationskoeffizient ρ (2) 4 4 Der Kubische Korrelationskoeffizient ρ (3) 5 5 Der Biquadratische Korrelationskoeffizient ρ (4) 6 6 Zusammenfassung und Erwartungen 7 Literatur [001] Keine für vorliegenden Text. 1

2 1 Einleitung [001]ff. Einleitung 1 Einleitung Im Rahmen des Projektes SAW mussten Datenpaare ausgewertet werden. Während dieses Prozesses wurden ebenfalls Regressionen durchgeführt von linear über quadratisch, kubisch bis zu biquadratisch. Gleichfalls wurde eine Elliptische Regression entwickelt. Ein sichtbares Ergebnis dieser Regression ist der Lineare Korrelationskoeffizient ρ (1) unter der Berechnungsgrundlage: ρ (1) a σx σ y Wobei a den Anstieg der Hauptachse der regressierten Ellipse darstellt und σ x bzw. σ y die Standardabweichungen der Datenwerte X und Y. Nutzt man die Grundlage nach Pearson zur Ermittlung des Linearen Korrelationskoeffizienten, dann lässt sich ρ (1) berechnen über: ρ (1) Cov (X; Y ) σ x σ y Der Wert Cov ist hier die Kovarianz zwischen X und Y. Beide Gleichungen für ρ (1) zusammen gefasst, zeigen folgenden Zusammenhang: V ar (X) ist die Varianz von X. a Wobei E ( ) der Erwartungswert ist. a σ 2 x Cov (X; Y ) a V ar (X) Cov (X; Y ) a Cov (X; Y ) V ar (X) E [(X E (X)) (Y E (Y ))] E (X 2 ) E 2 (X) Der Lineare Korrelationskoeffizient ρ (1) ist ein Repräsentant für den Grad des linearen Zusammenhangs zwischen zwei Merkmalen. Er nimmt Werte zwischen -1 und +1 an. Bei ±1 besteht ein vollständiger linearer Zusammenhang. Gilt ρ (1) 0 liegt keine Abhängigkeit voneinander vor. Dies gilt jedoch nur für lineare Abhängigkeiten, so kann Merkmal 1 und Merkmal 2 durchaus nichtlinear zusammen hängen, obwohl ρ (1) 0. Daher ist der Lineare Korrelationskoeffizient nicht geeignet zur Untersuchung für vollständig stochastische Abhängigkeiten. Die Nutzung von ρ (1) verlangt einige Voraussetzungen, welche hier als erfüllt gelten. Der Anstieg a liegt linear vor. Im weiteren Verlauf dieses Arbeitsblattes wird eine Möglichkeit beschrieben um polynomiale Funktionen für die Hauptachse der Elliptischen Regression nutzen zu können und somit auch Korrelationskoeffizienten höherer Grade zu berechnen. 2

3 2 Der Lineare Korrelationskoeffizient ρ (1) 2 Der Lineare Korrelationskoeffizient ρ (1) Lineare Mit den Datenpaaren X und Y ist eine Lineare Regression durchgeführt worden. Damit liegt eine Berechnungsgrundlage folgender Form vor. Korrelation y B x + A Y i y i X i x i Ebenso wurde ein Linearer Korrelationskoeffizient berechnet. Die Voraussetzungen für diese Berechnung sind gegeben. Aus der Elliptischen Regression ist der Lineare Korrelationskoeffizient vorab schon bekannt. ρ (1) 0, 66 Die Berechnung von ρ (1) ist einfach durchführbar mit den bekannten elementaren Mitteln n x i y i X i Y i X i - X M Y i - Y M , , , , , , , , 25 Mittelwerte: (X i - X M ) 2 (Y i - Y M ) 2 (X i - X M ) (Y i - Y M ) Standardabweichungen: σ X X M Y M , , 905 σ Y 262, 224 Kovarianz: Cov(X, Y ) , 5 Linearer Korrelationskoeffizient: ρ (1) Cov (X, Y ) 720, 5 0, 66 σ X σ Y 33, , 224 3

4 3 Der Quadratische Korrelationskoeffizient ρ (2) Quadratische Korrelation 3 Der Quadratische Korrelationskoeffizient ρ (2) Mit den Datenpaaren X und Y ist eine Quadratische Regression durchgeführt worden. Damit liegt eine Berechnungsgrundlage folgender Form vor. y C x 2 + B x + A y C x 2 B x + A Y i y i C x i X i B x i + A Die Voraussetzungen für die Berechnung des Korrelationskoeffizienten sind gegeben. Das Ergebnis der Quadratischen Regression: y 454, x 2 0, 046 x + 195, 71 C +454, B 0, 046 A +195, 71 n x i y i X i Y i X i - X M Y i - Y M , , , , , , , , , , , , , , , 673-1, , , 653-3, 54-30, , , 751-9, 769-7, , , , , , , 594-2, 431-7, , , (X i - X M ) 2 (Y i - Y M ) 2 (X i - X M ) (Y i - Y M ) +759, , , , , , , , , , , , , , , , , , , , , , , , , , , 703 Mittelwerte: X M 1295, , 933 Y M 1295, , 940 Standardabweichungen: 274, ,303 σ X 1, 65 σ Y 11, 597 Kovarianz: Cov(X, Y ) Quadratischer Korrelationskoeffizient: ρ (2) 274, , 0 Cov (X, Y ) 34, 0 0, 157 σ X σ Y 1, 65 11, 597 4

5 4 Der Kubische Korrelationskoeffizient ρ (3) 4 Der Kubische Korrelationskoeffizient ρ (3) Kubische Mit den Datenpaaren X und Y ist eine Kubische Regression durchgeführt worden. Damit liegt eine Berechnungsgrundlage folgender Form vor. Korrelation y D x 3 + C x 2 + B x + A y D x 3 C x 2 B x + A Y i y i D x 3 i C x2 i X i B x i + A Die Voraussetzungen für die Berechnung des Korrelationskoeffizienten sind gegeben. Das Ergebnis der Kubischen Regression: y 1, x 3 0, 029 x 2 + 1, 901 x 70, 611 D 1, C 0, 029 B 1, 901 A 70, 611 n x i y i X i Y i X i - X M Y i - Y M , , , , , , , , (X i - X M ) 2 (Y i - Y M ) 2 (X i - X M ) (Y i - Y M ) +1, , , , , , , , , , , , , , , , , , , , , , , , , , , Mittelwerte: Standardabweichungen: Kovarianz: σ X X M , 5 Y M , 375 4, , 726 σ Y Cov(X, Y ) Kubischer Korrelationskoeffizient: ρ (3) 4, , , 01 0, Cov (X, Y ) 0, , 990 σ X σ Y 729, , 01 5

6 5 Der Biquadratische Korrelationskoeffizient ρ (4) Biquadratische Korrelation 5 Der Biquadratische Korrelationskoeffizient ρ (4) Mit den Datenpaaren X und Y ist eine Biquadratische Regression durchgeführt worden. Damit liegt eine Berechnungsgrundlage folgender Form vor. y E x 4 + D x 3 + C x 2 + B x + A y E x 4 D x 3 C x 2 B x + A Y i y i E x 4 i D x3 i C x2 i X i B x i + A Die Voraussetzungen für die Berechnung des Korrelationskoeffizienten sind gegeben. Das Ergebnis der Biquadratischen Regression: y 5, x , x 3 0, 0161 x 2 + 6, 450 x 514, 21 E 5, D +15, C 0, 0161 B +6, 450 A 514, 21 n x i y i X i Y i X i - X M Y i - Y M (X i - X M ) 2 (Y i - Y M ) 2 (X i - X M ) (Y i - Y M ) +13, , , , , , , , , , , , , , , , , , , , , , , , , , , Mittelwerte: Standardabweichungen: σ X X M , 25 Y M , , , 103 σ Y 4, , 229 Kovarianz: 49, Cov(X, Y ) 6, Biquadratischer Korrelationskoeffizient: ρ (4) Cov (X, Y ) 6, , 999 σ X σ Y 2476, , 229 6

7 6 Zusammenfassung und Erwartungen 6 Zusammenfassung und Erwartungen Da eine Polynomregression höherer Grade die vorhandenen Daten x i und y i immer besser widerspiegeln kann, ist zu erwarten das gilt: Zusammenfassung lim n + p(n) 1 Es sei denn, dass die vorhandenen Daten schon beim Linearen Korrelationskoeffizenten eine völlige Unabhängigkeit voneinander anzeigen. ρ (1) 0 Als Kontrolle der Richtigkeit der einzelnen Werte ρ (1), σ X und σ Y kann die Berechnungsgrundlage von ρ (1) aus der Elliptischen Regression heran gezogen werden. So gilt dort: Damit für den Anstieg a der Hauptachse: ρ (1) a σx σ Y a ρ (1) σy σ X Zu erwarten ist ein Übereinstimmen von a und a (1) beim Linearen Korrelationskoeffizienten mit dem Anstieg aus der Elliptischen Regression und durch die Transformation der Datenwerte x i und y i zu X i ; Y i bei den Korrelationskoeffizienten höherer Grade in den linearen Raum ein a (n>1) 1. Die einzelnen Werte: Lineare Regression: Quadratische Regression: Kubische Regression: Biquadratische Regression: a (1) 0, 66 a (2) 0, 157 a (3) 0, 990 a (4) 0, , 224 0, , , 597 1, 65 0, , 01 1, , , 229 1, , 103 7

8 6 Zusammenfassung und Erwartungen Für die Lineare Exzentrizität ε L einer Ellipse ist bekannt: Weiterhin ist gegeben: Für vorhandene Werte gilt: ε 2 L e 2 f 2 f 2 σx 2 {f 2 } n e 2 σy 2 {e2 } n f 2 n σ 2 X n { f 2} e 2 n σ 2 Y n { e 2} f 2 σ 2 X e 2 σ 2 Y ε 2 L σ 2 Y σx 2 Grad ε L σx 2 σy 2 Linear 20, , , 375 Quadratisch 117,120 34, , 163 Kubisch 101, Biquadratisch 316, Für die numerische Exzentrizität ε N gilt analog: ε 2 N ε 2 L MAX (σ 2 X ; σ2 Y ) Grad ε N σx 2 σy 2 Linear 0, , , 375 Quadratisch 0,9 34, , 163 Kubisch 0, Biquadratisch 0, L A TEX

Elliptische Regression von Datenpunkten

Elliptische Regression von Datenpunkten Elliptische Regression von Datenpunkten Dipl.- Ing. Björnstjerne Zindler, M.Sc. Erstellt: 17. Oktober 2013 Letzte Revision: 30. April 2014 Inhaltsverzeichnis 1 Die Elliptische Regression im Allgemeinen

Mehr

Durchführung einer Regression über das Resttermverfahren am Beispiel einer bilogarithmischen Funktion

Durchführung einer Regression über das Resttermverfahren am Beispiel einer bilogarithmischen Funktion Durchführung einer Regression über das Resttermverfahren am Beispiel einer bilogarithmischen Funktion Dipl.- Ing. Björnstjerne Zindler, M.Sc. Erstellt: 21. November 2014 Letzte Revision: 6. Dezember 2014

Mehr

Gibt es ein Maxima des polaren Trägheitsmoments eines Kreisrings?

Gibt es ein Maxima des polaren Trägheitsmoments eines Kreisrings? Gibt es ein Maxima des polaren Trägheitsmoments eines Kreisrings? Dipl.- Ing. Björnstjerne Zindler, M.Sc. Erstellt: 12. Mai 2012 Letzte Revision: 4. April 2015 Inhaltsverzeichnis 1 Berechnung des polaren

Mehr

(Lineare) Regression einer modifizierten Mitscherlich- Funktion

(Lineare) Regression einer modifizierten Mitscherlich- Funktion (Lineare) Regression einer modifizierten Mitscherlich- Funktion Dipl.- Ing. Björnstjerne Zindler, M.Sc. www.zenithpoint.de Erstellt: 9. Juli Letzte Revision: 27. Juni 2017 Inhaltsverzeichnis 1 Einleitung

Mehr

5 Erwartungswerte, Varianzen und Kovarianzen

5 Erwartungswerte, Varianzen und Kovarianzen 47 5 Erwartungswerte, Varianzen und Kovarianzen Zur Charakterisierung von Verteilungen unterscheidet man Lageparameter, wie z. B. Erwartungswert ( mittlerer Wert ) Modus (Maximum der Wahrscheinlichkeitsfunktion,

Mehr

Vorlesung 9b. Kovarianz und Korrelation

Vorlesung 9b. Kovarianz und Korrelation Vorlesung 9b Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X,Y]:= E [ (X EX)(Y EY) ] Insbesondere ist

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Rechenregeln für den Erwartungswert Ist f symmetrisch bzgl. a, so gilt E(X)

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006

Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 Empirische Softwaretechnik Prof. Dr. Walter F. Tichy Dr. Matthias Müller Sommersemester 2006 1 Experiment zur Vererbungstiefe Softwaretechnik: die Vererbungstiefe ist kein guter Schätzer für den Wartungsaufwand

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Schnittpunkt zweier Einzelfunktionen einer zerlegten speziellen bilogarithmischen Funktion

Schnittpunkt zweier Einzelfunktionen einer zerlegten speziellen bilogarithmischen Funktion chnittpunkt zweier Einzelfunktionen einer zerlegten speziellen bilogarithmischen Funktion Dipl.- Ing. Björnstjerne Zindler, M.c. Erstellt: 28. Januar 205 Letzte Revision: 5. Februar 205 Inhaltsverzeichnis

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Vorlesung 7b. Kovarianz und Korrelation

Vorlesung 7b. Kovarianz und Korrelation Vorlesung 7b Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X,Y]:= E [ (X EX)(Y EY) ] Insbesondere ist

Mehr

Ein paar Fehler zuviel. Fehlerfortpflanzung am Beispiel

Ein paar Fehler zuviel. Fehlerfortpflanzung am Beispiel Ein paar Fehler zuviel Fehlerfortpflanzung am Beispiel Dipl.- Ing. Björnstjerne Zindler, M.Sc. www.zenithpoint.de Erstellt: 20. Januar 2016 Letzte Revision: 20. Januar 2016 Inhaltsverzeichnis 1 Einleitung

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Vorlesung 8b. Kovarianz, Korrelation und Regressionsgerade

Vorlesung 8b. Kovarianz, Korrelation und Regressionsgerade Vorlesung 8b Kovarianz, Korrelation und Regressionsgerade 1 1. Die Kovarianz und ihre Eigenschaften 2 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und

Mehr

Formänderungs- und konjugierte Formänderungsenergie

Formänderungs- und konjugierte Formänderungsenergie Formänderungs- und konjugierte Formänderungsenergie Dipl.- Ing. Björnstjerne Zindler, M.Sc. www.zenithpoint.de Erstellt: 8. November 01 Letzte Revision: 7. April 015 Inhaltsverzeichnis 1 Einleitung zum

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient

11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient 11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte

Kapitel 8. Parameter multivariater Verteilungen. 8.1 Erwartungswerte Kapitel 8 Parameter multivariater Verteilungen 8.1 Erwartungswerte Wir können auch bei mehrdimensionalen Zufallsvariablen den Erwartungswert betrachten. Dieser ist nichts anderes als der vektor der Erwartungswerte

Mehr

ELEMENTARE EINFÜHRUNG IN DIE MATHEMATISCHE STATISTIK

ELEMENTARE EINFÜHRUNG IN DIE MATHEMATISCHE STATISTIK DIETER RASCH ELEMENTARE EINFÜHRUNG IN DIE MATHEMATISCHE STATISTIK MIT 53 ABBILDUNGEN UND 111 TABELLEN ZWEITE, BERICHTIGTE UND ERWEITERTE AUFLAGE s-~v VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN BERLIN 1970

Mehr

Algorithmen für geographische Informationssysteme. 6. Vorlesung: 14. Mai 2014

Algorithmen für geographische Informationssysteme. 6. Vorlesung: 14. Mai 2014 Algorithmen für geographische Informationssysteme 6. Vorlesung: 14. Mai 2014 Ausgleichung bei linearem funktionalen Modell Beispiel 2: Ausgleichung von Höhendifferenzen P 2 Δh 2,3 = 7.0 m P 3 Δh 1,2 =

Mehr

Stochastik Musterlösung 7

Stochastik Musterlösung 7 ETH Zürich HS 216 RW, D-MATL, D-MAVT Prof. Dr. Martin Schweizer Koordinator Calypso Herrera Stochastik Musterlösung 7 1. a) Es sind folgende zwei Eigenschaften zu zeigen: f X,Y (x, y) für alle (x, y) R

Mehr

Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6. Streudiagramm

Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6. Streudiagramm y Aufgabe 3 Ausführliche Lösungen zu ausgewählten Aufgaben von ÜB 5 und 6 a) Zur Erstellung des Streudiagramms zeichnet man jeweils einen Punkt für jedes Datenpaar (x i, y i ) aus der zweidimensionalen

Mehr

Der Korrelationskoezient nach Pearson

Der Korrelationskoezient nach Pearson Der Korrelationskoezient nach Pearson 1 Motivation In der Statistik werden wir uns häug mit empirisch erfassten Daten beschäftigen. Um diese auszuwerten, ist es oftmals notwendig einen Zusammenhang zwischen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

4. Gemeinsame Verteilung und Grenzwertsätze

4. Gemeinsame Verteilung und Grenzwertsätze 4. Gemeinsame Verteilung und Grenzwertsätze Häufig in der Praxis: Man muss mehrere (n) ZV en gleichzeitig betrachten (vgl. Statistik I, Kapitel 6) Zunächst Vereinfachung: Betrachte n = 2 Zufallsvariablen

Mehr

Wie groß kann ein Baum werden?

Wie groß kann ein Baum werden? Wie groß kann ein Baum werden? Dipl. Ing. Björnstjerne Zindler, M.Sc. www.zenithpoint.de Erstellt: 22. Mai 2013 Letzte Revision: 9. Juni 2015 Inhaltsverzeichnis 1 Einleitung 2 1.1 Vorbetrachtungen....................................

Mehr

Sind f X bzw. f Y die wie auf Folie 242 definierten Dichtefunktionen zur N(µ X, σx 2 )- bzw. N(µ Y, σy 2 )-Verteilung, so gilt (genau) im Fall ρ = 0

Sind f X bzw. f Y die wie auf Folie 242 definierten Dichtefunktionen zur N(µ X, σx 2 )- bzw. N(µ Y, σy 2 )-Verteilung, so gilt (genau) im Fall ρ = 0 Beispiel: Zweidimensionale Normalverteilung I Beispiel: Zweidimensionale Normalverteilung II Wichtige mehrdimensionale stetige Verteilung: mehrdimensionale multivariate Normalverteilung Spezifikation am

Mehr

Die n-dimensionale Normalverteilung

Die n-dimensionale Normalverteilung U. Mortensen Die n-dimensionale Normalverteilung Es wird zunächst die -dimensionale Normalverteilung betrachtet. Die zufälligen Veränderlichen X und Y seien normalverteilt. Gesucht ist die gemeinsame Verteilung

Mehr

Bivariate Regressionsanalyse

Bivariate Regressionsanalyse Universität Bielefeld 15. März 2005 Kovarianz, Korrelation und Regression Kovarianz, Korrelation und Regression Ausgangspunkt ist folgende Datenmatrix: Variablen 1 2... NI 1 x 11 x 12... x 1k 2 x 21 x

Mehr

Mehrdimensionale Verteilungen und Korrelation

Mehrdimensionale Verteilungen und Korrelation Vorlesung: Computergestützte Datenauswertung Mehrdimensionale Verteilungen und Korrelation Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in

Mehr

1 Inhaltsverzeichnis. 1 Einführung...1

1 Inhaltsverzeichnis. 1 Einführung...1 1 Inhaltsverzeichnis 1 Einführung...1 1.1 Arten der stochastischen Abhängigkeit...2 1.2 Wo kommen regressive Abhängigkeiten vor?...3 1.3 Hauptaufgaben von Regressionsmodellen...3 1.4 Wissenschaftstheoretische

Mehr

Statistik I für Betriebswirte Vorlesung 4

Statistik I für Betriebswirte Vorlesung 4 Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

6 Korrelations- und Regressionsanalyse: Zusammenhangsanalyse stetiger Merkmale

6 Korrelations- und Regressionsanalyse: Zusammenhangsanalyse stetiger Merkmale 6 Korrelations- und Regressionsanalyse: Zusammenhangsanalyse stetiger Merkmale 397 6.1 Korrelationsanalyse Jetzt betrachten wir bivariate Merkmale (X, Y ), wobei sowohl X als auch Y stetig bzw. quasi-stetig

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem

Kapitel 7. Regression und Korrelation. 7.1 Das Regressionsproblem Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandelt die Verteilung einer Variablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem

Mehr

Regression und Korrelation

Regression und Korrelation Kapitel 7 Regression und Korrelation Ein Regressionsproblem behandeltdie VerteilungeinerVariablen, wenn mindestens eine andere gewisse Werte in nicht zufälliger Art annimmt. Ein Korrelationsproblem dagegen

Mehr

Zeitreihenanalyse. H.P. Nachtnebel. Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau. Definitionen und Anwendung

Zeitreihenanalyse. H.P. Nachtnebel. Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau. Definitionen und Anwendung .. Zeitreihenanalyse H.P. Nachtnebel Institut für Wasserwirtschaft, Hydrologie und konstruktiver Wasserbau Definitionen und Anwendung Definition Zeitreihe zeitliche Abfolge von Messwerten, deren Auftreten

Mehr

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung

Teil VI. Gemeinsame Verteilungen. Lernziele. Beispiel: Zwei Würfel. Gemeinsame Verteilung Zusammenfassung: diskrete und stetige Verteilungen Woche 4: Verteilungen Patric Müller diskret Wahrscheinlichkeitsverteilung p() stetig Wahrscheinlichkeitsdichte f ()

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Verteilungen mehrerer Variablen

Verteilungen mehrerer Variablen Kapitel 3 Verteilungen mehrerer Variablen 3. Eigenschaften von Verteilungen mehrerer Variablen Im allgemeinen muss man Wahrscheinlichkeiten für mehrere Variable, die häufig auch voneinander abhängen, gleichzeitig

Mehr

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression

Drittvariablenkontrolle in der linearen Regression: Trivariate Regression Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle

Mehr

1.5 Mehrdimensionale Verteilungen

1.5 Mehrdimensionale Verteilungen Poisson eine gute Näherung, da np = 0 und 500p = 5 00 = n. Wir erhalten somit als Näherung Exakte Rechnung ergibt P(2 X 0) = k=2 0 k=2 π (k) = 0,26424. 0 ( ) 00 P(2 X 0) = 0,0 k 0,99 00 k = 0,264238. k.4.2.4

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 7. Vorlesung - 2018 Bemerkung: Sei X = X 1,..., X n Zufallsvektor. Der n dimensionale Vektor EX = EX 1,..., EX n ist der Erwartungswert des Zufallsvektors X. Beispiel: Seien X, Y N0, 1. X, Y sind die Koordinaten

Mehr

Übungsrunde 10, Gruppe 2 LVA , Übungsrunde 10, Gruppe 2, Markus Nemetz, TU Wien,

Übungsrunde 10, Gruppe 2 LVA , Übungsrunde 10, Gruppe 2, Markus Nemetz, TU Wien, Übungsrunde, Gruppe 2 LVA 7.369, Übungsrunde, Gruppe 2, 9..27 Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 9..27 Anmerkung: Viele dieser Lösungsvorschläge stammen aus dem Informatik-Forum, Subforum

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit

Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit Reliabilität in der klassischen (psychometrischen) Testtheorie Statistisches Modell Realisierung mit der SPSS-Prozedur Reliability Klassische Testtheorie:

Mehr

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen

Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Rückblick Polynomiale Regression lässt sich mittels einer Transformation der Merkmale auf multiple lineare Regression zurückführen Ridge Regression vermeidet Überanpassung, indem einfachere Modelle mit

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Verfahren zur Überprüfung von Zusammenhangshypothesen

Verfahren zur Überprüfung von Zusammenhangshypothesen Verfahren zur Überprüfung von Zusammenhangshypothesen 0. Allgemeines Wir haben uns bisher mit Unterschiedshypothesen beschäftigt (Unterschiede von Stichproben in Bezug auf abhängige Variablen). Im Folgenden

Mehr

Sommersemester Marktforschung

Sommersemester Marktforschung Dipl.-Kfm. Sascha Steinmann Universität Siegen Lehrstuhl für Marketing steinmann@marketing.uni-siegen.de Sommersemester 2010 Marktforschung Übungsaufgaben zu den Themen 3-6 mit Lösungsskizzen Aufgabe 1:

Mehr

Strukturdynamik Prof. Dr. Wandinger. 1.2 Stochastische Lasten. Lösungen. Aus der Definition des Erwartungswerts folgt durch elementare Rechnung:

Strukturdynamik Prof. Dr. Wandinger. 1.2 Stochastische Lasten. Lösungen. Aus der Definition des Erwartungswerts folgt durch elementare Rechnung: Strukturdynamik 1.-1 Prof. Dr. Wandinger Aufgabe 1 1. Stochastische Lasten Lösungen Aus der Definition des Erwartungswerts folgt durch elementare Rechnung: Aufgabe E [a g( x)+b h(y)]= =a =a =a ( ( p(x,

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 202 Regressionsgerade und Korrelation Lernumgebung. Teil Hans Walser: Modul 202, Regressionsgerade und Korrelation. Lernumgebung. ii Inhalt Messwertpaare...

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirtschaftsforschung Prof. Dr. Bernd Süßmuth Universität Leipzig Institut für Empirische Wirtschaftsforschung Volkswirtschaftslehre, insbesondere Ökonometrie 1 4. Basiskonzepte der induktiven

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Univariates Datenmaterial

Univariates Datenmaterial Univariates Datenmaterial 1.6.1 Deskriptive Statistik Zufallstichprobe: Umfang n, d.h. Stichprobe von n Zufallsvariablen o Merkmal/Zufallsvariablen: Y = {Y 1, Y 2,..., Y n } o Realisationen/Daten: x =

Mehr

Statistik mit und ohne Zufall

Statistik mit und ohne Zufall Christoph Weigand Statistik mit und ohne Zufall Eine anwendungsorientierte Einführung Mit 118 Abbildungen und 10 Tabellen Physica-Verlag Ein Unternehmen von Springer Inhaltsverzeichnis Teil I Deskriptive

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Prüfung aus Statistik 2 für SoziologInnen

Prüfung aus Statistik 2 für SoziologInnen Prüfung aus Statistik 2 für SoziologInnen 11. Oktober 2013 Gesamtpunktezahl =80 Name in Blockbuchstaben: Matrikelnummer: Wissenstest (maximal 16 Punkte) Kreuzen ( ) Sie die jeweils richtige Antwort an.

Mehr

4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR

4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR. 4. Empirische Momente von ZR Im Allgemeinen wird sich das Verhalten einer ZR über die Zeit ändern, z.b. Trend, saisonales Verhalten, sich verändernde Variabilität. Eine ZR wird als stationär bezeichnet, wenn sich ihr Verhalten über

Mehr

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38

Dynamische Systeme und Zeitreihenanalyse // Multivariate Normalverteilung und ML Schätzung 11 p.2/38 Dynamische Systeme und Zeitreihenanalyse Multivariate Normalverteilung und ML Schätzung Kapitel 11 Statistik und Mathematik WU Wien Michael Hauser Dynamische Systeme und Zeitreihenanalyse // Multivariate

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

Statistik in Geodäsie, Geoinformation und Bauwesen

Statistik in Geodäsie, Geoinformation und Bauwesen Wilhelm Benning Statistik in Geodäsie, Geoinformation und Bauwesen 2., überarbeitete und erweiterte Auflage Herbert Wichmann Verlag Heidelberg Matrix-Theorie 1 1.1 Matrizen und Vektoren 1 1.2 Matrixverknüpfungen

Mehr

4 MEHRDIMENSIONALE VERTEILUNGEN

4 MEHRDIMENSIONALE VERTEILUNGEN 4 MEHRDIMENSIONALE VERTEILUNGEN 4.14 Stochastische Vektoren 1. Der Merkmalraum des stochastischen Vektors (X, Y ) sei M = R 2. Betrachten Sie die folgenden Ereignisse und ihre Wahrscheinlichkeiten: A 1

Mehr

Basiswerkzeuge. Kapitel 6. Lernziele. Zeitreihen-Plot. Beschreiben von Zeitreihen. Graphische Darstellungen. Univariate und bivariate Maßzahlen

Basiswerkzeuge. Kapitel 6. Lernziele. Zeitreihen-Plot. Beschreiben von Zeitreihen. Graphische Darstellungen. Univariate und bivariate Maßzahlen Kapitel 6 Basiswerkzeuge Josef Leydold c 2006 Mathematische Methoden VI Basiswerkzeuge 1 / 29 Lernziele Beschreiben von Zeitreihen Graphische Darstellungen Univariate und bivariate Maßzahlen Transformationen

Mehr

Grundlagen der Statistik

Grundlagen der Statistik www.nwb.de NWB Studium Betriebswirtschaft Grundlagen der Statistik Band 1: Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 12., vollständig überarbeitete Auflage nwb STUDIUM Inhaltsverzeichnis

Mehr

Grundlagen der Statistik I

Grundlagen der Statistik I NWB-Studienbücher Wirtschaftswissenschaften Grundlagen der Statistik I Beschreibende Verfahren Von Professor Dr. Jochen Schwarze 10. Auflage Verlag Neue Wirtschafts-Briefe Herne/Berlin Inhaltsverzeichnis

Mehr

Zusatzmaterial zur Vorlesung Statistik II

Zusatzmaterial zur Vorlesung Statistik II Zusatzmaterial zur Vorlesung Statistik II Dr. Steffi Höse Professurvertretung für Ökonometrie und Statistik, KIT Wintersemester 2011/2012 (Fassung vom 15.11.2011, DVI- und PDF-Datei erzeugt am 15. November

Mehr

Wir basteln uns einen Donner.

Wir basteln uns einen Donner. Wir basteln uns einen Donner. Björnstjerne Zindler Letzte Revision: 23. Januar 2014 Inhaltsverzeichnis 1 Allgemeines 2 2 Grundlagen 3 2.1 Die Entfernung S (x) eines Blitzes........................... 3

Mehr

Aufgabenblock 3. Durch zählen erhält man P(A) = 10 / 36 P(B) = 3 / 36 P(C) = 18 / 36 und P(A B) = 3 /

Aufgabenblock 3. Durch zählen erhält man P(A) = 10 / 36 P(B) = 3 / 36 P(C) = 18 / 36 und P(A B) = 3 / Aufgabenblock 3 Aufgabe ) A sei das Ereignis: schwerer Verkehrsunfall B sei das Ereignis: Alkohol ist im Spiel Herr Walker betrachtet die Wahrscheinlichkeit P(B A) = 0.3 und errechnet daraus P(-B A) =

Mehr

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Kapitel XI - Korrelationsrechnung Markus Höchstötter Uni Karlsruhe Karlsruhe, SS 2008 Kapitel XI - Korrelationsrechnung

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

MATHEMATIK 3 STUNDEN

MATHEMATIK 3 STUNDEN EUROPÄISCHES ABITUR 2013 MATHEMATIK 3 STUNDEN DATUM : 10. Juni 2013, Vormittag DAUER DER PRÜFUNG: 2 Stunden (120 Minuten) ERLAUBTES HILFSMITTEL Prüfung mit technologischem Hilfsmittel 1/6 DE AUFGABE B1

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 21. Oktober 2010 1 Datenpaare Korrelation Lineare Regression Regression im exponentiellen Modell Datenpaare Häufig

Mehr

4. Leistungs- und Kreuzleistungsdichtespektren

4. Leistungs- und Kreuzleistungsdichtespektren 4. Leistungs- und Kreuzleistungsdichtespektren 23.4.18 Die bereits in Kapitel 1.2 einführten Leistungsdichtespektren werden nun genauer untersucht. Zudem werden Kreuzleistungsdichtespektren eingeführt.

Mehr

3 Korrelation und Regression

3 Korrelation und Regression 3 KORRELATION UND REGRESSION 3 Korrelation und Regression Sind zwei Zufallsvariable X und Y unabhängig, so gibt es keinerlei Wechselwirkung zwischen ihnen. Ist ein funktionaler Zusammenhang = f( zwischen

Mehr

i =1 i =2 i =3 x i y i 4 0 1

i =1 i =2 i =3 x i y i 4 0 1 Aufgabe (5+5=0 Punkte) (a) Bei einem Minigolfturnier traten 6 Spieler gegeneinander an. Die Anzahlen der von ihnen über das gesamte Turnier hinweg benötigten Schläge betrugen x = 24, x 2 = 27, x = 2, x

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psmet03.sowi.uni-mainz.de/

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Prognoseintervalle für y 0 gegeben x 0

Prognoseintervalle für y 0 gegeben x 0 10 Lineare Regression Punkt- und Intervallprognosen 10.5 Prognoseintervalle für y 0 gegeben x 0 Intervallprognosen für y 0 zur Vertrauenswahrscheinlichkeit 1 α erhält man also analog zu den Intervallprognosen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 3 1 Inhalt der heutigen Übung Vorrechnen der Hausübung B.7 Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben C.1: Häufigkeitsverteilung C.2: Tukey

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Anwendungsaufgaben. a. Anhand des Streudiagramms (. Abb. 1) lässt sich ein linearer Zusammenhang vermuten. Aufgabe 1. Anhang 1: Lösungen der Aufgaben

Anwendungsaufgaben. a. Anhand des Streudiagramms (. Abb. 1) lässt sich ein linearer Zusammenhang vermuten. Aufgabe 1. Anhang 1: Lösungen der Aufgaben Anhang 1: Lösungen der Aufgaben 15 +1). Korrelationskoeffizienten unterschiedlicher Stichproben oder verschiedener Variablen können so miteinander verglichen werden, was mit der Kovarianz nicht möglich

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp PHY3 Herbstsemester 04 Olaf Steinkamp Physik-Institut der Universität Zürich Winterthurerstrasse 90 CH-8057 Zürich olafs@physik.uzh.ch Büro: 36-J- Tel.: 044-635.57.63 Vorlesungsprogramm Einführung, Messunsicherheiten,

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr