Theoretische Physik 4 - Blatt 2

Größe: px
Ab Seite anzeigen:

Download "Theoretische Physik 4 - Blatt 2"

Transkript

1 Theoretische Physik 4 - Blatt Christopher Bronner, Frank Essenerger FU Berlin 9.Oktoer 6 Aufgae 3 a) Neenrechnung dye y In den Aufgaen wird immer wieder das Integral auftauchen. Hier dye y wird es erechnet: I I dye y dye y dxe x dxdye [y +x ] drdϕre r [ e r ] + Normierungskontante drre r I π I π ) Als erstes muss die Normierungskonste estimmt werden. Dazu enutzt man die Normierungsedingung So ergit sich für unsere Funktion dxψx)ψ x) ψx, t ) Ae x +ik x.

2 folgende Bestimmungsgleichung für A: A dxae x +ik x Ae x ik x dxe x Nun wird mit y x dy dx sustituiert: A dxe x A dye y A dye y. Dieses Integral ist nach Gl. ) ekannt und es ergit sich für die Normierungskonstante: A 4 π. ) Ψk) ergit sich als Rücktransformation von Ψx): Ψk) + dxψx)e ikx dxae x +ik k)x dxae [x ik k) x] dxae [x ik k) ] k k) Nun mit y x ik k) dy dx sustituieren: Γi Ψk) + +Γi +Γi dyae y Γ. Nun nochmal mit y z dy dz sustituieren Γ Γ): Ψk) A e Γ +Γ i +Γ i dze z. )

3 Hier muss man jetzt noch dieses Integral auf das ekannte Integral aus Aufgae a) zurückführen. Da e z analytisch ist, verschwindet jedes geschlossene Wegintegral in der Gaußschen Zahleneene. dze z Nun wählen wir einen esonderen Weg: +R dze z R dze z + +R +R+Γ i R+Γ i R dze z + dze z + dze z + dze z R +R +R+Γ i R+Γ i R+Γ i +R+Γ i R+Γ i dze z + dze z dze z +R+Γ i +R R } {{ } :W W eg zur reellen Achse) } {{ } W eg Nun wird für die Wege eine Parametrisierung gewählt. W eg : z t) R + iγ t t ɛ [, ] W eg : z t) z t) R iγ t t ɛ [, ]. So ergit sich für den geschlossenen Weg: dze z W + dte z t) iγ } {{ } W eg dte z t) iγ ) z z 3) W + W + dte zt) iγ + dte R RiΓ t+γ t iγ + dte zt) iγ 4) dte R RiΓ t+γ t iγ 5) W + e R dte RiΓ t e Γ t iγ + e R dte RiΓ t e Γ t iγ 6) Jetzt lassen wir R gehen. Die komplexe Exponentialfunktion im Integranden ist von der Form e iα und hat den Betrag. Der reelle Exponentialterm im Integranden ist konstant zgl. R. Die reelle Exponentialfunktion vor dem Integral stet gegen Null und lässt somit eide Summanden verschwinden. W 3

4 Oder explizit:für lim R + fallen die hinteren eiden Terme weg: ± e R e R I ± e R dte t Γ ±RΓit iγ) dte t Γ ±RΓit iγ) ± e R dt e t Γ e ±RΓit iγ) e R e R Maxe t Γ Γ, t) [,] ) LAAnge e R const.. dt e t Γ ±RΓit iγ) dt e ±t Γ Γ) e R Maxe t Γ Γ, t) [,] Der Betrag des Terms ist. Wenn I geht, dann geht I erst recht gegen und Gleichung 3) vereinfacht sich zu:setzen wir W nun wieder ein: R+Γ i R+Γ i R+Γ i R+Γ i dze z +R dze z π. Damit ergit sich für Ψk) nach Gl. ): dze z + R +R dze z R R+Γ i dze z +R+Γ i Ψk) A e Γ π Ae k k) 4 Ae k k) Endergenis: Ψk) 4 π e k k) c) Für die Zeitahängigkeit wählen wir den Ansatz: Ψx, t) dk Ψk)e ikx ωt) 7) Für die Frequenz gilt E ω p m k m 8) 4

5 ω k m Setzt man diese Frequenz und Ψk) in die Gl. 4) ein, ergit sich: Ψx, t) 4 π dk exp ) k k) + ikx k m t) 9) ) Um das Integral lösen zu können, formen wir den Exponenten um: k k) + ikx k m t) k i t ) m +k ix + ) k k ) :β :α :γ α k + k β α + β 4α ) ) γ β 4α :δ α k + β ) + δ 3) 4 Jetzt sieht das Integral schon esser aus. Den Vorfaktor verkürzen wir noch: F :. 4 π Wir definieren α : α. Ψx, t) F e δ dk e αk+ β 4 ) 4) Ψx, t) F e δ Mit der Sustitution y : α k + α β 4 dk e α k+ α β 4 ) 5) dk α dy erhaelt das Inte- gral Wiedererkennungswert. Durch die Sustitution erhalten die Integralgrenzen einen imaginaeren Teil I C. Dieses Integral haen wir ereits in Aufgaenteil ) gelöst. Jetzt setzen wir Ψx, t) F +I eδ dy e y 6) α +I F eδ α π 7) 5

6 F π 4 π 8) α i m t + δ γ β 4α k + 4 ix + k ) i m t + wieder ein und ekommen als Endergenis: [ Ψx, t) 4 exp π i m t + k + ) ix + ] k i m t + 9) ) ) Um zu sehen, dass diese Lösung die Wellenfunktion die Schrödinger-Gleichung erfüllt, ilden wir die Aleitungen Akürzung: α : i m t + ): t Ψx, t) Ψx, t) [ Ψx, t) x x x 4 π α 3 exp[...]i m [ i mα 4 α exp[...] ix + k ) π α i m ] i mα ix + k ) 4 α exp[...] π α ix + k ) i [Ψx, t) iα ] ix + k ) Ψx, t) α ix + k ) Ψx, t) α Ψx, t) [ α α ] ix + k ) Durch Einsetzen in die SG sieht man, dass Ψx, t) Lösung ist. [ iψx, t) i mα i ] mα ix + k ) d) mα + mα ix + k ) Die Wahrscheinlichkeitsdichte ist gegeen durch ] Ψx, t) [ α m α ] ix + k ) mα + mα ix + k ) ρx, t) Ψx, t) ) 6

7 Einsetzen von Gl. 8): ρx, t) 4 exp π i m t + k + ) ix + k 4 i m t + :E Berechnung des Vorfaktors. 4 π i m t + π + i m t i m t π 4 + 3) 4) Berechnung des Exponenten. e E e ReE) 5) E k + ix + k ) 4 i m t + 6) 4 k + ix k x ) ) k i m t ) k ) [ 6 k x + x k m t + i x 4 k 4 k m t + )] x m t 9) [ ] ReE) 6 k k x + x k m t [ ] 6 k k x + x k m t [ k + k m t + 4 k + x xk [ ReE) 4 + x xk m t + ] k m t 4 + [ x k m t ] m t 3) 3) 3) 33) ] 34) 7

8 Jetzt setzen wir Gl. 34) in Gl. 5) und diese zusammen mit dem oen estimmten Vorfaktor in Gl. 3) ein. ρx, t) π 4 + exp 4 + : σt9 x k m t Das Maximum nimmt die Funktion ein, wenn der Exponent verschwindet. ) 35) t max x) m k x 36) Das zeitliche Maximum ist natürlich eine Funktion vom Ort, da das Paket sich ja ewegt.das Maximum wandert mit: xt) k m t. Die Höhe des Maximums geht daei wie: At) π 4 +. Die Breite ergit sich aus dem Wert für e, welcher ei x / k m t ± σt) angenommen wird, so ist xt): xt) x x 4 + m σt) t). 37) Zusammengefasst lässt sich sagen, dass die Wahrscheinlichkeitsdichte sich wie erwartet verhält. Das Maximum wandert geradlinig in eine Richtung, daei nimmt seine Höhe a und die Breite der Kurve nimmt zu. Die Kurve zerfließt also langsam. Aufgae 4 Wir üerlegen uns nun wie man ω und k ermittelt. Diese kann man jedoch leicht estimmen, wenn die Geschwindigkeit v der Transformation gegeen ist, da Geschwindigkeiten der Welle v g und v einfach zusammenhängen. Die folgende Rechnung ist voellig allgemein und gilt also speziell fuer die eene Welle. v g v g v p mv g k k v g m k v g m v g v)m k vm. 38) 8

9 Gleiche Üerlegungen kann man auch für ω anstellen: ω E p m ω mv g ω mv g v) ω mv gv + mv. 39) Nun wollen wir sehen, dass die Schrödinger-Gleichung invariant ist zgl. Galilei- Transformationen. Im ewegten Bezugssystem hat die Wellenfunktion folgende Gestalt: Es gilt wegen k k + vm : Ψx, t ) e ifx,t) Ψx, t) dk Ψk)e ikx ωt)+ifx,t) dk dk Die Funktion fx, t) soll so eschaffen sein, dass folgende Gleichung erfüllt ist. ikx ωt) + ifx, t) ik x ω t ) Wenn nun Ψx, t)loesung der Schroedingergleichung ist, gilt fuer die transformierte Wellengleichung: m x Ψx, t ) i t Ψx, t ) dk Ψ k ) k m eik x ω t ) dk ω Ψ k )e ik x ω t ). [ dk ω k ] c m Ψ k )e ik x ω t ) Nach den Zusammenhaengen fuer k und ω und der debroglie-beziehung gilt: [ω k ] m 9

10 Also ist auch Ψx, t ) Loesung der transformierten) SG. Nun leit noch die Berechnung von fx, t) nach der oen gestellten Forderung. ikx ωt) + ifx, t) ik x ω t ) fx, t) k k)x ω ω)t k vt mv x + mvv g t mv t k vt k mv g mv x mv t + mv tv g v g) mv x mv t + mv tv fx, t) mv x + mv t

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte

Übungen zur Modernen Theoretischen Physik I SS 14. (a) (1 Punkt) Zunächst schauen wir uns die Zeitableitung der Wahrscheinlichkeitsdichte Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Modernen Theoretischen Physik I SS 14 Prof. Dr. Gerd Schön Lösungen zu Blatt 2 Andreas Heimes, Dr. Andreas Poenicke

Mehr

Übungen zur Quantentheorie (Lehramt) WS 2006/07

Übungen zur Quantentheorie (Lehramt) WS 2006/07 Übungen zur Quantentheorie Lehramt) WS 2006/07 Lesender: Prof. M. Müller-Preußker Übungen: Dr. J. Käppeli Lösungsbeispiele zur 1. Serie Marcus Petschlies 1 Ebene Wellen 1 1.a) Allgemeine Lösung der Wellengleichung

Mehr

Übung 8: Lösungen. x x 2 3x + 2 = (x 1)(x 2) = a. b = lim. = log x log x 2 = log. f(2) = 3 14 = α β.

Übung 8: Lösungen. x x 2 3x + 2 = (x 1)(x 2) = a. b = lim. = log x log x 2 = log. f(2) = 3 14 = α β. Technische Universität München SS 4 Zentrum Mathematik 4.6.4 Prof. Dr. K. Buchner Dr. W. Aschacher Analysis II Üung 8: Lösungen Aufgae T (Integrationstechnik, 3: Partialruchzerlegung) (a) 3 + Der Nennergrad

Mehr

Lösungen zur Experimentalphysik III

Lösungen zur Experimentalphysik III Lösungen zur Experimentalphysik III Wintersemester 008/009 Prof. Dr. L. Oberauer Blatt 7.10.08 Aufgabe 1: a) Die Formel für die Fouriertrafo ist aus der Vorlesung und der Zentralübung bekannt. Somit folgt

Mehr

Quantenmechanik I Sommersemester QM Web Page teaching/ss13/qm1.d.html

Quantenmechanik I Sommersemester QM Web Page  teaching/ss13/qm1.d.html Quantenmechanik I Sommersemester 2013 QM Web Page http://einrichtungen.physik.tu-muenchen.de/t30e/ teaching/ss13/qm1.d.html Hinweise Zusätzliche Übung: Aufgrund des großen Andrangs bieten wir eine zusätzliche

Mehr

Musterlösung. für die Klausur MA1_07.1 vom 07. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann.

Musterlösung. für die Klausur MA1_07.1 vom 07. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann. Fachereich Produktion und Wirtschaft Musterlösung für die Klausur MA_07. vom 07. Feruar 007 Laor für Mathematik und Statistik Prof. Norert Heldermann Richard Münder Bei dem vorliegenden Dokument handelt

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 010/011 Übungsblatt - 1. November 010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) Berechnen Sie die Fouriertransformierte

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Präsenzaufgaen zum 8und 9 Lösungshinweise (onhe Garantie auf Fehlerfreiheit Sei f : D R mit D {(x, y R : x, y > } und f(x, y x sin(x y + xy (a

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 8 06..0 Musterlösungen Theoretische Physik I: Klassische Mechanik Schwingungen z und Wellen Prof. Dr. G. Alber MSc Nenad Balanesković. g x y Ein Massenpunkt der Masse m bewegt sich unter dem Einfluß

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Die Schrödingergleichung Wir werden in dieser Woche die grundlegende Gleichung der Quantenmechanik kennenlernen, die Schrödingergleichung. Sie beschreibt das dynamische Verhalten von Systemen in der Natur.

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Fokker-Planck Gleichung

Fokker-Planck Gleichung Fokker-Planck Gleichung Max Haardt WWU Münster 21. November 2008 Inhalt 1 Einleitung Langevin Gleichung Fokker-Planck Gleichung 2 Herleitung Mastergleichung Kramers-Moyal Entwicklung Fokker-Planck Gleichung

Mehr

Fourier-Transformation

Fourier-Transformation Fourier-ransformation Im Folgenden werden die schon bekannten Eigenschaften der Fourier-Reihen zur Darstellung periodischer Funktionenn zusammengefasst und dann auf beliebige Funktionen verallgemeinert.

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVESITÄT MÜNCHEN Fakultät für Mathematik

Mehr

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 11. Bitte wenden!

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 11. Bitte wenden! D-HEST, Mathematik III HS 07 Prof. Dr. E. W. Farkas M. Nitzschner Lösung Bitte wenden! . Lösen von partiellen Differentialgleichungen mit Separationsansätzen a Betrachten Sie für D > 0 die partielle Differentialgleichung

Mehr

A n a l y s i s Integralrechnung

A n a l y s i s Integralrechnung A n a l y s i s Integralrechnung Wie können wir Flächen von krummlinig egrenzten Flächen erechnen? . Das unestimmte Integral Die Stammfunktion Ist eine Funktion f() gegeen, so können wir ihre Aleitung

Mehr

Die Dirac sche δ-funktion

Die Dirac sche δ-funktion Gero Hillebrandt, Matthias Köhler 20. Oktober 203 Inhaltsverzeichnis Definition und Eigenschaften der δ-funktion 2. Die Heaviside sche Einschaltfunktion................ 2.2 Eigenschaften der δ-funktion....................

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

T2 Quantenmechanik Lösungen 3

T2 Quantenmechanik Lösungen 3 T2 Quantenmechanik Lösungen LMU München, WS 1/18.1. Wellenfunktion und Wahrscheinlichkeit Prof. D. Lüst / Dr. A. Schmidt-May version: 2. 11. Es seien x 1, x 2, N drei reelle Konstanten und x 2 > x 1 >.

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin WS 2006/2007 Fachbereich Physik 0..2006 Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 3: Zentraler Grenzwertsatz, Mikrokanonisches Ensemble, Entropie Aufgabe

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Maxwellgleichungen a) Leiten Sie aus den Maxwellgleichungen im Vakuum die Wellengleichung im Vakuum her. Zeigen Sie, dass E, B und k senkrecht aufeinander

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeprtment E13 WS 211/12 Üungen zu Physik 1 für Mschinenwesen Prof. Dr. Peter Müller-Buschum, Dr. Ev M. Herzig, Dr. Volker Körstgens, Dvid Mgerl, Mrkus Schindler, Moritz v. Sivers Vorlesung 24.11.211,

Mehr

Die Schrödinger Gleichung

Die Schrödinger Gleichung Die Schrödinger Gleichung Eine Einführung Christian Hirsch Die Schrödinger Gleichung p. 1/16 Begriffserklärung Was ist die Schrödingergleichung? Die Schrödinger Gleichung p. 2/16 Begriffserklärung Was

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr KIT SS 05 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 7. Juli 05, 6-8 Uhr Aufgabe : Kurzfragen (+4++3=0 Punkte) (a) Zwangsbedingungen beschreiben Einschränkungen

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 5 c 2016 A. Kersch Vorkurs Mathematik-Physik, Teil 5 c 206 A. Kersch Vektoren. Vektorrechnung Definition Ein Vektor ist eine gerichtete Größe welche einen Betrag ( Zahl und eine Richtung ( in 2D, 2 in 3D hat. Alternativ

Mehr

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Prof. Dr. Walter Arnold Lehrstuhl für Materialsimulation Universität des Saarlandes 5. Januar 2016 7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Abgabe des Übungsblattes

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein Zentralübung 5. Dirac-Folgen TECHNISCHE UNIVESITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik Analysis 3 Sei δ k k N eine Dirac-Folge und f L n. Zeigen Sie, dass

Mehr

1 Fourier-Reihen und Fourier-Transformation

1 Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-ransformation Fourier-Reihen und Fourier-ransformation J.B.J. de Fourier beobachtete um 8, dass sich jede periodische Funktion durch Überlagerung von sin(t) und cos(t) darstellen

Mehr

Resultate der Quantisierung der Schrödingergleichung in zwei Dimensionen.

Resultate der Quantisierung der Schrödingergleichung in zwei Dimensionen. Resultate der Quantisierung der Schrödingergleichung in zwei Dimensionen. 22. April 2010 In diesem Text werden die in der Tabelle properties of free fermions angeführten Ergebnisse erklärt und einige Zwischenschritte

Mehr

WKB-Methode. Jan Kirschbaum

WKB-Methode. Jan Kirschbaum WKB-Methode Jan Kirschbaum Westfälische Wilhelms-Universität Münster Fachbereich Physik Seminar zur Theorie der Atome, Kerne und kondensierten Materie 1 Einleitung Die WKB-Methode, unabhängig und fast

Mehr

Wellenfunktion und Schrödinger Gleichung

Wellenfunktion und Schrödinger Gleichung Kapitel 2 Wellenfunktion und Schrödinger Gleichung Das Ziel ist es, die Begriffe Wellenfunktion, Schrödinger Gleichung und Hamilton Operator anhand von Beispielen einzuführen. 2.1 Wellenfunktion eines

Mehr

Lösung 01 Klassische Theoretische Physik I WS 15/16

Lösung 01 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt Übungen zur Ingenieur-Mathematik III WS 9/ Blatt 4..9 Aufgabe : Berechnen Sie das Volumen des Volltorus, der durch Rotation der reisscheibe { x,, z R 3, x b + z a } mit < a < b um die z-achse entsteht.

Mehr

5.1 Anwendung auf die Berechnung uneigentlicher

5.1 Anwendung auf die Berechnung uneigentlicher Kapitel 5 Anwendungen des Residuenkalküls Wie sich am Ende des vorigen Kapitels in Beispiel 4.17 bereits angedeutet hat, bietet der Residuenkalkül ein mächtiges Werkzeug, um uneigentliche Integrale mit

Mehr

1.4. Das freie quantenmechanische Elektron

1.4. Das freie quantenmechanische Elektron 1.4. Das freie quantenmechanische Elektron 1.4.3. Dispersionsrelation Damit ist die Basis gelegt, um sich mit den grundlegenden Eigenschaften eines quantenmechanischen Teilchens vertraut zu machen. Die

Mehr

Die Schrödingergleichung

Die Schrödingergleichung Vortrag im Rahmen der Vorlesung zu Spektralmethoden Magdalena Sigg Wanja Chresta 20. Mai 2008 Zusammenfassung ist die zentrale Gleichung der Quantenmechanik. Mit ihrer Hilfe werden Teilchen in gegebenen

Mehr

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie

Störungstheorie. Kapitel Motivation. 8.2 Zeitunabhängige Störungstheorie (Rayleigh-Schrödinger) nicht-entartete Störungstheorie Kapitel 8 Störungstheorie 8.1 Motivation Die meisten quantenmechanischen Problemstellungen lassen sich (leider) nicht exakt lösen. So kommt zum Beispiel der harmonische Oszillator in der Natur in Reinform

Mehr

Lösung 07 Klassische Theoretische Physik I WS 15/16

Lösung 07 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu Lösung 7 Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel Mendler

Mehr

T2 Quantenmechanik Lösungen 4

T2 Quantenmechanik Lösungen 4 T2 Quantenmechanik Lösungen 4 LMU München, WS 17/18 4.1. Lösungen der Schrödinger-Gleichung Beweisen Sie die folgenden Aussagen. Prof. D. Lüst / Dr. A. Schmi-May version: 06. 11. a) Die Separationskonstante

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

5. Fourier-Transformation

5. Fourier-Transformation Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Distributionen

Ferienkurs Analysis 3 für Physiker. Übung: Distributionen Ferienkurs Analysis 3 für Physiker Übung: Distributionen Autor: Maximilian Jokel, Benjamin üth Stand: 14. März 16 Aufgabe 1 (Ableitung der Heaviside-Funktion) Wir betrachten die durch Θ(x) : { 1 für x

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 2013 Prof. Dr. F. Kremer

Vorlesung Molekülphysik/Festkörperphysik Sommersemester 2013 Prof. Dr. F. Kremer Vorlesung "Molekülphysik/Festkörperphysik" Sommersemester 3 Prof. Dr. F. Kremer Üersicht der Vorlesung am 3.6.3 Wiederholung (Drude-Modell ( freies Elektronengas, Plasmaschwingung, Grenzen des Drude- Modells

Mehr

Fourier-Transformation

Fourier-Transformation ANHANG A Fourier-Transformation In diesem Anhang werden einige Definitionen Ergebnisse über die Fourier-Transformation dargestellt. A. Definition Theorem & Definition: Sei f eine integrable komplexwertige

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Musterlösung 01/09/2014

Musterlösung 01/09/2014 Musterlösung 1/9/14 1 Quickies (a) Warum spielen die Welleneigenschaften bei einem fahrenden PKW (m = 1t, v = 1km/h) keine Rolle? (b) Wie groß ist die Energie von Lichtquanten mit einer Wellenlänge von

Mehr

Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π]

Zwischenprüfung. 3. (2 Pkt.) Formulieren Sie beide Lösungen in der Polardarstellung mit Polarwinkel in Einheiten von π im Bereich [ π, π] Datum: 10.04.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt.) Wir betrachten

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Inhaltsverzeichnis Wellen. Wellen im Vakuum............................. Lösung der Wellengleichung................... Energietransport / Impuls - der

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

(Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.)

(Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) K, 8.6.8 Seite Pflichtteil (etwa min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen agegeen sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Aufgae :

Mehr

Elemente der Funktionentheorie

Elemente der Funktionentheorie Mitteilung sd98027, August 2010 1 Elemente der Funktionentheorie Die wichtigsten Sätze und Hilfsmittel für Anwendungen in der physikalischen Feldtheorie Übersicht Einige Sätze der mathematischen Funktionentheorie,

Mehr

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15

Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 15 5. Es sei Übungen zu Doppel- und Dreifachintegralen Lösungen zu Übung 5 f(x, y) : x y, : x, y, x + y, y x. erechnen Sie f(x, y) d. Wir lösen diese Aufgabe auf zweierlei Art. Zuerst betrachten wir das Gebiet

Mehr

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren.

(b) Folgern Sie, dass f auf C \{±i} keine Stammfunktion besitzt, indem Sie f entlang einer passenden Kreislinie mit Mittelpunkt in i integrieren. Musterlösung noch: Funktionentheorie Aufgabe 2.5 (Holomorphe Stammfunktion. Sei f : C \{±i} C gegeben durch f( + 2. (a Zeigen Sie, dass f ( + i eine Stammfunktion auf K 2 (i besitt. Hinweis: Zeigen Sie

Mehr

Funktionen in mehreren Variablen Lösungen

Funktionen in mehreren Variablen Lösungen Funktionen in mehreren Variablen en Jonas Funke 5.08.008 1 Stetigkeit und partielle Dierentiation 1 Stetigkeit und partielle Dierentiation 1.1 Aufgabe Gegeben ist die Funktion: { (x + y 1 ) sin( ) (x,

Mehr

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB

KLAUSUR ZUR MATHEMATIK FÜR PHYSIKER MODUL MATHB KLAUSUR ZUR ATHEATIK FÜR PHYSIKER ODUL ATHB In jeder Aufgabe können Punkte erreicht werden Es zählen die 9 bestbewerteten Aufgaben Die Klausur ist mit 45 Punkten bestanden Die Bearbeitungszeit beträgt

Mehr

Elemente der Funktionentheorie

Elemente der Funktionentheorie Astrophysikalisches Institut Neunhof Mitteilung sd98027, August 2010 1 Elemente der Funktionentheorie Die wichtigsten Sätze und Hilfsmittel für Anwendungen in der physikalischen Feldtheorie Übersicht Einige

Mehr

Fourier Transformation

Fourier Transformation Fourier Transformation Frank Essenberger FU Berlin 8.Dezember 006 Inhaltsverzeichnis 1 Endliche Periodenlänge 1 Unendlich Periodenlänge 4 3 Die δ F unktion 4 4 Beispiele 6 4.1 Endliche Periodenlänge.......................

Mehr

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [

Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e [ Vorlesung 4 Teilchen im externen Elektromagnetischen Feld Die Bewegungsgleichungen eines geladenen Teilchens im externen elektromagnetischen Feld sind bekannt d dt m v = e E + e v B c ]. 1) Das elektrische

Mehr

Musterlösung. für die Klausur MA2_05.1 vom 11. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann.

Musterlösung. für die Klausur MA2_05.1 vom 11. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann. Fachbereich Produktion und Wirtschaft Musterlösung für die Klausur MA_05.1 vom 11. Februar 005 Labor für Mathematik und Statistik Prof. Norbert Heldermann Richard Münder Bei dem vorliegenden Dokument handelt

Mehr

1-D photonische Kristalle

1-D photonische Kristalle 1-D photonische Kristalle Berechnung der Dispersionsrelation und der Zustandsdichte für elektromagnetische Wellen Antonius Dorda 15.03.09 Inhaltsverzeichnis 1 Einleitung 2 2 Herleitung der Relationen 2

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim.

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim. Theorie A (WS5/6) Musterlösung Übungsblatt 7 6..5 Θ(t t [ t t ) = lim arctan( ) + π ] ε π ε ( ) d dt Θ(t t ) = lim ε π vergleiche Blatt 6, Aufg. b). + (t t ) ε ε = lim ε π ε ε + (t t ) = δ(t t ) Plot von

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde.

Die Wellenfunktion ψ(r,t) ist eine komplexe skalare Größe, da keine Polarisation wie bei elektromagnetischen Wellen beobachtet wurde. 2. Materiewellen und Wellengleichung für freie Teilchen 2.1 Begriff Wellenfunktion Auf Grund des Wellencharakters der Materie können wir den Zustand eines physikalischen Systemes durch eine Wellenfunktion

Mehr

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung

Schrödingergleichung und Potentialprobleme. 1 Zeitentwicklung und Schrödingergleichung Seite 1 Ferienkurs Quantenmechanik - Aufgaben Sommersemester 13 Daniel Rosenblüh und Florian Häse Fakultät für Physik Technische Universität München Schrödingergleichung und Potentialprobleme 1 Zeitentwicklung

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Gedämpftes Quantentunneln in makroskopischen Systemen

Gedämpftes Quantentunneln in makroskopischen Systemen Gedämpftes Quantentunneln in makroskopischen Systemen Kerstin Helfrich Seminar über konforme Feldtheorie, 27.06.06 Gliederung 1 Motivation 2 Voraussetzungen Allgemein Ungedämpfter Fall 3 Gedämpftes Tunneln

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Theoretische Physik IV - Blatt 3

Theoretische Physik IV - Blatt 3 Theoretische Physi IV - Bltt 3 Christopher Bronner, Frn Essenberger FU Berlin 4.November 006 Aufgbe 5 Energieeigenfuntionen Uns ist folgendes Potentil gegeben, wobei V 0 > 0 sei: V (x) V 0 bei x [, ] V

Mehr

1 Die Schrödinger Gleichung

1 Die Schrödinger Gleichung 1 Die Schrödinger Gleichung 1.1 Die Wellenfunktion und ihre Wahrscheinlichkeitsinterpretation Aus den Versuchen der Elektronenbeugung, hat ein Elektron auch Welleneigenschaften. Für freie Elektronen mit

Mehr

Ferienkurs zur Analysis 1 Taylor, Fourier, Matrixexponential und Differentialgleichungen

Ferienkurs zur Analysis 1 Taylor, Fourier, Matrixexponential und Differentialgleichungen Technische Universität München Department of Physics Ferienkurs zur Analysis Taylor, Fourier, Matrixexponential und Differentialgleichungen Freitag, 23.03.202 Sascha Frölich Inhaltsverzeichnis Taylorreihen

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Fourierreihen und -transformation

Fourierreihen und -transformation Kapitel Fourierreihen und -transformation. Fourierreihen 8 postulierte Fourier (ohne stichhaltige Beweise: Jede beliebige Funktion f(x mit Periode, d. h. f(x = f(x +, lässt sich in eine Reihe der Gestalt

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Höhere Mathematik II für die Fachrichtung Physik. 12. Übungsblatt

Höhere Mathematik II für die Fachrichtung Physik. 12. Übungsblatt Institut für Analysis SS207 PD Dr. Peer Christian Kunstmann 4.07.207 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 9

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 9 Prof. C. Greiner, Dr. H. van Hees Sommersemester 214 Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 9 Aufgabe 34: Steinerscher Satz für den Trägheitstensor Der Schwerpunkt liege im Ursprung des Koordinatensystems.

Mehr

Kapitel 10. Potentiale Elektronen im Potentialtopf

Kapitel 10. Potentiale Elektronen im Potentialtopf Kapitel 10 Potentiale 10.1 Elektronen im Potentialtopf Mit dem Aufstellen der Schrödinger-Gleichung ist man der realistischen Beschreibung von Quantenobjekten ein großes Stück nähergekommen. Unser Interesse

Mehr

Theoretische Physik II: Quantenmechanik

Theoretische Physik II: Quantenmechanik Theoretische Physik II: Quantenmechanik Hans-Werner Hammer Marcel Schmidt (mschmidt@theorie.ikp.physik.tu-darmstadt.de) Wintersemester 2016/17 Probeklausur 12./13. Januar 2017 Name: Matrikelnummer: Studiengang:

Mehr

Theoretische Physik II Quantenmechanik

Theoretische Physik II Quantenmechanik Michael Czopnik Bielefeld, 11. Juli 014 Fakultät für Physik, Universität Bielefeld Theoretische Physik II Quantenmechanik Sommersemester 014 Lösung zur Probeklausur Aufgabe 1: (a Geben Sie die zeitabhängige

Mehr

2. Räumliche Bewegung

2. Räumliche Bewegung 2. Räumliche Bewegung Prof. Dr. Wandinger 1. Kinematik des Punktes TM 3 1.2-1 2. Räumliche Bewegung Wenn die Bahn des Punkts nicht bekannt ist, reicht die Angabe einer Koordinate nicht aus, um seinen Ort

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.)

Zwischenprüfung. Mathematische Grundlagen (35 Pkt.) Datum: 05.04.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Zwischenprüfung I Mathematische Grundlagen (35 Pkt.) 1. (1 Pkt., 97%)

Mehr

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung

Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ferienkurs Analysis 3 - Übungen Funktionentheorie - Musterlösung Ralitsa Bozhanova, Ma v. Vopelius.8.9 Differenzierbarkeit (a Sei A (a ij i,j, R. Zeigen Sie, dass die von A durch die Matrimultiplikation

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Zweite Projektarbeit Quantenmechanik, SS Schrödingers Wellengleichung

Zweite Projektarbeit Quantenmechanik, SS Schrödingers Wellengleichung Zweite Projektarbeit Quantenmechanik, SS 2008 Gruppe Heisenberg Allmer Philipp Blatnik Matthias Hölzl Bernhard Kuhness David 04allmer@edu.uni-graz.at matthias.blatnik@edu.uni-graz.at 01hoelzl@edu.uni-graz.at

Mehr

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit

Aufgabe 1: Wellenfunktion und Aufenthaltswahrscheinlichkeit Lösungsvorschlag Übung 8 Aufgabe : Wellenfunktion und Aufenthaltswahrscheinlichkeit a) Die Wahrscheinlichkeitsdichte ist eine Wahrscheinlichkeit pro Volumenelement. Die Wahrscheinlichkeit selbst ist eine

Mehr

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve.

(a) Λ ist eine Erhaltungsgröße. (b) Λ ist gleich der Exzentrizität ε der Bahnkurve. PD Dr. S. Mertens S. Falkner, S. Mingramm Theoretische Physik I Mechanik Blatt 7 WS 007/008 0.. 007. Lenz scher Vektor. Für die Bahn eines Teilchens der Masse m im Potential U(r) = α/r definieren wir mit

Mehr

Fourier-Reihen und Fourier-Transformation

Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

5. Fourier-Transformation

5. Fourier-Transformation 5. Fourier-Transformation 5.1 Definition 5.2 Eigenschaften 5.3 Transformation reeller Funktionen 5.4 Frequenzbereich und Zeitbereich 2.5-1 5.1 Definition Definition: Die Fourier-Transformation einer Funktion

Mehr

THEORETISCHE PHYSIK C NACHKLAUSUR Prof. Dr. J. Kühn Dienstag, 27.4.2 Dr. S. Uccirati 7:3-2:3 Uhr Bewertungsschema für Bachelor Punkte Note < 4 5. 4-5.5 4.7 6-7.5 4. 8-9.5 3.7 2-2.5 3.3 22-23.5 3. 24-25.5

Mehr